Apply @anarazel's feedback

- Add a new file for colocated subqueries
- Add only partition keys to the attribute equivalence
- Minor style changes along with minor structural changes
pull/1282/head
Onder Kalaci 2017-03-28 14:49:03 +03:00
parent 3825d4fd77
commit 427af34719
4 changed files with 809 additions and 764 deletions

View File

@ -0,0 +1,783 @@
/*
* multi_colocated_subquery_planner.c
*
* This file contains functions helper functions for planning
* queries with colocated tables and subqueries.
*
* Copyright (c) 2017-2017, Citus Data, Inc.
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "c.h"
#include "distributed/multi_colocated_subquery_planner.h"
#include "distributed/multi_planner.h"
#include "distributed/multi_logical_planner.h"
#include "distributed/pg_dist_partition.h"
#include "nodes/nodeFuncs.h"
#include "nodes/pg_list.h"
#include "nodes/primnodes.h"
#include "nodes/relation.h"
#include "parser/parsetree.h"
#include "optimizer/pathnode.h"
static uint32 attributeEquivalenceId = 1;
/*
* AttributeEquivalenceClass
*
* Whenever we find an equality clause A = B, where both A and B originates from
* relation attributes (i.e., not random expressions), we create an
* AttributeEquivalenceClass to record this knowledge. If we later find another
* equivalence B = C, we create another AttributeEquivalenceClass. Finally, we can
* apply transitity rules and generate a new AttributeEquivalenceClass which includes
* A, B and C.
*
* Note that equality among the members are identified by the varattno and rteIdentity.
*/
typedef struct AttributeEquivalenceClass
{
uint32 equivalenceId;
List *equivalentAttributes;
} AttributeEquivalenceClass;
/*
* AttributeEquivalenceClassMember - one member expression of an
* AttributeEquivalenceClassMember. The important thing to consider is that
* the class member contains "rteIndentity" field. Note that each RTE_RELATION
* is assigned a unique rteIdentity in AssignRTEIdentities() function.
*
* "varno" and "varattrno" is directly used from a Var clause that is being added
* to the attribute equivalence. Since we only use this class for relations, the member
* also includes the relation id field.
*/
typedef struct AttributeEquivalenceClassMember
{
Index varno;
AttrNumber varattno;
Oid relationId;
int rteIdendity;
} AttributeEquivalenceClassMember;
static uint32 ReferenceRelationCount(RelationRestrictionContext *restrictionContext);
static List * GenerateAttributeEquivalencesForRelationRestrictions(
RelationRestrictionContext *restrictionContext);
static AttributeEquivalenceClass * AttributeEquivalenceClassForEquivalenceClass(
EquivalenceClass *plannerEqClass, RelationRestriction *relationRestriction);
static void AddToAttributeEquivalenceClass(PlannerInfo *root, Var *varToBeAdded,
AttributeEquivalenceClass **
attributeEquivalanceClass);
static Var * GetVarFromAssignedParam(List *parentPlannerParamList,
Param *plannerParam);
static List * GenerateAttributeEquivalencesForJoinRestrictions(JoinRestrictionContext
*joinRestrictionContext);
static bool AttributeClassContainsAttributeClassMember(AttributeEquivalenceClassMember *
inputMember,
AttributeEquivalenceClass *
attributeEquivalenceClass);
static List * AddAttributeClassToAttributeClassList(AttributeEquivalenceClass *
attributeEquivalance,
List *attributeEquivalenceList);
static AttributeEquivalenceClass * GenerateCommonEquivalence(List *
attributeEquivalenceList);
static void ListConcatUniqueAttributeClassMemberLists(AttributeEquivalenceClass **
firstClass,
AttributeEquivalenceClass *
secondClass);
/*
* AllRelationsJoinedOnPartitionKey aims to deduce whether each of the RTE_RELATION
* is joined with at least one another RTE_RELATION on their partition keys. If each
* RTE_RELATION follows the above rule, we can conclude that all RTE_RELATIONs are
* joined on their partition keys.
*
* In order to do that, we invented a new equivalence class namely:
* AttributeEquivalenceClass. In very simple words, a AttributeEquivalenceClass is
* identified by an unique id and consists of a list of AttributeEquivalenceMembers.
*
* Each AttributeEquivalenceMember is designed to identify attributes uniquely within the
* whole query. The necessity of this arise since varno attributes are defined within
* a single level of a query. Instead, here we want to identify each RTE_RELATION uniquely
* and try to find equality among each RTE_RELATION's partition key.
*
* Each equality among RTE_RELATION is saved using an AttributeEquivalenceClass where
* each member attribute is identified by a AttributeEquivalenceMember. In the final
* step, we try generate a common attribute equivalence class that holds as much as
* AttributeEquivalenceMembers whose attributes are a partition keys.
*
* AllRelationsJoinedOnPartitionKey uses both relation restrictions and join restrictions
* to find as much as information that Postgres planner provides to extensions. For the
* details of the usage, please see GenerateAttributeEquivalencesForRelationRestrictions()
* and GenerateAttributeEquivalencesForJoinRestrictions()
*
* Finally, as the name of the function reveals, the function returns true if all relations
* are joined on their partition keys. Otherwise, the function returns false.
*/
bool
AllRelationsJoinedOnPartitionKey(RelationRestrictionContext *restrictionContext,
JoinRestrictionContext *joinRestrictionContext)
{
List *relationRestrictionAttributeEquivalenceList = NIL;
List *joinRestrictionAttributeEquivalenceList = NIL;
List *allAttributeEquivalenceList = NIL;
AttributeEquivalenceClass *commonEquivalenceClass = NULL;
uint32 referenceRelationCount = ReferenceRelationCount(restrictionContext);
uint32 totalRelationCount = list_length(restrictionContext->relationRestrictionList);
uint32 nonReferenceRelationCount = totalRelationCount - referenceRelationCount;
ListCell *commonEqClassCell = NULL;
ListCell *relationRestrictionCell = NULL;
Relids commonRteIdentities = NULL;
/*
* If the query includes a single relation which is not a reference table,
* we should not check the partition column equality.
* Consider two example cases:
* (i) The query includes only a single colocated relation
* (ii) A colocated relation is joined with a reference
* table where colocated relation is not joined on the partition key
*
* For the above two cases, we should not execute the partition column equality
* algorithm.
*/
if (nonReferenceRelationCount <= 1)
{
return true;
}
/* reset the equivalence id counter per call to prevent overflows */
attributeEquivalenceId = 1;
relationRestrictionAttributeEquivalenceList =
GenerateAttributeEquivalencesForRelationRestrictions(restrictionContext);
joinRestrictionAttributeEquivalenceList =
GenerateAttributeEquivalencesForJoinRestrictions(joinRestrictionContext);
allAttributeEquivalenceList =
list_concat(relationRestrictionAttributeEquivalenceList,
joinRestrictionAttributeEquivalenceList);
/*
* In general we're trying to expand existing the equivalence classes to find a
* common equivalence class. The main goal is to test whether this main class
* contains all partition keys of the existing relations.
