mirror of https://github.com/citusdata/citus.git
Merge pull request #3353 from citusdata/partition_task_list_results
Partitioned task list results. Implements PartitionTasklistResults(), which partitions results of given SELECT tasks based on shard ranges of a given relation.pull/3371/head
commit
08b5145765
|
@ -0,0 +1,320 @@
|
|||
/*-------------------------------------------------------------------------
|
||||
*
|
||||
* distributed_intermediate_results.c
|
||||
* Functions for reading and writing distributed intermediate results.
|
||||
*
|
||||
* Copyright (c), Citus Data, Inc.
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
#include <sys/stat.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include "postgres.h"
|
||||
#include "funcapi.h"
|
||||
#include "miscadmin.h"
|
||||
#include "port.h"
|
||||
|
||||
#include "access/tupdesc.h"
|
||||
#include "catalog/pg_type.h"
|
||||
#include "distributed/intermediate_results.h"
|
||||
#include "distributed/metadata_cache.h"
|
||||
#include "distributed/multi_executor.h"
|
||||
#include "distributed/transaction_management.h"
|
||||
#include "distributed/tuplestore.h"
|
||||
#include "distributed/worker_protocol.h"
|
||||
#include "tcop/pquery.h"
|
||||
#include "tcop/tcopprot.h"
|
||||
#include "utils/builtins.h"
|
||||
#include "utils/lsyscache.h"
|
||||
|
||||
|
||||
/* forward declarations of local functions */
|
||||
static void WrapTasksForPartitioning(char *resultIdPrefix, List *selectTaskList,
|
||||
DistTableCacheEntry *targetRelation,
|
||||
bool binaryFormat);
|
||||
static List * ExecutePartitionTaskList(List *partitionTaskList,
|
||||
DistTableCacheEntry *targetRelation);
|
||||
static ArrayType * CreateArrayFromDatums(Datum *datumArray, bool *nullsArray, int
|
||||
datumCount, Oid typeId);
|
||||
static void ShardMinMaxValueArrays(ShardInterval **shardIntervalArray, int shardCount,
|
||||
Oid intervalTypeId, ArrayType **minValueArray,
|
||||
ArrayType **maxValueArray);
|
||||
static char * SourceShardPrefix(char *resultPrefix, uint64 shardId);
|
||||
static DistributedResultFragment * TupleToDistributedResultFragment(
|
||||
TupleTableSlot *tupleSlot, DistTableCacheEntry *targetRelation);
|
||||
static Tuplestorestate * ExecuteSelectTasksIntoTupleStore(List *taskList, TupleDesc
|
||||
resultDescriptor);
|
||||
|
||||
|
||||
/*
|
||||
* PartitionTasklistResults executes the given task list, and partitions results
|
||||
* of each task based on targetRelation's distribution method and intervals.
|
||||
* Each of the result partitions are stored in the node where task was executed,
|
||||
* and are named as $resultIdPrefix_from_$sourceShardId_to_$targetShardIndex.
|
||||
*
|
||||
* Result is list of DistributedResultFragment, each of which represents a
|
||||
* partition of results. Empty results are omitted. Therefore, if we have N tasks
|
||||
* and target relation has M shards, we will have NxM-(number of empty results)
|
||||
* fragments.
|
||||
*/
|
||||
List *
|
||||
PartitionTasklistResults(char *resultIdPrefix, List *selectTaskList,
|
||||
DistTableCacheEntry *targetRelation,
|
||||
bool binaryFormat)
|
||||
{
|
||||
/*
|
||||
* Make sure that this transaction has a distributed transaction ID.
|
||||
*
|
||||
* Intermediate results will be stored in a directory that is derived
|
||||
* from the distributed transaction ID.
|
||||
*/
|
||||
UseCoordinatedTransaction();
|
||||
|
||||
WrapTasksForPartitioning(resultIdPrefix, selectTaskList, targetRelation,
|
||||
binaryFormat);
|
||||
return ExecutePartitionTaskList(selectTaskList, targetRelation);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* WrapTasksForPartitioning wraps the query for each of the tasks by a call
|
||||
* to worker_partition_query_result(). Target list of the wrapped query should
|
||||
* match the tuple descriptor in ExecutePartitionTaskList().
|
||||
*/
|
||||
static void
|
||||
WrapTasksForPartitioning(char *resultIdPrefix, List *selectTaskList,
|
||||
DistTableCacheEntry *targetRelation,
|
||||
bool binaryFormat)
|
||||
{
|
||||
ListCell *taskCell = NULL;
|
||||
ShardInterval **shardIntervalArray = targetRelation->sortedShardIntervalArray;
|
||||
int shardCount = targetRelation->shardIntervalArrayLength;
|
||||
|
||||
ArrayType *minValueArray = NULL;
|
||||
ArrayType *maxValueArray = NULL;
|
||||
Var *partitionColumn = targetRelation->partitionColumn;
|
||||
int partitionColumnIndex = partitionColumn->varoattno - 1;
|
||||
Oid intervalTypeId = partitionColumn->vartype;
|
||||
int32 intervalTypeMod = partitionColumn->vartypmod;
|
||||
Oid intervalTypeOutFunc = InvalidOid;
|
||||
bool intervalTypeVarlena = false;
|
||||
getTypeOutputInfo(intervalTypeId, &intervalTypeOutFunc, &intervalTypeVarlena);
|
||||
|
||||
ShardMinMaxValueArrays(shardIntervalArray, shardCount, intervalTypeOutFunc,
|
||||
&minValueArray, &maxValueArray);
|
||||
StringInfo minValuesString = ArrayObjectToString(minValueArray, TEXTOID,
|
||||
intervalTypeMod);
|
||||
StringInfo maxValuesString = ArrayObjectToString(maxValueArray, TEXTOID,
|
||||
intervalTypeMod);
|
||||
|
||||
foreach(taskCell, selectTaskList)
|
||||
{
|
||||
Task *selectTask = (Task *) lfirst(taskCell);
|
||||
StringInfo wrappedQuery = makeStringInfo();
|
||||
List *shardPlacementList = selectTask->taskPlacementList;
|
||||
|
||||
ShardPlacement *shardPlacement = linitial(shardPlacementList);
|
||||
char *taskPrefix = SourceShardPrefix(resultIdPrefix, selectTask->anchorShardId);
|
||||
char *partitionMethodString = targetRelation->partitionMethod == 'h' ?
