Do not repeat GROUP BY distribution_column on coordinator

Allow arbitrary aggregates to be pushed down in these scenarios
pull/3307/head
Marco Slot 2019-12-14 10:04:14 +01:00 committed by Philip Dubé
parent 11368451f4
commit b21b6905ae
13 changed files with 702 additions and 688 deletions

View File

@ -11,6 +11,7 @@
#include "postgres.h"
#include "distributed/extended_op_node_utils.h"
#include "distributed/listutils.h"
#include "distributed/metadata_cache.h"
#include "distributed/multi_logical_optimizer.h"
#include "distributed/pg_dist_partition.h"
@ -24,8 +25,7 @@
#include "nodes/pg_list.h"
static bool GroupedByDisjointPartitionColumn(List *tableNodeList,
MultiExtendedOp *opNode);
static bool GroupedByPartitionColumn(MultiNode *node, MultiExtendedOp *opNode);
static bool ExtendedOpNodeContainsRepartitionSubquery(MultiExtendedOp *originalOpNode);
static bool HasNonPartitionColumnDistinctAgg(List *targetEntryList, Node *havingQual,
@ -46,11 +46,9 @@ BuildExtendedOpNodeProperties(MultiExtendedOp *extendedOpNode)
{
ExtendedOpNodeProperties extendedOpNodeProperties;
List *tableNodeList = FindNodesOfType((MultiNode *) extendedOpNode, T_MultiTable);
bool groupedByDisjointPartitionColumn = GroupedByDisjointPartitionColumn(
tableNodeList,
extendedOpNode);
bool groupedByDisjointPartitionColumn =
GroupedByPartitionColumn((MultiNode *) extendedOpNode, extendedOpNode);
bool repartitionSubquery = ExtendedOpNodeContainsRepartitionSubquery(extendedOpNode);
@ -83,41 +81,86 @@ BuildExtendedOpNodeProperties(MultiExtendedOp *extendedOpNode)
/*
* GroupedByDisjointPartitionColumn returns true if the query is grouped by the
* partition column of a table whose shards have disjoint sets of partition values.
* GroupedByPartitionColumn returns true if a GROUP BY in the opNode contains
* the partition column of the underlying relation, which is determined by
* searching the MultiNode tree for a MultiTable and MultiPartition with
* a matching column.
*
* When there is a re-partition join, the search terminates at the
* MultiPartition node. Hence we can push down the GROUP BY if the join
* column is in the GROUP BY.
*/
static bool
GroupedByDisjointPartitionColumn(List *tableNodeList, MultiExtendedOp *opNode)
GroupedByPartitionColumn(MultiNode *node, MultiExtendedOp *opNode)
{
bool result = false;
ListCell *tableNodeCell = NULL;
foreach(tableNodeCell, tableNodeList)
if (node == NULL)
{
MultiTable *tableNode = (MultiTable *) lfirst(tableNodeCell);
return false;
}
if (CitusIsA(node, MultiTable))
{
MultiTable *tableNode = (MultiTable *) node;
Oid relationId = tableNode->relationId;
if (relationId == SUBQUERY_RELATION_ID || !IsDistributedTable(relationId))
if (relationId == SUBQUERY_RELATION_ID ||
relationId == SUBQUERY_PUSHDOWN_RELATION_ID)
{
continue;
/* ignore subqueries for now */
return false;
}
char partitionMethod = PartitionMethod(relationId);
if (partitionMethod != DISTRIBUTE_BY_RANGE &&
partitionMethod != DISTRIBUTE_BY_HASH)
{
continue;
/* only range- and hash-distributed tables are strictly partitioned */
return false;
}
if (GroupedByColumn(opNode->groupClauseList, opNode->targetList,
tableNode->partitionColumn))
{
result = true;
break;
/* this node is partitioned by a column in the GROUP BY */
return true;
}
}
else if (CitusIsA(node, MultiPartition))
{
MultiPartition *partitionNode = (MultiPartition *) node;
if (GroupedByColumn(opNode->groupClauseList, opNode->targetList,
partitionNode->partitionColumn))
{
/* this node is partitioned by a column in the GROUP BY */
return true;
}
}
else if (UnaryOperator(node))
{
MultiNode *childNode = ((MultiUnaryNode *) node)->childNode;
if (GroupedByPartitionColumn(childNode, opNode))
{
/* a child node is partitioned by a column in the GROUP BY */
return true;
}
}
else if (BinaryOperator(node))
{
MultiNode *leftChildNode = ((MultiBinaryNode *) node)->leftChildNode;
MultiNode *rightChildNode = ((MultiBinaryNode *) node)->rightChildNode;
if (GroupedByPartitionColumn(leftChildNode, opNode) ||
GroupedByPartitionColumn(rightChildNode, opNode))
{
/* a child node is partitioned by a column in the GROUP BY */
return true;
}
}
return result;
return false;
}