*/
commonEquivalenceClass = GenerateCommonEquivalence(allAttributeEquivalenceList);
/* add the rte indexes of relations to a bitmap */
foreach(commonEqClassCell, commonEquivalenceClass->equivalentAttributes)
{
AttributeEquivalenceClassMember *classMember = lfirst(commonEqClassCell);
int rteIdentity = classMember->rteIdendity;
commonRteIdentities = bms_add_member(commonRteIdentities, rteIdentity);
}
/* check whether all relations exists in the main restriction list */
foreach(relationRestrictionCell, restrictionContext->relationRestrictionList)
{
RelationRestriction *relationRestriction = lfirst(relationRestrictionCell);
int rteIdentity = GetRTEIdentity(relationRestriction->rte);
if (PartitionKey(relationRestriction->relationId) &&
!bms_is_member(rteIdentity, commonRteIdentities))
{
return false;
}
}
return true;
}
/*
* ReferenceRelationCount iterates over the relations and returns the reference table
* relation count.
*/
static uint32
ReferenceRelationCount(RelationRestrictionContext *restrictionContext)
{
ListCell *relationRestrictionCell = NULL;
uint32 referenceRelationCount = 0;
foreach(relationRestrictionCell, restrictionContext->relationRestrictionList)
{
RelationRestriction *relationRestriction = lfirst(relationRestrictionCell);
if (PartitionMethod(relationRestriction->relationId) == DISTRIBUTE_BY_NONE)
{
referenceRelationCount++;
}
}
return referenceRelationCount;
}
/*
* GenerateAttributeEquivalencesForRelationRestrictions gets a relation restriction
* context and returns a list of AttributeEquivalenceClass.
*
* The algorithm followed can be summarized as below:
*
* - Per relation restriction
* - Per plannerInfo's eq_class
* - Create an AttributeEquivalenceClass
* - Add all Vars that appear in the plannerInfo's
* eq_class to the AttributeEquivalenceClass
* - While doing that, consider LATERAL vars as well.
* See GetVarFromAssignedParam() for the details. Note
* that we're using parentPlannerInfo while adding the
* LATERAL vars given that we rely on that plannerInfo.
*
*/
static List *
GenerateAttributeEquivalencesForRelationRestrictions(RelationRestrictionContext
*restrictionContext)
{
List *attributeEquivalenceList = NIL;
ListCell *relationRestrictionCell = NULL;
foreach(relationRestrictionCell, restrictionContext->relationRestrictionList)
{
RelationRestriction *relationRestriction = lfirst(relationRestrictionCell);
List *equivalenceClasses = relationRestriction->plannerInfo->eq_classes;
ListCell *equivilanceClassCell = NULL;
foreach(equivilanceClassCell, equivalenceClasses)
{
EquivalenceClass *plannerEqClass = lfirst(equivilanceClassCell);
AttributeEquivalenceClass *attributeEquivalance =
AttributeEquivalenceClassForEquivalenceClass(plannerEqClass,
relationRestriction);
attributeEquivalenceList =
AddAttributeClassToAttributeClassList(attributeEquivalance,
attributeEquivalenceList);
}
}
return attributeEquivalenceList;
}
/*
* AttributeEquivalenceClassForEquivalenceClass is a helper function for
* GenerateAttributeEquivalencesForRelationRestrictions. The function takes an
* EquivalenceClass and the relation restriction that the equivalence class
* belongs to. The function returns an AttributeEquivalenceClass that is composed
* of ec_members that are simple Var references.
*
* The function also takes case of LATERAL joins by simply replacing the PARAM_EXEC
* with the corresponding expression.
*/
static AttributeEquivalenceClass *
AttributeEquivalenceClassForEquivalenceClass(EquivalenceClass *plannerEqClass,
RelationRestriction *relationRestriction)
{
AttributeEquivalenceClass *attributeEquivalance =
palloc0(sizeof(AttributeEquivalenceClass));
ListCell *equivilanceMemberCell = NULL;
PlannerInfo *plannerInfo = relationRestriction->plannerInfo;
attributeEquivalance->equivalenceId = attributeEquivalenceId++;
foreach(equivilanceMemberCell, plannerEqClass->ec_members)
{
EquivalenceMember *equivalenceMember = lfirst(equivilanceMemberCell);
Node *equivalenceNode = strip_implicit_coercions(
(Node *) equivalenceMember->em_expr);
Expr *strippedEquivalenceExpr = (Expr *) equivalenceNode;
Var *expressionVar = NULL;
if (IsA(strippedEquivalenceExpr, Param))
{
List *parentParamList = relationRestriction->parentPlannerParamList;
Param *equivalenceParam = (Param *) strippedEquivalenceExpr;
expressionVar = GetVarFromAssignedParam(parentParamList,
equivalenceParam);
if (expressionVar)
{
AddToAttributeEquivalenceClass(
relationRestriction->parentPlannerInfo,
expressionVar,
&attributeEquivalance);
}
}
else if (IsA(strippedEquivalenceExpr, Var))
{
expressionVar = (Var *) strippedEquivalenceExpr;
AddToAttributeEquivalenceClass(plannerInfo, expressionVar,
&attributeEquivalance);
}
}
return attributeEquivalance;
}
/*
*
* GetVarFromAssignedParam returns the Var that is assigned to the given
* plannerParam if its kind is PARAM_EXEC.
*
* If the paramkind is not equal to PARAM_EXEC the function returns NULL. Similarly,
* if there is no var that the given param is assigned to, the function returns NULL.
*
* Rationale behind this function:
*
* While iterating through the equivalence classes of RTE_RELATIONs, we
* observe that there are PARAM type of equivalence member expressions for
* the RTE_RELATIONs which actually belong to lateral vars from the other query
* levels.
*
* We're also keeping track of the RTE_RELATION's parent_root's
* plan_param list which is expected to hold the parameters that are required
* for its lower level queries as it is documented:
*
* plan_params contains the expressions that this query level needs to
* make available to a lower query level that is currently being planned.
*
* This function is a helper function to iterate through the parent query's
* plan_params and looks for the param that the equivalence member has. The
* comparison is done via the "paramid" field. Finally, if the found parameter's
* item is a Var, we conclude that Postgres standard_planner replaced the Var
* with the Param on assign_param_for_var() function
* @src/backend/optimizer//plan/subselect.c.
*
*/
static Var *
GetVarFromAssignedParam(List *parentPlannerParamList, Param *plannerParam)
{
Var *assignedVar = NULL;
ListCell *plannerParameterCell = NULL;
Assert(plannerParam != NULL);
/* we're only interested in parameters that Postgres added for execution */
if (plannerParam->paramkind != PARAM_EXEC)
{
return NULL;
}
foreach(plannerParameterCell, parentPlannerParamList)
{
PlannerParamItem *plannerParamItem = lfirst(plannerParameterCell);
if (plannerParamItem->paramId != plannerParam->paramid)
{
continue;
}
/* TODO: Should we consider PlaceHolderVar?? */
if (!IsA(plannerParamItem->item, Var))
{
continue;
}
assignedVar = (Var *) plannerParamItem->item;
break;
}
return assignedVar;
}
/*
* GenerateCommonEquivalence gets a list of unrelated AttributeEquiavalanceClass
* whose all members are partition keys.