|
||||
"hash" : "range";
|
||||
const char *binaryFormatString = binaryFormat ? "true" : "false";
|
||||
|
||||
appendStringInfo(wrappedQuery,
|
||||
"SELECT %d, partition_index"
|
||||
", %s || '_' || partition_index::text "
|
||||
", rows_written "
|
||||
"FROM worker_partition_query_result"
|
||||
"(%s,%s,%d,%s,%s,%s,%s) WHERE rows_written > 0",
|
||||
shardPlacement->nodeId,
|
||||
quote_literal_cstr(taskPrefix),
|
||||
quote_literal_cstr(taskPrefix),
|
||||
quote_literal_cstr(selectTask->queryString),
|
||||
partitionColumnIndex,
|
||||
quote_literal_cstr(partitionMethodString),
|
||||
minValuesString->data, maxValuesString->data,
|
||||
binaryFormatString);
|
||||
|
||||
selectTask->queryString = wrappedQuery->data;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* SourceShardPrefix returns result id prefix for partitions which have the
|
||||
* given anchor shard id.
|
||||
*/
|
||||
static char *
|
||||
SourceShardPrefix(char *resultPrefix, uint64 shardId)
|
||||
{
|
||||
StringInfo taskPrefix = makeStringInfo();
|
||||
|
||||
appendStringInfo(taskPrefix, "%s_from_" UINT64_FORMAT "_to", resultPrefix, shardId);
|
||||
|
||||
return taskPrefix->data;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* ShardMinMaxValueArrays returns min values and max values of given shard
|
||||
* intervals. Returned arrays are text arrays.
|
||||
*/
|
||||
static void
|
||||
ShardMinMaxValueArrays(ShardInterval **shardIntervalArray, int shardCount,
|
||||
Oid intervalTypeOutFunc, ArrayType **minValueArray,
|
||||
ArrayType **maxValueArray)
|
||||
{
|
||||
Datum *minValues = palloc0(shardCount * sizeof(Datum));
|
||||
bool *minValueNulls = palloc0(shardCount * sizeof(bool));
|
||||
Datum *maxValues = palloc0(shardCount * sizeof(Datum));
|
||||
bool *maxValueNulls = palloc0(shardCount * sizeof(bool));
|
||||
for (int shardIndex = 0; shardIndex < shardCount; shardIndex++)
|
||||
{
|
||||
minValueNulls[shardIndex] = !shardIntervalArray[shardIndex]->minValueExists;
|
||||
maxValueNulls[shardIndex] = !shardIntervalArray[shardIndex]->maxValueExists;
|
||||
|
||||
if (!minValueNulls[shardIndex])
|
||||
{
|
||||
Datum minValue = shardIntervalArray[shardIndex]->minValue;
|
||||
char *minValueStr = DatumGetCString(OidFunctionCall1(intervalTypeOutFunc,
|
||||
minValue));
|
||||
minValues[shardIndex] = CStringGetTextDatum(minValueStr);
|
||||
}
|
||||
|
||||
if (!maxValueNulls[shardIndex])
|
||||
{
|
||||
Datum maxValue = shardIntervalArray[shardIndex]->maxValue;
|
||||
char *maxValueStr = DatumGetCString(OidFunctionCall1(intervalTypeOutFunc,
|
||||
maxValue));
|
||||
maxValues[shardIndex] = CStringGetTextDatum(maxValueStr);
|
||||
}
|
||||
}
|
||||
|
||||
*minValueArray = CreateArrayFromDatums(minValues, minValueNulls, shardCount, TEXTOID);
|
||||
*maxValueArray = CreateArrayFromDatums(maxValues, maxValueNulls, shardCount, TEXTOID);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* CreateArrayFromDatums creates an array consisting of given values and nulls.
|
||||
*/
|
||||
static ArrayType *
|
||||
CreateArrayFromDatums(Datum *datumArray, bool *nullsArray, int datumCount, Oid typeId)
|
||||
{
|
||||
bool typeByValue = false;
|
||||
char typeAlignment = 0;
|
||||
int16 typeLength = 0;
|
||||
int dimensions[1] = { datumCount };
|
||||
int lowerbounds[1] = { 1 };
|
||||
|
||||
get_typlenbyvalalign(typeId, &typeLength, &typeByValue, &typeAlignment);
|
||||
|
||||
ArrayType *datumArrayObject = construct_md_array(datumArray, nullsArray, 1,
|
||||
dimensions,
|
||||
lowerbounds, typeId, typeLength,
|
||||
typeByValue, typeAlignment);
|
||||
|
||||
return datumArrayObject;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* ExecutePartitionTaskList executes the queries formed in WrapTasksForPartitioning(),
|
||||
* and returns its results as a list of DistributedResultFragment.
|
||||
*/
|
||||
static List *
|
||||
ExecutePartitionTaskList(List *taskList, DistTableCacheEntry *targetRelation)
|
||||
{
|
||||
TupleDesc resultDescriptor = NULL;
|
||||
Tuplestorestate *resultStore = NULL;
|
||||
int resultColumnCount = 4;
|
||||
|
||||
#if PG_VERSION_NUM >= 120000
|
||||
resultDescriptor = CreateTemplateTupleDesc(resultColumnCount);
|
||||
#else
|
||||
resultDescriptor = CreateTemplateTupleDesc(resultColumnCount, false);
|
||||
#endif
|
||||
|
||||
TupleDescInitEntry(resultDescriptor, (AttrNumber) 1, "node_id",
|
||||
INT8OID, -1, 0);
|
||||
TupleDescInitEntry(resultDescriptor, (AttrNumber) 2, "partition_index",
|
||||
INT4OID, -1, 0);
|
||||
TupleDescInitEntry(resultDescriptor, (AttrNumber) 3, "result_id",
|
||||
TEXTOID, -1, 0);
|
||||
TupleDescInitEntry(resultDescriptor, (AttrNumber) 4, "rows_written",
|
||||
INT8OID, -1, 0);
|
||||
|
||||
resultStore = ExecuteSelectTasksIntoTupleStore(taskList, resultDescriptor);
|
||||
|
||||
List *fragmentList = NIL;
|
||||
TupleTableSlot *slot = MakeSingleTupleTableSlotCompat(resultDescriptor,
|
||||
&TTSOpsMinimalTuple);
|
||||
while (tuplestore_gettupleslot(resultStore, true, false, slot))
|
||||
{
|
||||
DistributedResultFragment *distributedResultFragment =
|
||||
TupleToDistributedResultFragment(slot, targetRelation);
|
||||
|
||||
fragmentList = lappend(fragmentList, distributedResultFragment);
|
||||
|
||||
ExecClearTuple(slot);
|
||||
}
|
||||
|
||||
return fragmentList;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* TupleToDistributedResultFragment converts a tuple returned by the query in
|
||||
* WrapTasksForPartitioning() to a DistributedResultFragment.