View File

@ -316,8 +316,16 @@ MultiLogicalPlanOptimize(MultiTreeRoot *multiLogicalPlan)
ListCell *tableNodeCell = NULL;
MultiNode *logicalPlanNode = (MultiNode *) multiLogicalPlan;
/* check that we can optimize aggregates in the plan */
ErrorIfContainsUnsupportedAggregate(logicalPlanNode);
List *extendedOpNodeList = FindNodesOfType(logicalPlanNode, T_MultiExtendedOp);
MultiExtendedOp *extendedOpNode = (MultiExtendedOp *) linitial(extendedOpNodeList);
ExtendedOpNodeProperties extendedOpNodeProperties = BuildExtendedOpNodeProperties(
extendedOpNode);
if (!extendedOpNodeProperties.groupedByDisjointPartitionColumn)
{
/* check that we can optimize aggregates in the plan */
ErrorIfContainsUnsupportedAggregate(logicalPlanNode);
}
/*
* If a select node exists, we use the idempower property to split the node
@ -374,11 +382,6 @@ MultiLogicalPlanOptimize(MultiTreeRoot *multiLogicalPlan)
* clause list to the worker operator node. We then push the worker operator
* node below the collect node.
*/
List *extendedOpNodeList = FindNodesOfType(logicalPlanNode, T_MultiExtendedOp);
MultiExtendedOp *extendedOpNode = (MultiExtendedOp *) linitial(extendedOpNodeList);
ExtendedOpNodeProperties extendedOpNodeProperties = BuildExtendedOpNodeProperties(
extendedOpNode);
MultiExtendedOp *masterExtendedOpNode =
MasterExtendedOpNode(extendedOpNode, &extendedOpNodeProperties);
@ -1359,6 +1362,7 @@ MasterExtendedOpNode(MultiExtendedOp *originalOpNode,
{
List *targetEntryList = originalOpNode->targetList;
List *newTargetEntryList = NIL;
List *newGroupClauseList = NIL;
ListCell *targetEntryCell = NULL;
Node *originalHavingQual = originalOpNode->havingQual;
Node *newHavingQual = NULL;
@ -1383,7 +1387,8 @@ MasterExtendedOpNode(MultiExtendedOp *originalOpNode,
* if the aggregate belongs to a window function, it is not mutated, but pushed
* down to worker as it is. Master query should treat that as a Var.
*/
if (hasAggregates && !hasWindowFunction)
if (hasAggregates && !hasWindowFunction &&
!extendedOpNodeProperties->groupedByDisjointPartitionColumn)
{
Node *newNode = MasterAggregateMutator((Node *) originalExpression,
walkerContext);
@ -1392,8 +1397,9 @@ MasterExtendedOpNode(MultiExtendedOp *originalOpNode,
else
{
/*
* The expression does not have any aggregates. We simply make it
* reference the output generated by worker nodes.
* The expression does not have any aggregates or the group by
* is on the partition column. We simply make it reference the
* output generated by worker nodes.
*/
const uint32 masterTableId = 1; /* only one table on master node */
@ -1414,14 +1420,23 @@ MasterExtendedOpNode(MultiExtendedOp *originalOpNode,
newTargetEntryList = lappend(newTargetEntryList, newTargetEntry);
}
if (originalHavingQual != NULL)
if (!extendedOpNodeProperties->groupedByDisjointPartitionColumn)
{
newHavingQual = MasterAggregateMutator(originalHavingQual, walkerContext);
/*
* Not pushing down GROUP BY, need to regroup on coordinator
* and apply having on the coordinator.
*/
newGroupClauseList = originalOpNode->groupClauseList;
if (originalHavingQual != NULL)
{
newHavingQual = MasterAggregateMutator(originalHavingQual, walkerContext);
}
}
MultiExtendedOp *masterExtendedOpNode = CitusMakeNode(MultiExtendedOp);
masterExtendedOpNode->targetList = newTargetEntryList;