*
* With the equivalence classes, the function follows the algorithm
* outlined below:
*
* - Add the first equivalence class to the common equivalence class
* - Then, iterate on the remaining equivalence classes
* - If any of the members equal to the common equivalence class
* add all the members of the equivalence class to the common
* class
* - Start the iteration from the beginning. The reason is that
* in case any of the classes we've passed is equivalent to the
* newly added one. To optimize the algorithm, we utilze the
* equivalence class ids and skip the ones that are already added.
* - Finally, return the common equivalence class.
*/
static AttributeEquivalenceClass *
GenerateCommonEquivalence(List *attributeEquivalenceList)
{
AttributeEquivalenceClass *commonEquivalenceClass = NULL;
AttributeEquivalenceClass *firstEquivalenceClass = NULL;
Bitmapset *addedEquivalenceIds = NULL;
uint32 equivalenceListSize = list_length(attributeEquivalenceList);
uint32 equivalenceClassIndex = 0;
commonEquivalenceClass = palloc0(sizeof(AttributeEquivalenceClass));
commonEquivalenceClass->equivalenceId = 0;
/* think more on this. */
if (equivalenceListSize < 1)
{
return commonEquivalenceClass;
}
/* setup the initial state of the main equivalence class */
firstEquivalenceClass = linitial(attributeEquivalenceList);
commonEquivalenceClass->equivalentAttributes =
firstEquivalenceClass->equivalentAttributes;
addedEquivalenceIds = bms_add_member(addedEquivalenceIds,
firstEquivalenceClass->equivalenceId);
for (; equivalenceClassIndex < equivalenceListSize; ++equivalenceClassIndex)
{
AttributeEquivalenceClass *currentEquivalenceClass =
list_nth(attributeEquivalenceList, equivalenceClassIndex);
ListCell *equivalenceMemberCell = NULL;
/*
* This is an optimization. If we already added the same equivalence class,
* we could skip it since we've already added all the relevant equivalence
* members.
*/
if (bms_is_member(currentEquivalenceClass->equivalenceId, addedEquivalenceIds))
{
continue;
}
foreach(equivalenceMemberCell, currentEquivalenceClass->equivalentAttributes)
{
AttributeEquivalenceClassMember *attributeEquialanceMember =
(AttributeEquivalenceClassMember *) lfirst(equivalenceMemberCell);
if (AttributeClassContainsAttributeClassMember(attributeEquialanceMember,
commonEquivalenceClass))
{
ListConcatUniqueAttributeClassMemberLists(&commonEquivalenceClass,
currentEquivalenceClass);
addedEquivalenceIds = bms_add_member(addedEquivalenceIds,
currentEquivalenceClass->
equivalenceId);
/*
* It seems inefficient to start from the beginning.
* But, we should somehow restart from the beginning to test that
* whether the already skipped ones are equal or not.
*/
equivalenceClassIndex = 0;
break;
}
}
}
return commonEquivalenceClass;
}
/*
* ListConcatUniqueAttributeClassMemberLists gets two attribute equivalence classes. It
* basically concatenates attribute equivalence member lists uniquely and updates the
* firstClass' member list with the list.
*
* Basically, the function iterates over the secondClass' member list and checks whether
* it already exists in the firstClass' member list. If not, the member is added to the
* firstClass.
*/
static void
ListConcatUniqueAttributeClassMemberLists(AttributeEquivalenceClass **firstClass,
AttributeEquivalenceClass *secondClass)
{
ListCell *equivalenceClassMemberCell = NULL;
List *equivalenceMemberList = secondClass->equivalentAttributes;
foreach(equivalenceClassMemberCell, equivalenceMemberList)
{
AttributeEquivalenceClassMember *newEqMember = lfirst(equivalenceClassMemberCell);
if (AttributeClassContainsAttributeClassMember(newEqMember, *firstClass))
{
continue;
}
(*firstClass)->equivalentAttributes = lappend((*firstClass)->equivalentAttributes,
newEqMember);
}
}
/*
* GenerateAttributeEquivalencesForJoinRestrictions gets a join restriction
* context and returns a list of AttrributeEquivalenceClass.
*
* The algorithm followed can be summarized as below:
*
* - Per join restriction
* - Per RestrictInfo of the join restriction
* - Check whether the join restriction is in the form of (Var1 = Var2)
* - Create an AttributeEquivalenceClass
* - Add both Var1 and Var2 to the AttributeEquivalenceClass
*/
static List *
GenerateAttributeEquivalencesForJoinRestrictions(JoinRestrictionContext *
joinRestrictionContext)
{
List *attributeEquivalenceList = NIL;
ListCell *joinRestrictionCell = NULL;
foreach(joinRestrictionCell, joinRestrictionContext->joinRestrictionList)
{
JoinRestriction *joinRestriction = lfirst(joinRestrictionCell);
ListCell *restrictionInfoList = NULL;
foreach(restrictionInfoList, joinRestriction->joinRestrictInfoList)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(restrictionInfoList);
OpExpr *restrictionOpExpr = NULL;
Node *leftNode = NULL;
Node *rightNode = NULL;
Expr *strippedLeftExpr = NULL;
Expr *strippedRightExpr = NULL;
Var *leftVar = NULL;
Var *rightVar = NULL;
Expr *restrictionClause = rinfo->clause;
AttributeEquivalenceClass *attributeEquivalance = NULL;
if (!IsA(restrictionClause, OpExpr))
{
continue;
}
restrictionOpExpr = (OpExpr *) restrictionClause;
if (list_length(restrictionOpExpr->args) != 2)
{
continue;
}
if (!OperatorImplementsEquality(restrictionOpExpr->opno))
{
continue;
}
leftNode = linitial(restrictionOpExpr->args);
rightNode = lsecond(restrictionOpExpr->args);
/* we also don't want implicit coercions */
strippedLeftExpr = (Expr *) strip_implicit_coercions((Node *) leftNode);
strippedRightExpr = (Expr *) strip_implicit_coercions((Node *) rightNode);
if (!(IsA(strippedLeftExpr, Var) && IsA(strippedRightExpr, Var)))
{
continue;
}
leftVar = (Var *) strippedLeftExpr;
rightVar = (Var *) strippedRightExpr;
attributeEquivalance = palloc0(sizeof(AttributeEquivalenceClass));
attributeEquivalance->equivalenceId = attributeEquivalenceId++;
AddToAttributeEquivalenceClass(joinRestriction->plannerInfo, leftVar,
&attributeEquivalance);
AddToAttributeEquivalenceClass(joinRestriction->plannerInfo, rightVar,
&attributeEquivalance);
attributeEquivalenceList =
AddAttributeClassToAttributeClassList(attributeEquivalance,
attributeEquivalenceList);
}
}
return attributeEquivalenceList;
}
/*
* AddToAttributeEquivalenceClass is a key function for building the attribute
* equivalences. The function gets a plannerInfo, var and attribute equivalence
* class. It searches for the RTE_RELATION(s) that the input var belongs to and
* adds the found Var(s) to the input attribute equivalence class.