|
||||
*/
|
||||
static DistributedResultFragment *
|
||||
TupleToDistributedResultFragment(TupleTableSlot *tupleSlot,
|
||||
DistTableCacheEntry *targetRelation)
|
||||
{
|
||||
bool isNull = false;
|
||||
int sourceNodeId = DatumGetInt32(slot_getattr(tupleSlot, 1, &isNull));
|
||||
int targetShardIndex = DatumGetInt32(slot_getattr(tupleSlot, 2, &isNull));
|
||||
text *resultId = DatumGetTextP(slot_getattr(tupleSlot, 3, &isNull));
|
||||
int64 rowCount = DatumGetInt64(slot_getattr(tupleSlot, 4, &isNull));
|
||||
|
||||
ShardInterval *shardInterval =
|
||||
targetRelation->sortedShardIntervalArray[targetShardIndex];
|
||||
|
||||
DistributedResultFragment *distributedResultFragment =
|
||||
palloc0(sizeof(DistributedResultFragment));
|
||||
|
||||
distributedResultFragment->nodeId = sourceNodeId;
|
||||
distributedResultFragment->targetShardIndex = targetShardIndex;
|
||||
distributedResultFragment->targetShardId = shardInterval->shardId;
|
||||
distributedResultFragment->resultId = text_to_cstring(resultId);
|
||||
distributedResultFragment->rowCount = rowCount;
|
||||
|
||||
return distributedResultFragment;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* ExecuteSelectTasksIntoTupleStore executes the given tasks and returns a tuple
|
||||
* store containing its results.
|
||||
*/
|
||||
static Tuplestorestate *
|
||||
ExecuteSelectTasksIntoTupleStore(List *taskList, TupleDesc resultDescriptor)
|
||||
{
|
||||
bool hasReturning = true;
|
||||
int targetPoolSize = MaxAdaptiveExecutorPoolSize;
|
||||
bool randomAccess = true;
|
||||
bool interTransactions = false;
|
||||
TransactionProperties xactProperties = {
|
||||
.errorOnAnyFailure = true,
|
||||
.useRemoteTransactionBlocks = TRANSACTION_BLOCKS_REQUIRED,
|
||||
.requires2PC = false
|
||||
};
|
||||
|
||||
Tuplestorestate *resultStore = tuplestore_begin_heap(randomAccess, interTransactions,
|
||||
work_mem);
|
||||
|
||||
ExecuteTaskListExtended(ROW_MODIFY_READONLY, taskList, resultDescriptor,
|
||||
resultStore, hasReturning, targetPoolSize, &xactProperties);
|
||||
|
||||
return resultStore;
|
||||
}
|
|
@ -834,12 +834,11 @@ fetch_intermediate_results(PG_FUNCTION_ARGS)
|
|||
|
||||
if (PQstatus(connection->pgConn) != CONNECTION_OK)
|
||||
{
|
||||
ereport(ERROR, (errmsg("cannot connect to %s:%d to fetch intermediate "
|
||||
"results",
|
||||
ereport(ERROR, (errmsg("cannot connect to %s:%d to fetch intermediate results",
|
||||
remoteHost, remotePort)));
|
||||
}
|
||||
|
||||
RemoteTransactionBegin(connection);
|
||||
RemoteTransactionBeginIfNecessary(connection);
|
||||
|
||||
for (resultIndex = 0; resultIndex < resultCount; resultIndex++)
|
||||
{
|
||||
|
@ -848,9 +847,6 @@ fetch_intermediate_results(PG_FUNCTION_ARGS)
|
|||
totalBytesWritten += FetchRemoteIntermediateResult(connection, resultId);
|
||||
}
|
||||
|
||||
RemoteTransactionCommit(connection);
|
||||
CloseConnection(connection);
|
||||
|
||||
PG_RETURN_INT64(totalBytesWritten);
|
||||
}
|
||||
|
||||
|
|
|
@ -198,8 +198,6 @@ static List * MapTaskList(MapMergeJob *mapMergeJob, List *filterTaskList);
|
|||
static StringInfo CreateMapQueryString(MapMergeJob *mapMergeJob, Task *filterTask,
|
||||
char *partitionColumnName);
|
||||
static char * ColumnName(Var *column, List *rangeTableList);
|
||||
static StringInfo SplitPointArrayString(ArrayType *splitPointObject,
|
||||
Oid columnType, int32 columnTypeMod);
|
||||
static List * MergeTaskList(MapMergeJob *mapMergeJob, List *mapTaskList,
|
||||
uint32 taskIdIndex);
|
||||
static StringInfo ColumnNameArrayString(uint32 columnCount, uint64 generatingJobId);
|
||||
|
@ -4277,9 +4275,9 @@ CreateMapQueryString(MapMergeJob *mapMergeJob, Task *filterTask,
|
|||
}
|
||||
|
||||
ArrayType *splitPointObject = SplitPointObject(intervalArray, intervalCount);
|
||||
StringInfo splitPointString = SplitPointArrayString(splitPointObject,
|
||||
partitionColumnType,
|
||||
partitionColumnTypeMod);
|
||||
StringInfo splitPointString = ArrayObjectToString(splitPointObject,
|
||||
partitionColumnType,
|
||||
partitionColumnTypeMod);
|
||||
|
||||
char *partitionCommand = NULL;
|
||||
if (partitionType == RANGE_PARTITION_TYPE)
|
||||
|
@ -4407,14 +4405,12 @@ ColumnName(Var *column, List *rangeTableList)
|
|||
|
||||
|
||||
/*
|
||||
* SplitPointArrayString takes the array representation of the given split point
|
||||
* object, and converts this array (and array's typed elements) to their string
|
||||
* representations.
|
||||
* ArrayObjectToString converts an SQL object to its string representation.