masterExtendedOpNode->groupClauseList = originalOpNode->groupClauseList;
masterExtendedOpNode->groupClauseList = newGroupClauseList;
masterExtendedOpNode->sortClauseList = originalOpNode->sortClauseList;
masterExtendedOpNode->distinctClause = originalOpNode->distinctClause;
masterExtendedOpNode->hasDistinctOn = originalOpNode->hasDistinctOn;
@ -2213,11 +2228,15 @@ ProcessTargetListForWorkerQuery(List *targetEntryList,
workerAggContext->createGroupByClause = false;
/*
* If the expression uses aggregates inside window function contain agg
* clause still returns true. We want to make sure it is not a part of
* window function before we proceed.
* If the query has a window function, we currently assume it's safe to push
* down the target list.
*
* If there are aggregates without a GROUP BY on the distribution column
* then the results of those aggregates need to be combined on the coordinator.
* In that case we rewrite the expressions using WorkerAggregateWalker.
*/
if (hasAggregates && !hasWindowFunction)
if (!hasWindowFunction && hasAggregates &&
!extendedOpNodeProperties->groupedByDisjointPartitionColumn)
{
WorkerAggregateWalker((Node *) originalExpression, workerAggContext);
@ -2245,11 +2264,6 @@ ProcessTargetListForWorkerQuery(List *targetEntryList,
* having clause is safe to pushdown to the workers, workerHavingQual is set to
* be the original having clause.
*
* TODO: Citus currently always pulls the expressions in the having clause to the
* coordinator and apply it on the coordinator. Do we really need to pull those
* expressions to the coordinator and apply the having on the coordinator if we're
* already pushing down the HAVING clause?
*
* inputs: originalHavingQual, extendedOpNodeProperties
* outputs: workerHavingQual, queryTargetList, queryGroupClause
*/
@ -2269,18 +2283,26 @@ ProcessHavingClauseForWorkerQuery(Node *originalHavingQual,
*workerHavingQual = NULL;
WorkerAggregateWalkerContext *workerAggContext = palloc0(
sizeof(WorkerAggregateWalkerContext));
workerAggContext->expressionList = NIL;
workerAggContext->pullDistinctColumns = extendedOpNodeProperties->pullDistinctColumns;
workerAggContext->createGroupByClause = false;
if (!extendedOpNodeProperties->groupedByDisjointPartitionColumn)
{
/*
* If the GROUP BY or PARTITION BY is not on the distribution column
* then we need to combine the aggregates in the HAVING across shards.
*/
WorkerAggregateWalkerContext *workerAggContext = palloc0(
sizeof(WorkerAggregateWalkerContext));
workerAggContext->expressionList = NIL;
workerAggContext->pullDistinctColumns =
extendedOpNodeProperties->pullDistinctColumns;
workerAggContext->createGroupByClause = false;
WorkerAggregateWalker(originalHavingQual, workerAggContext);
List *newExpressionList = workerAggContext->expressionList;
WorkerAggregateWalker(originalHavingQual, workerAggContext);
List *newExpressionList = workerAggContext->expressionList;
ExpandWorkerTargetEntry(newExpressionList, targetEntry,
workerAggContext->createGroupByClause,
queryTargetList, queryGroupClause);
ExpandWorkerTargetEntry(newExpressionList, targetEntry,
workerAggContext->createGroupByClause,
queryTargetList, queryGroupClause);
}
/*
* If grouped by a partition column whose values are shards have disjoint sets