*
* Note that the input var could come from a subquery (i.e., not directly from an
* RTE_RELATION). That's the reason we recursively call the function until the
* RTE_RELATION found.
*
* The algorithm could be summarized as follows:
*
* - If the RTE that corresponds to a relation
* - Generate an AttributeEquivalenceMember and add to the input
* AttributeEquivalenceClass
* - If the RTE that corresponds to a subquery
* - Find the corresponding target entry via varno
* - if subquery entry is a set operation (i.e., only UNION/UNION ALL allowed)
* - recursively add both left and right sides of the set operation's
* corresponding target entries
* - if subquery is not a set operation
* - recursively try to add the corresponding target entry to the
* equivalence class
*
* Note that this function only adds partition keys to the attributeEquivalanceClass.
* This implies that there wouldn't be any columns for reference tables.
*/
static void
AddToAttributeEquivalenceClass(PlannerInfo *root, Var *varToBeAdded,
AttributeEquivalenceClass **attributeEquivalanceClass)
{
RangeTblEntry *rangeTableEntry = root->simple_rte_array[varToBeAdded->varno];
if (rangeTableEntry->rtekind == RTE_RELATION)
{
AttributeEquivalenceClassMember *attributeEqMember = NULL;
Oid relationId = rangeTableEntry->relid;
Var *relationPartitionKey = NULL;
if (PartitionMethod(relationId) == DISTRIBUTE_BY_NONE)
{
return;
}
relationPartitionKey = PartitionKey(relationId);
if (relationPartitionKey->varattno != varToBeAdded->varattno)
{
return;
}
attributeEqMember = palloc0(sizeof(AttributeEquivalenceClassMember));
attributeEqMember->varattno = varToBeAdded->varattno;
attributeEqMember->varno = varToBeAdded->varno;
attributeEqMember->rteIdendity = GetRTEIdentity(rangeTableEntry);
attributeEqMember->relationId = rangeTableEntry->relid;
(*attributeEquivalanceClass)->equivalentAttributes =
lappend((*attributeEquivalanceClass)->equivalentAttributes,
attributeEqMember);
}
else if (rangeTableEntry->rtekind == RTE_SUBQUERY && !rangeTableEntry->inh)
{
Query *subquery = rangeTableEntry->subquery;
RelOptInfo *baseRelOptInfo = NULL;
TargetEntry *subqueryTargetEntry = NULL;
/* punt if it's a whole-row var rather than a plain column reference */
if (varToBeAdded->varattno == InvalidAttrNumber)
{
return;
}
baseRelOptInfo = find_base_rel(root, varToBeAdded->varno);
/* If the subquery hasn't been planned yet, we have to punt */
if (baseRelOptInfo->subroot == NULL)
{
return;
}
Assert(IsA(baseRelOptInfo->subroot, PlannerInfo));
subquery = baseRelOptInfo->subroot->parse;
Assert(IsA(subquery, Query));
/* Get the subquery output expression referenced by the upper Var */
subqueryTargetEntry = get_tle_by_resno(subquery->targetList,
varToBeAdded->varattno);
if (subqueryTargetEntry == NULL || subqueryTargetEntry->resjunk)
{
ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("subquery %s does not have attribute %d",
rangeTableEntry->eref->aliasname,
varToBeAdded->varattno)));
}
if (!IsA(subqueryTargetEntry->expr, Var))
{
return;
}
varToBeAdded = (Var *) subqueryTargetEntry->expr;
/* we need to handle set operations separately */
if (subquery->setOperations)
{
SetOperationStmt *unionStatement =
(SetOperationStmt *) subquery->setOperations;
RangeTblRef *leftRangeTableReference = (RangeTblRef *) unionStatement->larg;
RangeTblRef *rightRangeTableReference = (RangeTblRef *) unionStatement->rarg;
varToBeAdded->varno = leftRangeTableReference->rtindex;
AddToAttributeEquivalenceClass(baseRelOptInfo->subroot, varToBeAdded,
attributeEquivalanceClass);
varToBeAdded->varno = rightRangeTableReference->rtindex;
AddToAttributeEquivalenceClass(baseRelOptInfo->subroot, varToBeAdded,
attributeEquivalanceClass);
}
else if (varToBeAdded && IsA(varToBeAdded, Var) && varToBeAdded->varlevelsup == 0)
{
AddToAttributeEquivalenceClass(baseRelOptInfo->subroot, varToBeAdded,
attributeEquivalanceClass);
}
}
}
/*
* AttributeClassContainsAttributeClassMember returns true if it the input class member
* is already exists in the attributeEquivalenceClass. An equality is identified by the
* varattno and rteIdentity.
*/
static bool
AttributeClassContainsAttributeClassMember(AttributeEquivalenceClassMember *inputMember,
AttributeEquivalenceClass *
attributeEquivalenceClass)
{
ListCell *classCell = NULL;
foreach(classCell, attributeEquivalenceClass->equivalentAttributes)
{
AttributeEquivalenceClassMember *memberOfClass = lfirst(classCell);
if (memberOfClass->rteIdendity == inputMember->rteIdendity &&
memberOfClass->varattno == inputMember->varattno)
{
return true;
}
}
return false;
}
/*
* AddAttributeClassToAttributeClassList checks for certain properties of the
* input attributeEquivalance before adding it to the attributeEquivalenceList.
*
* Firstly, the function skips adding NULL attributeEquivalance to the list.
* Secondly, since an attribute equivalence class with a single member does
* not contribute to our purposes, we skip such classed adding to the list.