|
||||
*/
|
||||
static StringInfo
|
||||
SplitPointArrayString(ArrayType *splitPointObject, Oid columnType, int32 columnTypeMod)
|
||||
StringInfo
|
||||
ArrayObjectToString(ArrayType *arrayObject, Oid columnType, int32 columnTypeMod)
|
||||
{
|
||||
Datum splitPointDatum = PointerGetDatum(splitPointObject);
|
||||
Datum arrayDatum = PointerGetDatum(arrayObject);
|
||||
Oid outputFunctionId = InvalidOid;
|
||||
bool typeVariableLength = false;
|
||||
|
||||
|
@ -4430,17 +4426,17 @@ SplitPointArrayString(ArrayType *splitPointObject, Oid columnType, int32 columnT
|
|||
getTypeOutputInfo(arrayOutType, &outputFunctionId, &typeVariableLength);
|
||||
fmgr_info(outputFunctionId, arrayOutFunction);
|
||||
|
||||
char *arrayOutputText = OutputFunctionCall(arrayOutFunction, splitPointDatum);
|
||||
char *arrayOutputText = OutputFunctionCall(arrayOutFunction, arrayDatum);
|
||||
char *arrayOutputEscapedText = quote_literal_cstr(arrayOutputText);
|
||||
|
||||
/* add an explicit cast to array's string representation */
|
||||
char *arrayOutTypeName = format_type_with_typemod(arrayOutType, columnTypeMod);
|
||||
|
||||
StringInfo splitPointArrayString = makeStringInfo();
|
||||
appendStringInfo(splitPointArrayString, "%s::%s",
|
||||
StringInfo arrayString = makeStringInfo();
|
||||
appendStringInfo(arrayString, "%s::%s",
|
||||
arrayOutputEscapedText, arrayOutTypeName);
|
||||
|
||||
return splitPointArrayString;
|
||||
return arrayString;
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,91 @@
|
|||
/*-------------------------------------------------------------------------
|
||||
*
|
||||
* test/src/distributed_intermediate_results.c
|
||||
*
|
||||
* This file contains functions to test functions related to
|
||||
* src/backend/distributed/executor/distributed_intermediate_results.c.
|
||||
*
|
||||
* Copyright (c) Citus Data, Inc.
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
#include <sys/stat.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include "postgres.h"
|
||||
#include "funcapi.h"
|
||||
#include "libpq-fe.h"
|
||||
#include "miscadmin.h"
|
||||
#include "pgstat.h"
|
||||
|
||||
#include "distributed/commands/multi_copy.h"
|
||||
#include "distributed/connection_management.h"
|
||||
#include "distributed/intermediate_results.h"
|
||||
#include "distributed/multi_executor.h"
|
||||
#include "distributed/remote_commands.h"
|
||||
#include "distributed/tuplestore.h"
|
||||
#include "tcop/tcopprot.h"
|
||||
|
||||
PG_FUNCTION_INFO_V1(partition_task_list_results);
|
||||
|
||||
/*
|
||||
* partition_task_list_results partitions results of each of distributed
|
||||
* tasks for the given query with the ranges of the given relation.
|
||||
* Partitioned results for a task are stored on the node that the task
|
||||
* was targeted for.
|
||||
*/
|
||||
Datum
|
||||
partition_task_list_results(PG_FUNCTION_ARGS)
|
||||
{
|
||||
text *resultIdPrefixText = PG_GETARG_TEXT_P(0);
|
||||
char *resultIdPrefix = text_to_cstring(resultIdPrefixText);
|
||||
text *queryText = PG_GETARG_TEXT_P(1);
|
||||
char *queryString = text_to_cstring(queryText);
|
||||
Oid relationId = PG_GETARG_OID(2);
|
||||
bool binaryFormat = PG_GETARG_BOOL(3);
|
||||
|
||||
Query *parsedQuery = ParseQueryString(queryString, NULL, 0);
|
||||
PlannedStmt *queryPlan = pg_plan_query(parsedQuery,
|
||||
CURSOR_OPT_PARALLEL_OK,
|
||||
NULL);
|
||||
if (!IsCitusCustomScan(queryPlan->planTree))
|
||||
{
|
||||
ereport(ERROR, (errmsg("query must be distributed and shouldn't require "
|
||||
"any merging on the coordinator.")));
|
||||
}
|
||||
|
||||
CustomScan *customScan = (CustomScan *) queryPlan->planTree;
|
||||
DistributedPlan *distributedPlan = GetDistributedPlan(customScan);
|
||||
|
||||
Job *job = distributedPlan->workerJob;
|
||||
List *taskList = job->taskList;
|
||||
|
||||
DistTableCacheEntry *distTableCacheEntry = DistributedTableCacheEntry(relationId);
|
||||
List *fragmentList = PartitionTasklistResults(resultIdPrefix, taskList,
|
||||
distTableCacheEntry, binaryFormat);
|
||||
|
||||
TupleDesc tupleDescriptor = NULL;
|
||||
Tuplestorestate *tupleStore = SetupTuplestore(fcinfo, &tupleDescriptor);
|
||||
|
||||
ListCell *fragmentCell = NULL;
|
||||
|
||||
foreach(fragmentCell, fragmentList)
|
||||
{
|
||||
DistributedResultFragment *fragment = lfirst(fragmentCell);
|
||||
|
||||
bool columnNulls[5] = { 0 };
|
||||
Datum columnValues[5] = {
|
||||
CStringGetTextDatum(fragment->resultId),
|
||||
Int32GetDatum(fragment->nodeId),
|
||||
Int64GetDatum(fragment->rowCount),
|
||||
Int64GetDatum(fragment->targetShardId),
|
||||
Int32GetDatum(fragment->targetShardIndex)
|
||||
};
|
||||
|
||||
tuplestore_putvalues(tupleStore, tupleDescriptor, columnValues, columnNulls);
|
||||
}
|
||||
|
||||
tuplestore_donestoring(tupleStore);
|
||||
|
||||
PG_RETURN_DATUM(0);
|
||||
}
|
|
@ -22,6 +22,33 @@
|
|||
#include "utils/palloc.h"
|
||||
|
||||
|
||||
/*
|
||||
* DistributedResultFragment represents a fragment of a distributed result.
|
||||
*/
|
||||
typedef struct DistributedResultFragment
|
||||
{
|
||||
/* result's id, which can be used by read_intermediate_results(), ... */
|
||||
char *resultId;
|
||||
|
||||
/* location of the result */
|
||||
int nodeId;
|
||||
|
||||
/* number of rows in the result file */
|
||||
int rowCount;
|
||||
|
||||
/*
|
||||
* The fragment contains the rows which match the partitioning method
|
||||
* and partitioning ranges of targetShardId. The shape of each row matches
|
||||
* the schema of the relation to which targetShardId belongs to.