View File

@ -150,6 +150,28 @@ SELECT create_distributed_function('last(anyelement)');
SELECT key, first(val ORDER BY id), last(val ORDER BY id)
FROM aggdata GROUP BY key ORDER BY key;
ERROR: unsupported aggregate function first
-- However, GROUP BY on distribution column gets pushed down
SELECT id, first(val ORDER BY key), last(val ORDER BY key)
FROM aggdata GROUP BY id ORDER BY id;
id | first | last
----+-------+------
1 | 2 | 2
2 | |
3 | 2 | 2
4 | 3 | 3
5 | 5 | 5
6 | 4 | 4
7 | |
8 | |
9 | |
10 | 8 | 8
11 | 0 | 0
(11 rows)
-- Test that expressions don't slip past. This fails
SELECT id%5, first(val ORDER BY key), last(val ORDER BY key)
FROM aggdata GROUP BY id%5 ORDER BY id%5;
ERROR: unsupported aggregate function first
-- test aggregate with stype which is not a by-value datum
-- also test our handling of the aggregate not existing on workers
create function sumstring_sfunc(state text, x text)
@ -165,7 +187,7 @@ create aggregate sumstring(text) (
);
select sumstring(valf::text) from aggdata where valf is not null;
ERROR: function "aggregate_support.sumstring(text)" does not exist
CONTEXT: while executing command on localhost:57638
CONTEXT: while executing command on localhost:57637
select create_distributed_function('sumstring(text)');
create_distributed_function
-----------------------------