*/
static List *
AddAttributeClassToAttributeClassList(AttributeEquivalenceClass *attributeEquivalance,
List *attributeEquivalenceList)
{
List *equivalentAttributes = NULL;
if (attributeEquivalance == NULL)
{
return attributeEquivalenceList;
}
equivalentAttributes = attributeEquivalance->equivalentAttributes;
if (list_length(equivalentAttributes) < 2)
{
return attributeEquivalenceList;
}
attributeEquivalenceList = lappend(attributeEquivalenceList,
attributeEquivalance);
return attributeEquivalenceList;
}

View File

@ -34,6 +34,7 @@
#include "distributed/multi_logical_optimizer.h" #include "distributed/multi_logical_optimizer.h"
#include "distributed/multi_physical_planner.h" #include "distributed/multi_physical_planner.h"
#include "distributed/multi_router_planner.h" #include "distributed/multi_router_planner.h"
#include "distributed/multi_colocated_subquery_planner.h"
#include "distributed/listutils.h" #include "distributed/listutils.h"
#include "distributed/citus_ruleutils.h" #include "distributed/citus_ruleutils.h"
#include "distributed/relay_utility.h" #include "distributed/relay_utility.h"
@ -76,7 +77,6 @@ typedef struct WalkerState
} WalkerState; } WalkerState;
bool EnableRouterExecution = true; bool EnableRouterExecution = true;
static uint32 attributeEquivalenceId = 1;
/* planner functions forward declarations */ /* planner functions forward declarations */
@ -89,33 +89,7 @@ static MultiPlan * CreateInsertSelectRouterPlan(Query *originalQuery,
restrictionContext, restrictionContext,
JoinRestrictionContext * JoinRestrictionContext *
joinRestrictionContext); joinRestrictionContext);
static bool AllRelationsJoinedOnPartitionKey(RelationRestrictionContext
*restrictionContext,
JoinRestrictionContext *
joinRestrictionContext);
static List * PartitionKeyEquivalenceClassList(List *attributeEquivalenceClassList);
static uint32 ReferenceRelationCount(RelationRestrictionContext *restrictionContext);
static List * GenerateAttributeEquivalencesForRelationRestrictions(
RelationRestrictionContext *restrictionContext);
static AttributeEquivalenceClass * AttributeEquivalenceClassForEquivalenceClass(
EquivalenceClass *plannerEqClass, RelationRestriction *relationRestriction);
static void AddToAttributeEquivalenceClass(PlannerInfo *root, Var *varToBeAdded,
AttributeEquivalenceClass **
attributeEquivalanceClass);
static Var * GetVarFromAssignedParam(List *parentPlannerParamList,
Param *plannerParam);
static List * GenerateAttributeEquivalencesForJoinRestrictions(JoinRestrictionContext
*joinRestrictionContext);
static bool AttributeClassContainsAttributeClassMember(AttributeEquivalenceClassMember *
inputMember,
AttributeEquivalenceClass *
attributeEquivalenceClass);
static AttributeEquivalenceClass * GenerateCommonEquivalence(List *
attributeEquivalenceList);
static void ListConcatUniqueAttributeClassMemberLists(AttributeEquivalenceClass **
firstClass,
AttributeEquivalenceClass *
secondClass);
static Task * RouterModifyTaskForShardInterval(Query *originalQuery, static Task * RouterModifyTaskForShardInterval(Query *originalQuery,
ShardInterval *shardInterval, ShardInterval *shardInterval,
RelationRestrictionContext * RelationRestrictionContext *
@ -380,706 +354,6 @@ CreateInsertSelectRouterPlan(Query *originalQuery,
} }
/*
* AllRelationsJoinedOnPartitionKey aims to deduce whether each of the RTE_RELATION
* is joined with at least on another RTE_RELATION on their partition keys. If each
* RTE_RELATION follows the above rule, we can conclude that all RTE_RELATIONs are
* joined on their partition keys.
*
* In order to do that, we invented a new equivalence class namely:
* AttributeEquivalenceClass. In very simple words, a AttributeEquivalenceClass is
* identified by an unique id and consists of a list of AttributeEquivalenceMembers.
*
* Each AttributeEquivalenceMember is designed to identify attributes uniquely within the
* whole query. The necessity of this arise since varno attributes are defined within
* a single level of a query. Instead, here we want to identify each RTE_RELATION uniquely
* and try to find equality among each RTE_RELATION's partition key.
*
* Each equality among RTE_RELATION is saved using an AttributeEquivalenceClass where
* each member attribute is identified by a AttributeEquivalenceMember. In the final
* step, we try generate a common attribute equivalence class that holds as much as
* AttributeEquivalenceMembers whose attributes are a partition keys.
*
* AllRelationsJoinedOnPartitionKey uses both relation restrictions and join restrictions
* to find as much as information that Postgres planner provides to extensions. For the
* details of the usage, please see GenerateAttributeEquivalencesForRelationRestrictions()
* and GenerateAttributeEquivalencesForJoinRestrictions()
*
* Finally, as the name of the function reveals, the function returns true if all relations
* are joined on their partition keys. Otherwise, the function returns false.
*/
static bool
AllRelationsJoinedOnPartitionKey(RelationRestrictionContext *restrictionContext,
JoinRestrictionContext *joinRestrictionContext)
{
List *relationRestrictionAttributeEquivalenceList = NIL;
List *joinRestrictionAttributeEquivalenceList = NIL;
List *allAttributeEquivalenceList = NIL;
List *partitionKeyEquivalenceList = NIL;
AttributeEquivalenceClass *commonEquivalenceClass = NULL;
bool allRelationsJoinedOnPartitionKey = true;
uint32 referenceRelationCount = ReferenceRelationCount(restrictionContext);
uint32 totalRelationCount = list_length(restrictionContext->relationRestrictionList);
ListCell *commonEqClassCell = NULL;
ListCell *relationRestrictionCell = NULL;
Relids commonRteIdentities = NULL;
/*
* If there are no JOINs between non-reference tables, we shouldn't
* bother about them.
*/
if (totalRelationCount - referenceRelationCount <= 1)
{
return true;
}
/* reset the equivalence id counter per call to prevent overflows */
attributeEquivalenceId = 1;
relationRestrictionAttributeEquivalenceList =
GenerateAttributeEquivalencesForRelationRestrictions(restrictionContext);
joinRestrictionAttributeEquivalenceList =
GenerateAttributeEquivalencesForJoinRestrictions(joinRestrictionContext);
allAttributeEquivalenceList =
list_concat(relationRestrictionAttributeEquivalenceList,
joinRestrictionAttributeEquivalenceList);
/* filter out non-partition key equivalences */
partitionKeyEquivalenceList =
PartitionKeyEquivalenceClassList(allAttributeEquivalenceList);
/*
* In general we're trying to expand existing the equivalence classes to find a
* common equivalence class. The main goal is to test whether this main class
* contains all partition keys of the existing relations.
*/
commonEquivalenceClass = GenerateCommonEquivalence(partitionKeyEquivalenceList);
/* add the rte indexes of relations to a bitmap */
foreach(commonEqClassCell, commonEquivalenceClass->equivalentAttributes)
{
AttributeEquivalenceClassMember *classMember = lfirst(commonEqClassCell);
int rteIdentity = classMember->rteIdendity;
commonRteIdentities = bms_add_member(commonRteIdentities, rteIdentity);
}
/* check whether all relations exists in the main restriction list */
foreach(relationRestrictionCell, restrictionContext->relationRestrictionList)
{
RelationRestriction *relationRestriction = lfirst(relationRestrictionCell);
int rteIdentity = GetRTEIdentity(relationRestriction->rte);
if (PartitionKey(relationRestriction->relationId) &&
!bms_is_member(rteIdentity, commonRteIdentities))
{
allRelationsJoinedOnPartitionKey = false;
break;
}
}
return allRelationsJoinedOnPartitionKey;
}
/*
* PartitionKeyEquivalenceClassList gets a list of atrribute equivalences. Then, filters
* out the ones whose all members are not partition keys. The function skips reference
* tables.
*/
static List *
PartitionKeyEquivalenceClassList(List *attributeEquivalenceClassList)
{
ListCell *attributeEquivalenceClassCell = NULL;
List *partitionKeyEquivalencClassList = NIL;
foreach(attributeEquivalenceClassCell, attributeEquivalenceClassList)
{
AttributeEquivalenceClass *attributeEquivalenceClass =
(AttributeEquivalenceClass *) lfirst(attributeEquivalenceClassCell);
ListCell *equivalenceMemberCell = NULL;
bool allPartitionKeys = true;
foreach(equivalenceMemberCell, attributeEquivalenceClass->equivalentAttributes)
{
AttributeEquivalenceClassMember *classMemeber =
(AttributeEquivalenceClassMember *) lfirst(equivalenceMemberCell);
Var *relationPartitionKey = PartitionKey(classMemeber->relationId);
/* we don't care about reference tables here */
if (!relationPartitionKey)
{
continue;
}
if (relationPartitionKey->varattno != classMemeber->varattno)
{
allPartitionKeys = false;
break;
}
}
if (!allPartitionKeys)
{
continue;
}
partitionKeyEquivalencClassList = lappend(partitionKeyEquivalencClassList,
attributeEquivalenceClass);
}
return partitionKeyEquivalencClassList;
}
/*
* ReferenceRelationCount iterates over the relations and returns the reference table
* relation count.