|
||||
*/
|
||||
uint64 targetShardId;
|
||||
|
||||
/* what is the index of targetShardId in its relation's sorted shard list? */
|
||||
int targetShardIndex;
|
||||
} DistributedResultFragment;
|
||||
|
||||
|
||||
/* intermediate_results.c */
|
||||
extern DestReceiver * CreateRemoteFileDestReceiver(char *resultId, EState *executorState,
|
||||
List *initialNodeList, bool
|
||||
writeLocalFile);
|
||||
|
@ -32,5 +59,9 @@ extern int64 IntermediateResultSize(char *resultId);
|
|||
extern char * QueryResultFileName(const char *resultId);
|
||||
extern char * CreateIntermediateResultsDirectory(void);
|
||||
|
||||
/* distributed_intermediate_results.c */
|
||||
extern List * PartitionTasklistResults(char *resultIdPrefix, List *selectTaskList,
|
||||
DistTableCacheEntry *distributionScheme,
|
||||
bool binaryFormat);
|
||||
|
||||
#endif /* INTERMEDIATE_RESULTS_H */
|
||||
|
|
|
@ -385,6 +385,8 @@ extern bool ShardIntervalsOverlap(ShardInterval *firstInterval,
|
|||
extern bool CoPartitionedTables(Oid firstRelationId, Oid secondRelationId);
|
||||
extern ShardInterval ** GenerateSyntheticShardIntervalArray(int partitionCount);
|
||||
extern RowModifyLevel RowModifyLevelForQuery(Query *query);
|
||||
extern StringInfo ArrayObjectToString(ArrayType *arrayObject,
|
||||
Oid columnType, int32 columnTypeMod);
|
||||
|
||||
|
||||
/* function declarations for Task and Task list operations */
|
||||
|
|
|
@ -0,0 +1,159 @@
|
|||
-- Test functions for partitioning intermediate results
|
||||
CREATE SCHEMA distributed_intermediate_results;
|
||||
SET search_path TO 'distributed_intermediate_results';
|
||||
SET citus.next_shard_id TO 4213581;
|
||||
--
|
||||
-- Helper UDFs
|
||||
--
|
||||
-- partition_task_list_results tests the internal PartitionTasklistResults function
|
||||
CREATE OR REPLACE FUNCTION pg_catalog.partition_task_list_results(resultIdPrefix text,
|
||||
query text,
|
||||
target_table regclass,
|
||||
binaryFormat bool DEFAULT true)
|
||||
RETURNS TABLE(resultId text,
|
||||
nodeId int,
|
||||
rowCount bigint,
|
||||
targetShardId bigint,
|
||||
targetShardIndex int)
|
||||
LANGUAGE C STRICT VOLATILE
|
||||
AS 'citus', $$partition_task_list_results$$;
|
||||
--
|
||||
-- We don't have extensive tests for partition_task_results, since it will be
|
||||
-- tested by higher level "INSERT/SELECT with repartitioning" tests anyway.
|
||||
--
|
||||
--
|
||||
-- partition_task_list_results, hash partitioning, binary format
|
||||
--
|
||||
CREATE TABLE source_table(a int);
|
||||
SET citus.shard_count TO 3;
|
||||
SELECT create_distributed_table('source_table', 'a');
|
||||
create_distributed_table
|
||||
---------------------------------------------------------------------
|
||||
|
||||
(1 row)
|
||||
|
||||
INSERT INTO source_table SELECT * FROM generate_series(1, 100);
|
||||
CREATE TABLE target_table(a int);
|
||||
SET citus.shard_count TO 2;
|
||||
SELECT create_distributed_table('target_table', 'a');
|
||||
create_distributed_table
|
||||
---------------------------------------------------------------------
|
||||
|
||||
(1 row)
|
||||
|
||||
-- should error out
|
||||
SELECT partition_task_list_results('test', $$ SELECT avg(a) FROM source_table $$, 'target_table');
|
||||
ERROR: query must be distributed and shouldn't require any merging on the coordinator.
|
||||
SELECT partition_task_list_results('test', $$ SELECT * FROM generate_series(1, 2) $$, 'target_table');
|
||||
ERROR: query must be distributed and shouldn't require any merging on the coordinator.
|
||||
BEGIN;
|
||||
CREATE TABLE distributed_result_info AS
|
||||
SELECT resultId, nodeport, rowcount, targetShardId, targetShardIndex
|
||||
FROM partition_task_list_results('test', $$ SELECT * FROM source_table $$, 'target_table')
|
||||
NATURAL JOIN pg_dist_node;
|
||||
SELECT * FROM distributed_result_info ORDER BY resultId;
|
||||
resultid | nodeport | rowcount | targetshardid | targetshardindex
|
||||
---------------------------------------------------------------------
|
||||
test_from_4213581_to_0 | 57637 | 33 | 4213584 | 0
|
||||
test_from_4213582_to_0 | 57638 | 16 | 4213584 | 0
|
||||
test_from_4213582_to_1 | 57638 | 15 | 4213585 | 1
|
||||
test_from_4213583_to_1 | 57637 | 36 | 4213585 | 1
|
||||
(4 rows)
|
||||
|
||||
-- fetch from workers
|
||||
SELECT nodeport, fetch_intermediate_results((array_agg(resultId)), 'localhost', nodeport) > 0 AS fetched
|
||||
FROM distributed_result_info GROUP BY nodeport ORDER BY nodeport;
|
||||
nodeport | fetched
|
||||
---------------------------------------------------------------------
|
||||
57637 | t
|
||||
57638 | t
|
||||
(2 rows)
|
||||
|
||||
-- read all fetched result files
|
||||
SELECT count(*), sum(x) FROM
|
||||
read_intermediate_results((SELECT array_agg(resultId) FROM distributed_result_info),
|
||||
'binary') AS res (x int);
|
||||
count | sum
|
||||
---------------------------------------------------------------------
|
||||
100 | 5050
|
||||
(1 row)
|
||||
|
||||
END;
|
||||
DROP TABLE source_table, target_table, distributed_result_info;
|
||||
--
|
||||
-- partition_task_list_results, range partitioning, text format
|
||||
--
|
||||
CREATE TABLE source_table(a int);
|
||||
SELECT create_distributed_table('source_table', 'a', 'range');
|
||||
create_distributed_table
|
||||
---------------------------------------------------------------------
|
||||
|
||||
(1 row)
|
||||
|
||||
CALL public.create_range_partitioned_shards('source_table',
|
||||
'{0,25,50,76}',
|
||||
'{24,49,75,200}');
|
||||
INSERT INTO source_table SELECT * FROM generate_series(1, 100);
|
||||
CREATE TABLE target_table(a int);
|
||||
SELECT create_distributed_table('target_table', 'a', 'range');
|
||||
create_distributed_table
|
||||