View File

@ -108,34 +108,32 @@ SELECT
FROM
daily_uniques
GROUP BY(1);
QUERY PLAN
------------------------------------------------------------------------
HashAggregate
Group Key: remote_scan.day
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360618 daily_uniques
(25 rows)
QUERY PLAN
------------------------------------------------------------------
Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360618 daily_uniques
(23 rows)
SET hll.force_groupagg to ON;
EXPLAIN(COSTS OFF)
@ -144,36 +142,32 @@ SELECT
FROM
daily_uniques
GROUP BY(1);
QUERY PLAN
------------------------------------------------------------------------------
GroupAggregate
Group Key: remote_scan.day
-> Sort
Sort Key: remote_scan.day
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360618 daily_uniques
(27 rows)
QUERY PLAN
------------------------------------------------------------------
Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360618 daily_uniques
(23 rows)
-- Test disabling hash_agg with operator on coordinator query
SET hll.force_groupagg to OFF;
@ -183,34 +177,32 @@ SELECT
FROM
daily_uniques
GROUP BY(1);
QUERY PLAN
------------------------------------------------------------------------
HashAggregate
Group Key: remote_scan.day
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360618 daily_uniques
(25 rows)
QUERY PLAN
------------------------------------------------------------------
Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360618 daily_uniques
(23 rows)
SET hll.force_groupagg to ON;
EXPLAIN(COSTS OFF)
@ -219,36 +211,32 @@ SELECT
FROM
daily_uniques
GROUP BY(1);
QUERY PLAN
------------------------------------------------------------------------------
GroupAggregate
Group Key: remote_scan.day
-> Sort
Sort Key: remote_scan.day
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360618 daily_uniques
(27 rows)
QUERY PLAN
------------------------------------------------------------------
Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360618 daily_uniques
(23 rows)
-- Test disabling hash_agg with expression on coordinator query
SET hll.force_groupagg to OFF;
@ -258,34 +246,32 @@ SELECT
FROM
daily_uniques
GROUP BY(1);
QUERY PLAN
------------------------------------------------------------------------
HashAggregate
Group Key: remote_scan.day
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360618 daily_uniques
(25 rows)
QUERY PLAN
------------------------------------------------------------------
Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360618 daily_uniques
(23 rows)
SET hll.force_groupagg to ON;
EXPLAIN(COSTS OFF)
@ -294,36 +280,32 @@ SELECT
FROM
daily_uniques
GROUP BY(1);
QUERY PLAN
------------------------------------------------------------------------------
GroupAggregate
Group Key: remote_scan.day
-> Sort
Sort Key: remote_scan.day
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360618 daily_uniques
(27 rows)
QUERY PLAN
------------------------------------------------------------------
Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360618 daily_uniques
(23 rows)
-- Test disabling hash_agg with having
SET hll.force_groupagg to OFF;
@ -333,34 +315,32 @@ SELECT
FROM
daily_uniques
GROUP BY(1);
QUERY PLAN
------------------------------------------------------------------------
HashAggregate
Group Key: remote_scan.day
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360618 daily_uniques
(25 rows)
QUERY PLAN
------------------------------------------------------------------
Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
-> Seq Scan on daily_uniques_360618 daily_uniques
(23 rows)
SET hll.force_groupagg to ON;
EXPLAIN(COSTS OFF)
@ -370,49 +350,36 @@ FROM
daily_uniques
GROUP BY(1)
HAVING hll_cardinality(hll_union_agg(unique_users)) > 1;
QUERY PLAN
----------------------------------------------------------------------------------------------------------
GroupAggregate
Group Key: remote_scan.day
Filter: (hll_cardinality(hll_union_agg(remote_scan.worker_column_3)) > '1'::double precision)
-> Sort
Sort Key: remote_scan.day
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> GroupAggregate
Group Key: day
Filter: (hll_cardinality(hll_union_agg(unique_users)) > '1'::double precision)
-> Sort
Sort Key: day
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> GroupAggregate
Group Key: day
Filter: (hll_cardinality(hll_union_agg(unique_users)) > '1'::double precision)
-> Sort
Sort Key: day
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> GroupAggregate
Group Key: day
Filter: (hll_cardinality(hll_union_agg(unique_users)) > '1'::double precision)
-> Sort
Sort Key: day
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> GroupAggregate
Group Key: day
Filter: (hll_cardinality(hll_union_agg(unique_users)) > '1'::double precision)
-> Sort
Sort Key: day
-> Seq Scan on daily_uniques_360618 daily_uniques
(40 rows)
QUERY PLAN
----------------------------------------------------------------------------------------------
Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: All
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
Filter: (hll_cardinality(hll_union_agg(unique_users)) > '1'::double precision)
-> Seq Scan on daily_uniques_360615 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
Filter: (hll_cardinality(hll_union_agg(unique_users)) > '1'::double precision)
-> Seq Scan on daily_uniques_360616 daily_uniques
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate
Group Key: day
Filter: (hll_cardinality(hll_union_agg(unique_users)) > '1'::double precision)
-> Seq Scan on daily_uniques_360617 daily_uniques
-> Task
Node: host=localhost port=57638 dbname=regression
-> HashAggregate
Group Key: day
Filter: (hll_cardinality(hll_union_agg(unique_users)) > '1'::double precision)
-> Seq Scan on daily_uniques_360618 daily_uniques
(27 rows)
DROP TABLE raw_table;
DROP TABLE daily_uniques;