*/
static uint32
ReferenceRelationCount(RelationRestrictionContext *restrictionContext)
{
ListCell *relationRestrictionCell = NULL;
uint32 referenceRelationCount = 0;
foreach(relationRestrictionCell, restrictionContext->relationRestrictionList)
{
RelationRestriction *relationRestriction = lfirst(relationRestrictionCell);
if (PartitionMethod(relationRestriction->relationId) == DISTRIBUTE_BY_NONE)
{
referenceRelationCount++;
}
}
return referenceRelationCount;
}
/*
* GenerateAttributeEquivalencesForRelationRestrictions gets a relation restriction
* context and returns a list of AttributeEquivalenceClass.
*
* The algorithm followed can be summarized as below:
*
* - Per relation restriction
* - Per plannerInfo's eq_class
* - Create an AttributeEquivalenceClass
* - Add all Vars that appear in the plannerInfo's
* eq_class to the AttributeEquivalenceClass
* - While doing that, consider LATERAL vars as well.
* See GetVarFromAssignedParam() for the details. Note
* that we're using parentPlannerInfo while adding the
* LATERAL vars given that we rely on that plannerInfo.
*
* Note that this function does not deal with whether the member of eq_classes
* are partition key or not. That's handled later in the planning.
*/
static List *
GenerateAttributeEquivalencesForRelationRestrictions(RelationRestrictionContext
*restrictionContext)
{
List *attributeEquivalenceList = NIL;
ListCell *relationRestrictionCell = NULL;
foreach(relationRestrictionCell, restrictionContext->relationRestrictionList)
{
RelationRestriction *relationRestriction = lfirst(relationRestrictionCell);
List *equivalenceClasses = relationRestriction->plannerInfo->eq_classes;
ListCell *equivilanceClassCell = NULL;
foreach(equivilanceClassCell, equivalenceClasses)
{
EquivalenceClass *plannerEqClass = lfirst(equivilanceClassCell);
AttributeEquivalenceClass *attributeEquivalance =
AttributeEquivalenceClassForEquivalenceClass(plannerEqClass,
relationRestriction);
attributeEquivalenceList = lappend(attributeEquivalenceList,
attributeEquivalance);
}
}
return attributeEquivalenceList;
}
/*
* AttributeEquivalenceClassForEquivalenceClass is a helper function for
* GenerateAttributeEquivalencesForRelationRestrictions. The function takes an
* EquivalenceClass and the relation restriction that the equivalence class
* belongs to. The function returns an AttributeEquivalenceClass that is composed
* of ec_members that are simple Var references.
*
* The function also takes case of LATERAL joins by simply replacing the PARAM_EXEC
* with the corresponding expression.
*/
static AttributeEquivalenceClass *
AttributeEquivalenceClassForEquivalenceClass(EquivalenceClass *plannerEqClass,
RelationRestriction *relationRestriction)
{
AttributeEquivalenceClass *attributeEquivalance =
palloc0(sizeof(AttributeEquivalenceClass));
ListCell *equivilanceMemberCell = NULL;
PlannerInfo *plannerInfo = relationRestriction->plannerInfo;
attributeEquivalance->equivalenceId = attributeEquivalenceId++;
foreach(equivilanceMemberCell, plannerEqClass->ec_members)
{
EquivalenceMember *equivalenceMember = lfirst(equivilanceMemberCell);
Node *equivalenceNode = strip_implicit_coercions(
(Node *) equivalenceMember->em_expr);
Expr *strippedEquivalenceExpr = (Expr *) equivalenceNode;
Var *expressionVar = NULL;
if (IsA(strippedEquivalenceExpr, Param))
{
List *parentParamList = relationRestriction->parentPlannerParamList;
Param *equivalenceParam = (Param *) strippedEquivalenceExpr;
expressionVar = GetVarFromAssignedParam(parentParamList,
equivalenceParam);
if (expressionVar)
{
AddToAttributeEquivalenceClass(
relationRestriction->parentPlannerInfo,
expressionVar,
&attributeEquivalance);
}
}
else if (IsA(strippedEquivalenceExpr, Var))
{
expressionVar = (Var *) strippedEquivalenceExpr;
AddToAttributeEquivalenceClass(plannerInfo, expressionVar,
&attributeEquivalance);
}
}
return attributeEquivalance;
}
/*
*
* GetVarFromAssignedParam returns the Var that is assigned to the given
* plannerParam if its kind is PARAM_EXEC.
*
* If the paramkind is not equal to PARAM_EXEC the function returns NULL. Similarly,
* if there is no var that the given param is assigned to, the function returns NULL.
*
* Rationale behind this function:
*
* While iterating through the equivalence classes of RTE_RELATIONs, we
* observe that there are PARAM type of equivalence member expressions for
* the RTE_RELATIONs which actually belong to lateral vars from the other query
* levels.
*
* We're also keeping track of the RTE_RELATION's parent_root's
* plan_param list which is expected to hold the parameters that are required
* for its lower level queries as it is documented:
*
* plan_params contains the expressions that this query level needs to
* make available to a lower query level that is currently being planned.
*
* This function is a helper function to iterate through the parent query's
* plan_params and looks for the param that the equivalence member has. The
* comparison is done via the "paramid" field. Finally, if the found parameter's
* item is a Var, we conclude that Postgres standard_planner replaced the Var
* with the Param on assign_param_for_var() function
* @src/backend/optimizer//plan/subselect.c.
*
*/
static Var *
GetVarFromAssignedParam(List *parentPlannerParamList, Param *plannerParam)
{
Var *assignedVar = NULL;
ListCell *plannerParameterCell = NULL;
Assert(plannerParam != NULL);
/* we're only interested in parameters that Postgres added for execution */
if (plannerParam->paramkind != PARAM_EXEC)
{
return NULL;
}
foreach(plannerParameterCell, parentPlannerParamList)
{
PlannerParamItem *plannerParamItem = lfirst(plannerParameterCell);
if (plannerParamItem->paramId != plannerParam->paramid)
{
continue;
}
/* TODO: Should we consider PlaceHolderVar?? */
if (!IsA(plannerParamItem->item, Var))
{
continue;
}
assignedVar = (Var *) plannerParamItem->item;
break;
}
return assignedVar;
}
/*
* GenerateCommonEquivalence gets a list of unrelated AttributeEquiavalanceClass
* whose all members are partition keys.