---------------------------------------------------------------------
|
||||
|
||||
(1 row)
|
||||
|
||||
CALL public.create_range_partitioned_shards('target_table',
|
||||
'{0,25,50,76}',
|
||||
'{24,49,75,200}');
|
||||
BEGIN;
|
||||
CREATE TABLE distributed_result_info AS
|
||||
SELECT resultId, nodeport, rowcount, targetShardId, targetShardIndex
|
||||
FROM partition_task_list_results('test', $$ SELECT (3 * a * a) % 100 FROM source_table $$,
|
||||
'target_table', false)
|
||||
NATURAL JOIN pg_dist_node;
|
||||
SELECT * FROM distributed_result_info ORDER BY resultId;
|
||||
resultid | nodeport | rowcount | targetshardid | targetshardindex
|
||||
---------------------------------------------------------------------
|
||||
test_from_4213586_to_0 | 57638 | 7 | 4213590 | 0
|
||||
test_from_4213586_to_1 | 57638 | 6 | 4213591 | 1
|
||||
test_from_4213586_to_2 | 57638 | 7 | 4213592 | 2
|
||||
test_from_4213586_to_3 | 57638 | 4 | 4213593 | 3
|
||||
test_from_4213587_to_0 | 57637 | 7 | 4213590 | 0
|
||||
test_from_4213587_to_1 | 57637 | 6 | 4213591 | 1
|
||||
test_from_4213587_to_2 | 57637 | 8 | 4213592 | 2
|
||||
test_from_4213587_to_3 | 57637 | 4 | 4213593 | 3
|
||||
test_from_4213588_to_0 | 57638 | 8 | 4213590 | 0
|
||||
test_from_4213588_to_1 | 57638 | 6 | 4213591 | 1
|
||||
test_from_4213588_to_2 | 57638 | 8 | 4213592 | 2
|
||||
test_from_4213588_to_3 | 57638 | 4 | 4213593 | 3
|
||||
test_from_4213589_to_0 | 57637 | 8 | 4213590 | 0
|
||||
test_from_4213589_to_1 | 57637 | 6 | 4213591 | 1
|
||||
test_from_4213589_to_2 | 57637 | 7 | 4213592 | 2
|
||||
test_from_4213589_to_3 | 57637 | 4 | 4213593 | 3
|
||||
(16 rows)
|
||||
|
||||
-- fetch from workers
|
||||
SELECT nodeport, fetch_intermediate_results((array_agg(resultId)), 'localhost', nodeport) > 0 AS fetched
|
||||
FROM distributed_result_info GROUP BY nodeport ORDER BY nodeport;
|
||||
nodeport | fetched
|
||||
---------------------------------------------------------------------
|
||||
57637 | t
|
||||
57638 | t
|
||||
(2 rows)
|
||||
|
||||
-- Read all fetched result files. Sum(x) should be 4550, verified by
|
||||
-- racket -e '(for/sum ([i (range 1 101)]) (modulo (* 3 i i) 100))'
|
||||
SELECT count(*), sum(x) FROM
|
||||
read_intermediate_results((SELECT array_agg(resultId) FROM distributed_result_info),
|
||||
'text') AS res (x int);
|
||||
count | sum
|
||||
---------------------------------------------------------------------
|
||||
100 | 4550
|
||||
(1 row)
|
||||
|
||||
END;
|
||||
DROP TABLE source_table, target_table, distributed_result_info;
|
||||
SET client_min_messages TO WARNING;
|
||||
DROP SCHEMA distributed_intermediate_results CASCADE;
|
||||
\set VERBOSITY default
|
||||
SET client_min_messages TO DEFAULT;
|
||||
SET citus.shard_count TO DEFAULT;
|
|
@ -119,3 +119,19 @@ WITH dist_node_summary AS (
|
|||
SELECT dist_node_check.matches AND dist_placement_check.matches
|
||||
FROM dist_node_check CROSS JOIN dist_placement_check
|
||||
$$;
|
||||
--
|
||||
-- Procedure for creating shards for range partitioned distributed table.
|
||||
--
|
||||
CREATE OR REPLACE PROCEDURE create_range_partitioned_shards(rel regclass, minvalues text[], maxvalues text[])
|
||||
AS $$
|
||||
DECLARE
|
||||
new_shardid bigint;
|
||||
idx int;
|
||||
BEGIN
|
||||
FOR idx IN SELECT * FROM generate_series(1, array_length(minvalues, 1))
|
||||
LOOP
|
||||
SELECT master_create_empty_shard(rel::text) INTO new_shardid;
|
||||
UPDATE pg_dist_shard SET shardminvalue=minvalues[idx], shardmaxvalue=maxvalues[idx] WHERE shardid=new_shardid;
|
||||
END LOOP;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
|
|
@ -341,22 +341,6 @@ BEGIN
|
|||
RAISE NOTICE 'PASSED.';
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
--
|
||||
-- Procedure for creating shards for range partitioned distributed table.
|
||||
--
|
||||
CREATE OR REPLACE PROCEDURE create_range_partitioned_shards(rel regclass, minvalues text[], maxvalues text[])
|
||||
AS $$
|
||||
DECLARE
|
||||
new_shardid bigint;
|
||||
idx int;
|
||||
BEGIN
|
||||
FOR idx IN SELECT * FROM generate_series(1, array_length(minvalues, 1))
|
||||
LOOP
|
||||
SELECT master_create_empty_shard(rel::text) INTO new_shardid;
|
||||
UPDATE pg_dist_shard SET shardminvalue=minvalues[idx], shardmaxvalue=maxvalues[idx] WHERE shardid=new_shardid;
|
||||
END LOOP;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
\set VERBOSITY terse
|
||||
-- hash partitioning, 32 shards
|
||||
SET citus.shard_count TO 32;
|
||||
|
@ -436,7 +420,7 @@ SELECT create_distributed_table('t', 'key', 'range');
|
|||
|
||||
(1 row)
|
||||
|
||||
CALL create_range_partitioned_shards('t', '{0,25,50,76}',
|
||||
CALL public.create_range_partitioned_shards('t', '{0,25,50,76}',
|
||||
'{24,49,75,200}');
|
||||
CALL test_partition_query_results('t', 'SELECT x, x * x * x FROM generate_series(1, 105) x');
|
||||
NOTICE: Rows per partition match ...
|
||||
|
@ -451,7 +435,7 @@ SELECT create_distributed_table('t', 'key', 'range');
|
|||
|
||||
(1 row)
|
||||
|
||||
CALL create_range_partitioned_shards('t', '{0,25,50,100}',
|
||||
CALL public.create_range_partitioned_shards('t', '{0,25,50,100}',
|
||||
'{24,49,75,200}');
|
||||
CALL test_partition_query_results('t', 'SELECT x, x * x * x FROM generate_series(1, 105) x');
|
||||
ERROR: could not find shard for partition column value
|
||||
|
@ -464,7 +448,7 @@ SELECT create_distributed_table('t', 'key', 'range');
|
|||
|
||||
(1 row)
|
||||
|
||||
CALL create_range_partitioned_shards('t', '{0,25,50,76}',
|
||||
CALL public.create_range_partitioned_shards('t', '{0,25,50,76}',
|
||||
'{50,49,90,200}');
|
||||
CALL test_partition_query_results('t', 'SELECT x, x * x * x FROM generate_series(1, 105) x');
|
||||
NOTICE: Rows per partition match ...