View File

@ -22,27 +22,24 @@ EXPLAIN (COSTS FALSE)
FROM lineitem_hash
GROUP BY l_orderkey HAVING sum(l_quantity) > 24
ORDER BY 2 DESC, 1 ASC LIMIT 3;
QUERY PLAN
--------------------------------------------------------------------------------------------------------
QUERY PLAN
--------------------------------------------------------------------------------------------------
Limit
-> Sort
Sort Key: (sum(remote_scan.revenue)) DESC, remote_scan.l_orderkey
-> HashAggregate
Group Key: remote_scan.l_orderkey
Filter: (sum(remote_scan.worker_column_3) > '24'::numeric)
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: (sum((l_extendedprice * l_discount))) DESC, l_orderkey
-> HashAggregate
Group Key: l_orderkey
Filter: (sum(l_quantity) > '24'::numeric)
-> Seq Scan on lineitem_hash_590000 lineitem_hash
(18 rows)
Sort Key: remote_scan.revenue DESC, remote_scan.l_orderkey
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: (sum((l_extendedprice * l_discount))) DESC, l_orderkey
-> HashAggregate
Group Key: l_orderkey
Filter: (sum(l_quantity) > '24'::numeric)
-> Seq Scan on lineitem_hash_590000 lineitem_hash
(15 rows)
-- but don't push down when table is distributed by append
EXPLAIN (COSTS FALSE)
@ -98,27 +95,24 @@ EXPLAIN (COSTS FALSE)
FROM lineitem_hash
GROUP BY l_shipmode, l_orderkey HAVING sum(l_quantity) > 24
ORDER BY 3 DESC, 1, 2 LIMIT 3;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------
QUERY PLAN
--------------------------------------------------------------------------------------------------------------
Limit
-> Sort
Sort Key: (sum(remote_scan.revenue)) DESC, remote_scan.l_shipmode, remote_scan.l_orderkey
-> HashAggregate
Group Key: remote_scan.l_shipmode, remote_scan.l_orderkey
Filter: (sum(remote_scan.worker_column_4) > '24'::numeric)
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: (sum((l_extendedprice * l_discount))) DESC, l_shipmode, l_orderkey
-> HashAggregate
Group Key: l_shipmode, l_orderkey
Filter: (sum(l_quantity) > '24'::numeric)
-> Seq Scan on lineitem_hash_590000 lineitem_hash
(18 rows)
Sort Key: remote_scan.revenue DESC, remote_scan.l_shipmode, remote_scan.l_orderkey
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: (sum((l_extendedprice * l_discount))) DESC, l_shipmode, l_orderkey
-> HashAggregate
Group Key: l_shipmode, l_orderkey
Filter: (sum(l_quantity) > '24'::numeric)
-> Seq Scan on lineitem_hash_590000 lineitem_hash
(15 rows)
-- couple more checks with joins
EXPLAIN (COSTS FALSE)
@ -127,31 +121,28 @@ EXPLAIN (COSTS FALSE)
WHERE o_orderkey = l_orderkey
GROUP BY l_orderkey, o_orderkey, l_shipmode HAVING sum(l_quantity) > 24
ORDER BY 1 DESC LIMIT 3;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------
Limit
-> Sort
Sort Key: (sum(remote_scan.revenue)) DESC
-> HashAggregate
Group Key: remote_scan.worker_column_2, remote_scan.worker_column_3, remote_scan.worker_column_4
Filter: (sum(remote_scan.worker_column_5) > '24'::numeric)
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: (sum((lineitem_hash.l_extendedprice * lineitem_hash.l_discount))) DESC
-> HashAggregate
Group Key: lineitem_hash.l_orderkey, orders_hash.o_orderkey, lineitem_hash.l_shipmode
Filter: (sum(lineitem_hash.l_quantity) > '24'::numeric)
-> Hash Join
Hash Cond: (orders_hash.o_orderkey = lineitem_hash.l_orderkey)
-> Seq Scan on orders_hash_590004 orders_hash
-> Hash
-> Seq Scan on lineitem_hash_590000 lineitem_hash
(22 rows)
Sort Key: remote_scan.revenue DESC
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: (sum((lineitem_hash.l_extendedprice * lineitem_hash.l_discount))) DESC
-> HashAggregate
Group Key: lineitem_hash.l_orderkey, orders_hash.o_orderkey, lineitem_hash.l_shipmode
Filter: (sum(lineitem_hash.l_quantity) > '24'::numeric)
-> Hash Join
Hash Cond: (orders_hash.o_orderkey = lineitem_hash.l_orderkey)
-> Seq Scan on orders_hash_590004 orders_hash
-> Hash
-> Seq Scan on lineitem_hash_590000 lineitem_hash
(19 rows)
EXPLAIN (COSTS FALSE)
SELECT sum(l_extendedprice * l_discount) as revenue
@ -183,9 +174,9 @@ EXPLAIN (COSTS FALSE)
DROP TABLE lineitem_hash;
DROP TABLE orders_hash;
SELECT max(value_1)
FROM users_table
GROUP BY user_id
SELECT max(value_1)
FROM users_table
GROUP BY user_id
HAVING max(value_2) > 4 AND min(value_2) < 1
ORDER BY 1;
max
@ -195,9 +186,9 @@ ORDER BY 1;
5
(3 rows)
SELECT max(value_1)
FROM users_table
GROUP BY user_id
SELECT max(value_1)
FROM users_table
GROUP BY user_id
HAVING max(value_2) > 4 AND min(value_2) < 1 OR count(*) > 10
ORDER BY 1;
max
@ -208,9 +199,9 @@ ORDER BY 1;
5
(4 rows)
SELECT max(value_1)
FROM users_table
GROUP BY user_id
SELECT max(value_1)
FROM users_table
GROUP BY user_id
HAVING max(value_2) > 4 AND min(value_2) < 1 AND count(*) > 20
ORDER BY 1;
max
@ -219,9 +210,9 @@ ORDER BY 1;
5
(2 rows)
SELECT max(value_1)
FROM users_table
GROUP BY user_id
SELECT max(value_1)
FROM users_table
GROUP BY user_id
HAVING max(value_2) > 0 AND count(*) FILTER (WHERE value_3=2) > 3 AND min(value_2) IN (0,1,2,3);
max
-----