*
* With the equivalence classes, the function follows the algorithm
* outlined below:
*
* - Add the first equivalence class to the common equivalence class
* - Then, iterate on the remaining equivalence classes
* - If any of the members equal to the common equivalence class
* add all the members of the equivalence class to the common
* class
* - Start the iteration from the beginning. The reason is that
* in case any of the classes we've passed is equivalent to the
* newly added one. To optimize the algorithm, we utilze the
* equivalence class ids and skip the ones that are already added.
* - Finally, return the common equivalence class.
*/
static AttributeEquivalenceClass *
GenerateCommonEquivalence(List *attributeEquivalenceList)
{
AttributeEquivalenceClass *commonEquivalenceClass = NULL;
AttributeEquivalenceClass *firstEquivalenceClass = NULL;
Bitmapset *addedEquivalenceIds = NULL;
uint32 equivalenceListSize = list_length(attributeEquivalenceList);
uint32 equivalenceClassIndex = 0;
commonEquivalenceClass = palloc0(sizeof(AttributeEquivalenceClass));
commonEquivalenceClass->equivalenceId = 0;
/* think more on this. */
if (equivalenceListSize < 1)
{
return commonEquivalenceClass;
}
/* setup the initial state of the main equivalence class */
firstEquivalenceClass = linitial(attributeEquivalenceList);
commonEquivalenceClass->equivalentAttributes =
firstEquivalenceClass->equivalentAttributes;
addedEquivalenceIds = bms_add_member(addedEquivalenceIds,
firstEquivalenceClass->equivalenceId);
for (; equivalenceClassIndex < equivalenceListSize; ++equivalenceClassIndex)
{
AttributeEquivalenceClass *currentEquivalenceClass =
list_nth(attributeEquivalenceList, equivalenceClassIndex);
ListCell *equivalenceMemberCell = NULL;
/*
* This is an optimization. If we already added the same equivalence class,
* we could skip it since we've already added all the relevant equivalence
* members.
*/
if (bms_overlap(addedEquivalenceIds,
bms_make_singleton(currentEquivalenceClass->equivalenceId)))
{
continue;
}
foreach(equivalenceMemberCell, currentEquivalenceClass->equivalentAttributes)
{
AttributeEquivalenceClassMember *attributeEquialanceMember =
(AttributeEquivalenceClassMember *) lfirst(equivalenceMemberCell);
if (AttributeClassContainsAttributeClassMember(attributeEquialanceMember,
commonEquivalenceClass))
{
ListConcatUniqueAttributeClassMemberLists(&commonEquivalenceClass,
currentEquivalenceClass);
addedEquivalenceIds = bms_add_member(addedEquivalenceIds,
currentEquivalenceClass->
equivalenceId);
/*
* It seems inefficient to start from the beginning.
* But, we should somehow restart from the beginning to test that
* whether the already skipped ones are equal or not.
*/
equivalenceClassIndex = 0;
break;
}
}
}
return commonEquivalenceClass;
}
/*
* ListConcatUniqueAttributeClassMemberLists gets two attribute equivalence classes. It
* basically concatenates attribute equivalence member lists uniquely and updates the
* firstClass' member list with the list.
*
* Basically, the function iterates over the secondClass' member list and checks whether
* it already exists in the firstClass' member list. If not, the member is added to the
* firstClass.
*/
static void
ListConcatUniqueAttributeClassMemberLists(AttributeEquivalenceClass **firstClass,
AttributeEquivalenceClass *secondClass)
{
ListCell *equivalenceClassMemberCell = NULL;
List *equivalenceMemberList = secondClass->equivalentAttributes;
foreach(equivalenceClassMemberCell, equivalenceMemberList)
{
AttributeEquivalenceClassMember *newEqMember = lfirst(equivalenceClassMemberCell);
if (AttributeClassContainsAttributeClassMember(newEqMember, *firstClass))
{
continue;
}
(*firstClass)->equivalentAttributes = lappend((*firstClass)->equivalentAttributes,
newEqMember);
}
}
/*
* GenerateAttributeEquivalencesForJoinRestrictions gets a join restriction
* context and returns a list of AttrributeEquivalenceClass.
*
* The algorithm followed can be summarized as below:
*
* - Per join restriction
* - Per RestrictInfo of the join restriction
* - Check whether the join restriction is in the form of (Var1 = Var2)
* - Create an AttributeEquivalenceClass
* - Add both Var1 and Var2 to the AttributeEquivalenceClass
*
* Note that this function does not deal with whether the member of restriction
* are partition key or not. That's handled later in the planning.
*/
static List *
GenerateAttributeEquivalencesForJoinRestrictions(JoinRestrictionContext *
joinRestrictionContext)
{
List *attributeEquivalenceList = NIL;
ListCell *joinRestrictionCell = NULL;
foreach(joinRestrictionCell, joinRestrictionContext->joinRestrictionList)
{
JoinRestriction *joinRestriction = lfirst(joinRestrictionCell);
ListCell *restrictionInfoList = NULL;
foreach(restrictionInfoList, joinRestriction->joinRestrictInfoList)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(restrictionInfoList);
OpExpr *restrictionOpExpr = NULL;
Node *leftNode = NULL;
Node *rightNode = NULL;
Expr *strippedLeftExpr = NULL;
Expr *strippedRightExpr = NULL;
Var *leftVar = NULL;
Var *rightVar = NULL;
Expr *restrictionClause = rinfo->clause;
AttributeEquivalenceClass *attributeEquivalance = NULL;
if (!IsA(restrictionClause, OpExpr))
{
continue;
}
restrictionOpExpr = (OpExpr *) restrictionClause;
if (list_length(restrictionOpExpr->args) != 2)
{
continue;
}
if (!OperatorImplementsEquality(restrictionOpExpr->opno))
{
continue;
}
leftNode = linitial(restrictionOpExpr->args);
rightNode = lsecond(restrictionOpExpr->args);
/* we also don't want implicit coercions */
strippedLeftExpr = (Expr *) strip_implicit_coercions((Node *) leftNode);
strippedRightExpr = (Expr *) strip_implicit_coercions((Node *) rightNode);
if (!(IsA(strippedLeftExpr, Var) && IsA(strippedRightExpr, Var)))
{
continue;
}
leftVar = (Var *) strippedLeftExpr;
rightVar = (Var *) strippedRightExpr;
attributeEquivalance = palloc0(sizeof(AttributeEquivalenceClass));
attributeEquivalance->equivalenceId = attributeEquivalenceId++;
/* we could (probably) safely do that since we disallowed ANTI JOINs ? */
AddToAttributeEquivalenceClass(joinRestriction->plannerInfo, leftVar,
&attributeEquivalance);
AddToAttributeEquivalenceClass(joinRestriction->plannerInfo, rightVar,
&attributeEquivalance);
attributeEquivalenceList = lappend(attributeEquivalenceList,
attributeEquivalance);
}
}
return attributeEquivalenceList;
}
/*
* AddToAttributeEquivalenceClass is a key function for building the attribute
* equivalences. The function gets a plannerInfo, var and attribute equivalence
* class. It searches for the RTE_RELATION(s) that the input var belongs to and
* adds the found Var(s) to the input attribute equivalence class.
*
* Note that the input var could come from a subquery (i.e., not directly from an
* RTE_RELATION). That's the reason we recursively call the function until the
* RTE_RELATION found.