|
||||
|
@ -481,7 +465,7 @@ SELECT create_distributed_table('t', 'key', 'range');
|
|||
|
||||
(1 row)
|
||||
|
||||
CALL create_range_partitioned_shards('t', '{"(0,a)","(25,a)","(50,a)","(75,a)"}',
|
||||
CALL public.create_range_partitioned_shards('t', '{"(0,a)","(25,a)","(50,a)","(75,a)"}',
|
||||
'{"(24,z)","(49,z)","(74,z)","(100,z)"}');
|
||||
CALL test_partition_query_results('t', 'SELECT (x, ''f2_'' || x::text)::composite_key_type, x * x * x FROM generate_series(1, 100) x');
|
||||
NOTICE: Rows per partition match ...
|
||||
|
@ -497,7 +481,7 @@ SELECT create_distributed_table('t', 'key', 'range');
|
|||
|
||||
(1 row)
|
||||
|
||||
CALL create_range_partitioned_shards('t', '{50,25,76,0}',
|
||||
CALL public.create_range_partitioned_shards('t', '{50,25,76,0}',
|
||||
'{75,49,200,24}');
|
||||
CALL test_partition_query_results('t', 'SELECT x, x * x * x FROM generate_series(1, 105) x');
|
||||
NOTICE: Rows per partition match ...
|
||||
|
|
|
@ -70,7 +70,7 @@ test: subquery_prepared_statements pg12
|
|||
# Miscellaneous tests to check our query planning behavior
|
||||
# ----------
|
||||
test: multi_deparse_shard_query multi_distributed_transaction_id multi_real_time_transaction intermediate_results limit_intermediate_size
|
||||
test: multi_explain hyperscale_tutorial partitioned_intermediate_results
|
||||
test: multi_explain hyperscale_tutorial partitioned_intermediate_results distributed_intermediate_results
|
||||
test: multi_basic_queries multi_complex_expressions multi_subquery multi_subquery_complex_queries multi_subquery_behavioral_analytics
|
||||
test: multi_subquery_complex_reference_clause multi_subquery_window_functions multi_view multi_sql_function multi_prepare_sql
|
||||
test: sql_procedure multi_function_in_join row_types materialized_view
|
||||
|
|
|
@ -0,0 +1,103 @@
|
|||
-- Test functions for partitioning intermediate results
|
||||
CREATE SCHEMA distributed_intermediate_results;
|
||||
SET search_path TO 'distributed_intermediate_results';
|
||||
|
||||
SET citus.next_shard_id TO 4213581;
|
||||
|
||||
--
|
||||
-- Helper UDFs
|
||||
--
|
||||
|
||||
-- partition_task_list_results tests the internal PartitionTasklistResults function
|
||||
CREATE OR REPLACE FUNCTION pg_catalog.partition_task_list_results(resultIdPrefix text,
|
||||
query text,
|
||||
target_table regclass,
|
||||
binaryFormat bool DEFAULT true)
|
||||
RETURNS TABLE(resultId text,
|
||||
nodeId int,
|
||||
rowCount bigint,
|
||||
targetShardId bigint,
|
||||
targetShardIndex int)
|
||||
LANGUAGE C STRICT VOLATILE
|
||||
AS 'citus', $$partition_task_list_results$$;
|
||||
|
||||
--
|
||||
-- We don't have extensive tests for partition_task_results, since it will be
|
||||
-- tested by higher level "INSERT/SELECT with repartitioning" tests anyway.
|
||||
--
|
||||
|
||||
--
|
||||
-- partition_task_list_results, hash partitioning, binary format
|
||||
--
|
||||
|
||||
CREATE TABLE source_table(a int);
|
||||
SET citus.shard_count TO 3;
|
||||
SELECT create_distributed_table('source_table', 'a');
|
||||
INSERT INTO source_table SELECT * FROM generate_series(1, 100);
|
||||
|
||||
CREATE TABLE target_table(a int);
|
||||
SET citus.shard_count TO 2;
|
||||
SELECT create_distributed_table('target_table', 'a');
|
||||
|
||||
-- should error out
|
||||
SELECT partition_task_list_results('test', $$ SELECT avg(a) FROM source_table $$, 'target_table');
|
||||
SELECT partition_task_list_results('test', $$ SELECT * FROM generate_series(1, 2) $$, 'target_table');
|
||||
|
||||
BEGIN;
|
||||
CREATE TABLE distributed_result_info AS
|
||||
SELECT resultId, nodeport, rowcount, targetShardId, targetShardIndex
|
||||
FROM partition_task_list_results('test', $$ SELECT * FROM source_table $$, 'target_table')
|
||||
NATURAL JOIN pg_dist_node;
|
||||
SELECT * FROM distributed_result_info ORDER BY resultId;
|
||||
-- fetch from workers
|
||||
SELECT nodeport, fetch_intermediate_results((array_agg(resultId)), 'localhost', nodeport) > 0 AS fetched
|
||||
FROM distributed_result_info GROUP BY nodeport ORDER BY nodeport;
|
||||
-- read all fetched result files
|
||||
SELECT count(*), sum(x) FROM
|
||||
read_intermediate_results((SELECT array_agg(resultId) FROM distributed_result_info),
|
||||
'binary') AS res (x int);
|
||||
END;
|
||||
|
||||
DROP TABLE source_table, target_table, distributed_result_info;
|
||||
|
||||
--
|
||||
-- partition_task_list_results, range partitioning, text format
|
||||
--
|
||||
CREATE TABLE source_table(a int);
|
||||
SELECT create_distributed_table('source_table', 'a', 'range');
|
||||
CALL public.create_range_partitioned_shards('source_table',
|
||||
'{0,25,50,76}',
|
||||
'{24,49,75,200}');
|
||||
INSERT INTO source_table SELECT * FROM generate_series(1, 100);
|
||||
|
||||
CREATE TABLE target_table(a int);
|
||||
SELECT create_distributed_table('target_table', 'a', 'range');
|
||||
CALL public.create_range_partitioned_shards('target_table',
|
||||
'{0,25,50,76}',
|
||||
'{24,49,75,200}');
|
||||
|
||||
BEGIN;
|
||||
CREATE TABLE distributed_result_info AS
|
||||
SELECT resultId, nodeport, rowcount, targetShardId, targetShardIndex
|
||||
FROM partition_task_list_results('test', $$ SELECT (3 * a * a) % 100 FROM source_table $$,
|
||||
'target_table', false)
|
||||
NATURAL JOIN pg_dist_node;
|
||||
SELECT * FROM distributed_result_info ORDER BY resultId;
|
||||
-- fetch from workers
|
||||
SELECT nodeport, fetch_intermediate_results((array_agg(resultId)), 'localhost', nodeport) > 0 AS fetched
|
||||
FROM distributed_result_info GROUP BY nodeport ORDER BY nodeport;
|
||||
-- Read all fetched result files. Sum(x) should be 4550, verified by
|
||||
-- racket -e '(for/sum ([i (range 1 101)]) (modulo (* 3 i i) 100))'
|
||||
SELECT count(*), sum(x) FROM
|
||||
read_intermediate_results((SELECT array_agg(resultId) FROM distributed_result_info),
|
||||
'text') AS res (x int);
|
||||
END;
|
||||
|
||||
DROP TABLE source_table, target_table, distributed_result_info;
|
||||
|
||||
SET client_min_messages TO WARNING;
|
||||
DROP SCHEMA distributed_intermediate_results CASCADE;
|
||||
|
||||
\set VERBOSITY default
|
||||
SET client_min_messages TO DEFAULT;
|
||||
SET citus.shard_count TO DEFAULT;
|
|
@ -124,3 +124,20 @@ WITH dist_node_summary AS (
|
|||
SELECT dist_node_check.matches AND dist_placement_check.matches
|
||||
FROM dist_node_check CROSS JOIN dist_placement_check
|
||||
$$;
|
||||
|
||||
--
|
||||
-- Procedure for creating shards for range partitioned distributed table.