*
* The algorithm could be summarized as follows:
*
* - If the RTE that corresponds to a relation
* - Generate an AttributeEquivalenceMember and add to the input
* AttributeEquivalenceClass
* - If the RTE that corresponds to a subquery
* - Find the corresponding target entry via varno
* - if subquery entry is a set operation (i.e., only UNION/UNION ALL allowed)
* - recursively add both left and right sides of the set operation's
* corresponding target entries
* - if subquery is not a set operation
* - recursively try to add the corresponding target entry to the
* equivalence class
*/
static void
AddToAttributeEquivalenceClass(PlannerInfo *root, Var *varToBeAdded,
AttributeEquivalenceClass **attributeEquivalanceClass)
{
RangeTblEntry *rangeTableEntry = root->simple_rte_array[varToBeAdded->varno];
if (rangeTableEntry->rtekind == RTE_RELATION)
{
AttributeEquivalenceClassMember *attributeEqMember =
palloc0(sizeof(AttributeEquivalenceClassMember));
attributeEqMember->varattno = varToBeAdded->varattno;
attributeEqMember->varno = varToBeAdded->varno;
attributeEqMember->rteIdendity = GetRTEIdentity(rangeTableEntry);
attributeEqMember->relationId = rangeTableEntry->relid;
(*attributeEquivalanceClass)->equivalentAttributes =
lappend((*attributeEquivalanceClass)->equivalentAttributes,
attributeEqMember);
}
else if (rangeTableEntry->rtekind == RTE_SUBQUERY && !rangeTableEntry->inh)
{
Query *subquery = rangeTableEntry->subquery;
RelOptInfo *baseRelOptInfo = NULL;
TargetEntry *subqueryTargetEntry = NULL;
/* punt if it's a whole-row var rather than a plain column reference */
if (varToBeAdded->varattno == InvalidAttrNumber)
{
return;
}
baseRelOptInfo = find_base_rel(root, varToBeAdded->varno);
/* If the subquery hasn't been planned yet, we have to punt */
if (baseRelOptInfo->subroot == NULL)
{
return;
}
Assert(IsA(baseRelOptInfo->subroot, PlannerInfo));
subquery = baseRelOptInfo->subroot->parse;
Assert(IsA(subquery, Query));
/* Get the subquery output expression referenced by the upper Var */
subqueryTargetEntry = get_tle_by_resno(subquery->targetList,
varToBeAdded->varattno);
if (subqueryTargetEntry == NULL || subqueryTargetEntry->resjunk)
{
ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("subquery %s does not have attribute %d",
rangeTableEntry->eref->aliasname,
varToBeAdded->varattno)));
}
if (!IsA(subqueryTargetEntry->expr, Var))
{
return;
}
varToBeAdded = (Var *) subqueryTargetEntry->expr;
/* we need to handle set operations separately */
if (subquery->setOperations)
{
SetOperationStmt *unionStatement =
(SetOperationStmt *) subquery->setOperations;
RangeTblRef *leftRangeTableReference = (RangeTblRef *) unionStatement->larg;
RangeTblRef *rightRangeTableReference = (RangeTblRef *) unionStatement->rarg;
varToBeAdded->varno = leftRangeTableReference->rtindex;
AddToAttributeEquivalenceClass(baseRelOptInfo->subroot, varToBeAdded,
attributeEquivalanceClass);
varToBeAdded->varno = rightRangeTableReference->rtindex;
AddToAttributeEquivalenceClass(baseRelOptInfo->subroot, varToBeAdded,
attributeEquivalanceClass);
}
else if (varToBeAdded && IsA(varToBeAdded, Var) && varToBeAdded->varlevelsup == 0)
{
AddToAttributeEquivalenceClass(baseRelOptInfo->subroot, varToBeAdded,
attributeEquivalanceClass);
}
}
}
/*
* AttributeClassContainsAttributeClassMember returns true if it the input class member
* is already exists in the attributeEquivalenceClass. An equality is identified by the
* varattno and rteIdentity.
*/
static bool
AttributeClassContainsAttributeClassMember(AttributeEquivalenceClassMember *inputMember,
AttributeEquivalenceClass *
attributeEquivalenceClass)
{
ListCell *classCell = NULL;
foreach(classCell, attributeEquivalenceClass->equivalentAttributes)
{
AttributeEquivalenceClassMember *memberOfClass = lfirst(classCell);
if (memberOfClass->rteIdendity == inputMember->rteIdendity &&
memberOfClass->varattno == inputMember->varattno)
{
return true;
}
}
return false;
}
/* /*
* RouterModifyTaskForShardInterval creates a modify task by * RouterModifyTaskForShardInterval creates a modify task by
* replacing the partitioning qual parameter added in multi_planner() * replacing the partitioning qual parameter added in multi_planner()

View File

@ -0,0 +1,24 @@
/*
* multi_colocated_subquery_planner.h
*
* This file contains functions helper functions for planning
* queries with colocated tables and subqueries.
*
* Copyright (c) 2017-2017, Citus Data, Inc.
*
*-------------------------------------------------------------------------
*/
#ifndef MULTI_COLOCATED_SUBQUERY_PLANNER_H
#define MULTI_COLOCATED_SUBQUERY_PLANNER_H
#include "distributed/multi_planner.h"
extern bool AllRelationsJoinedOnPartitionKey(RelationRestrictionContext *
restrictionContext,
JoinRestrictionContext *
joinRestrictionContext);
#endif /* MULTI_COLOCATED_SUBQUERY_PLANNER_H */

View File

@ -61,42 +61,6 @@ typedef struct RelationShard
uint64 shardId; uint64 shardId;
} RelationShard; } RelationShard;
/*
* AttributeEquivalenceClass
*
* Whenever we find an equality clause A = B, where both A and B originates from
* relation attributes (i.e., not random expressions), we create an
* AttributeEquivalenceClass to record this knowledge. If we later find another
* equivalence B = C, we create another AttributeEquivalenceClass. Finally, we can
* apply transitity rules and generate a new AttributeEquivalenceClass which includes
* A, B and C.
*
* Note that equality among the members are identified by the varattno and rteIdentity.
*/
typedef struct AttributeEquivalenceClass
{
uint32 equivalenceId;
List *equivalentAttributes;
} AttributeEquivalenceClass;
/*
* AttributeEquivalenceClassMember - one member expression of an
* AttributeEquivalenceClassMember. The important thing to consider is that
* the class member contains "rteIndentity" field. Note that each RTE_RELATION
* is assigned a unique rteIdentity in AssignRTEIdentities() function.
*
* "varno" and "varattrno" is directly used from a Var clause that is being added
* to the attribute equivalence. Since we only use this class for relations, the member
* also includes the relation id field.
*/
typedef struct AttributeEquivalenceClassMember
{
Index varno;
AttrNumber varattno;
Oid relationId;
int rteIdendity;
} AttributeEquivalenceClassMember;
extern PlannedStmt * multi_planner(Query *parse, int cursorOptions, extern PlannedStmt * multi_planner(Query *parse, int cursorOptions,
ParamListInfo boundParams); ParamListInfo boundParams);