|
||||
--
|
||||
CREATE OR REPLACE PROCEDURE create_range_partitioned_shards(rel regclass, minvalues text[], maxvalues text[])
|
||||
AS $$
|
||||
DECLARE
|
||||
new_shardid bigint;
|
||||
idx int;
|
||||
BEGIN
|
||||
FOR idx IN SELECT * FROM generate_series(1, array_length(minvalues, 1))
|
||||
LOOP
|
||||
SELECT master_create_empty_shard(rel::text) INTO new_shardid;
|
||||
UPDATE pg_dist_shard SET shardminvalue=minvalues[idx], shardmaxvalue=maxvalues[idx] WHERE shardid=new_shardid;
|
||||
END LOOP;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
|
|
@ -262,23 +262,6 @@ BEGIN
|
|||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
--
|
||||
-- Procedure for creating shards for range partitioned distributed table.
|
||||
--
|
||||
CREATE OR REPLACE PROCEDURE create_range_partitioned_shards(rel regclass, minvalues text[], maxvalues text[])
|
||||
AS $$
|
||||
DECLARE
|
||||
new_shardid bigint;
|
||||
idx int;
|
||||
BEGIN
|
||||
FOR idx IN SELECT * FROM generate_series(1, array_length(minvalues, 1))
|
||||
LOOP
|
||||
SELECT master_create_empty_shard(rel::text) INTO new_shardid;
|
||||
UPDATE pg_dist_shard SET shardminvalue=minvalues[idx], shardmaxvalue=maxvalues[idx] WHERE shardid=new_shardid;
|
||||
END LOOP;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
\set VERBOSITY terse
|
||||
|
||||
-- hash partitioning, 32 shards
|
||||
|
@ -319,7 +302,7 @@ DROP TABLE t;
|
|||
-- range partitioning, int partition column
|
||||
CREATE TABLE t(key int, value int);
|
||||
SELECT create_distributed_table('t', 'key', 'range');
|
||||
CALL create_range_partitioned_shards('t', '{0,25,50,76}',
|
||||
CALL public.create_range_partitioned_shards('t', '{0,25,50,76}',
|
||||
'{24,49,75,200}');
|
||||
CALL test_partition_query_results('t', 'SELECT x, x * x * x FROM generate_series(1, 105) x');
|
||||
DROP TABLE t;
|
||||
|
@ -327,7 +310,7 @@ DROP TABLE t;
|
|||
-- not covering ranges, should ERROR
|
||||
CREATE TABLE t(key int, value int);
|
||||
SELECT create_distributed_table('t', 'key', 'range');
|
||||
CALL create_range_partitioned_shards('t', '{0,25,50,100}',
|
||||
CALL public.create_range_partitioned_shards('t', '{0,25,50,100}',
|
||||
'{24,49,75,200}');
|
||||
CALL test_partition_query_results('t', 'SELECT x, x * x * x FROM generate_series(1, 105) x');
|
||||
DROP TABLE t;
|
||||
|
@ -335,7 +318,7 @@ DROP TABLE t;
|
|||
-- overlapping ranges, we allow this in range partitioned distributed tables, should be fine
|
||||
CREATE TABLE t(key int, value int);
|
||||
SELECT create_distributed_table('t', 'key', 'range');
|
||||
CALL create_range_partitioned_shards('t', '{0,25,50,76}',
|
||||
CALL public.create_range_partitioned_shards('t', '{0,25,50,76}',
|
||||
'{50,49,90,200}');
|
||||
CALL test_partition_query_results('t', 'SELECT x, x * x * x FROM generate_series(1, 105) x');
|
||||
DROP TABLE t;
|
||||
|
@ -345,7 +328,7 @@ CREATE TYPE composite_key_type AS (f1 int, f2 text);
|
|||
SET citus.shard_count TO 8;
|
||||
CREATE TABLE t(key composite_key_type, value int);
|
||||
SELECT create_distributed_table('t', 'key', 'range');
|
||||
CALL create_range_partitioned_shards('t', '{"(0,a)","(25,a)","(50,a)","(75,a)"}',
|
||||
CALL public.create_range_partitioned_shards('t', '{"(0,a)","(25,a)","(50,a)","(75,a)"}',
|
||||
'{"(24,z)","(49,z)","(74,z)","(100,z)"}');
|
||||
CALL test_partition_query_results('t', 'SELECT (x, ''f2_'' || x::text)::composite_key_type, x * x * x FROM generate_series(1, 100) x');
|
||||
DROP TABLE t;
|
||||
|
@ -354,7 +337,7 @@ DROP TYPE composite_key_type;
|
|||
-- unsorted ranges
|
||||
CREATE TABLE t(key int, value int);
|
||||
SELECT create_distributed_table('t', 'key', 'range');
|
||||
CALL create_range_partitioned_shards('t', '{50,25,76,0}',
|
||||
CALL public.create_range_partitioned_shards('t', '{50,25,76,0}',
|
||||
'{75,49,200,24}');
|
||||
CALL test_partition_query_results('t', 'SELECT x, x * x * x FROM generate_series(1, 105) x');
|
||||
DROP TABLE t;
|
||||
|
|
Loading…
Reference in New Issue