View File

@ -34,25 +34,23 @@ FROM users_table
GROUP BY user_id
ORDER BY avg(value_1) DESC
LIMIT 1;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------
Limit (cost=0.00..0.00 rows=0 width=0)
-> Sort (cost=0.00..0.00 rows=0 width=0)
Sort Key: ((pg_catalog.sum(remote_scan.avg) / pg_catalog.sum(remote_scan.avg_1))) DESC
-> HashAggregate (cost=0.00..0.00 rows=0 width=0)
Group Key: remote_scan.user_id
-> Custom Scan (Citus Adaptive) (cost=0.00..0.00 rows=0 width=0)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit (cost=1.70..1.70 rows=1 width=52)
-> Sort (cost=1.70..1.70 rows=2 width=52)
Sort Key: (avg(value_1)) DESC
-> HashAggregate (cost=1.66..1.69 rows=2 width=52)
Group Key: user_id
-> Seq Scan on users_table_1400256 users_table (cost=0.00..1.33 rows=33 width=8)
(16 rows)
Sort Key: remote_scan.avg DESC
-> Custom Scan (Citus Adaptive) (cost=0.00..0.00 rows=0 width=0)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit (cost=1.53..1.53 rows=1 width=36)
-> Sort (cost=1.53..1.53 rows=2 width=36)
Sort Key: (avg(value_1)) DESC
-> HashAggregate (cost=1.50..1.52 rows=2 width=36)
Group Key: user_id
-> Seq Scan on users_table_1400256 users_table (cost=0.00..1.33 rows=33 width=8)
(14 rows)
SELECT user_id, avg(value_1) + 1
FROM users_table
@ -98,26 +96,24 @@ ORDER BY 2 DESC;
1 | 10.2857142857142857
(6 rows)
EXPLAIN
EXPLAIN
SELECT user_id, avg(value_1) + count(value_2)
FROM users_table
GROUP BY user_id
ORDER BY 2 DESC;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
QUERY PLAN
---------------------------------------------------------------------------------------------------------
Sort (cost=0.00..0.00 rows=0 width=0)
Sort Key: (((pg_catalog.sum(remote_scan."?column?") / pg_catalog.sum(remote_scan."?column?_1")) + (COALESCE((pg_catalog.sum(remote_scan."?column?_2"))::bigint, '0'::bigint))::numeric)) DESC
-> HashAggregate (cost=0.00..0.00 rows=0 width=0)
Group Key: remote_scan.user_id
-> Custom Scan (Citus Adaptive) (cost=0.00..0.00 rows=0 width=0)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate (cost=1.66..1.68 rows=2 width=28)
Group Key: user_id
-> Seq Scan on users_table_1400256 users_table (cost=0.00..1.33 rows=33 width=12)
(12 rows)
Sort Key: remote_scan."?column?" DESC
-> Custom Scan (Citus Adaptive) (cost=0.00..0.00 rows=0 width=0)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> HashAggregate (cost=1.58..1.61 rows=2 width=36)
Group Key: user_id
-> Seq Scan on users_table_1400256 users_table (cost=0.00..1.33 rows=33 width=12)
(10 rows)
SELECT user_id, avg(value_1) + count(value_2)
FROM users_table
@ -221,25 +217,23 @@ FROM users_table
GROUP BY user_id
ORDER BY (10000 / (sum(value_1 + value_2))) DESC
LIMIT 2;
QUERY PLAN
---------------------------------------------------------------------------------------------
QUERY PLAN
---------------------------------------------------------------------------------------
Limit
-> Sort
Sort Key: ((10000 / (pg_catalog.sum(remote_scan.worker_column_2))::bigint)) DESC
-> HashAggregate
Group Key: remote_scan.user_id
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: ((10000 / sum((value_1 + value_2)))) DESC
-> HashAggregate
Group Key: user_id
-> Seq Scan on users_table_1400256 users_table
(16 rows)
Sort Key: remote_scan.worker_column_2 DESC
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: ((10000 / sum((value_1 + value_2)))) DESC
-> HashAggregate
Group Key: user_id
-> Seq Scan on users_table_1400256 users_table
(14 rows)
SELECT 10000 / (sum(value_1 + value_2))
FROM users_table
@ -289,25 +283,23 @@ FROM users_table
GROUP BY user_id
ORDER BY sum(value_1) DESC
LIMIT 2;
QUERY PLAN
---------------------------------------------------------------------------------------------
QUERY PLAN
---------------------------------------------------------------------------------------
Limit
-> Sort
Sort Key: ((pg_catalog.sum(remote_scan.worker_column_2))::bigint) DESC
-> HashAggregate
Group Key: remote_scan.user_id
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: (sum(value_1)) DESC
-> HashAggregate
Group Key: user_id
-> Seq Scan on users_table_1400256 users_table
(16 rows)
Sort Key: remote_scan.worker_column_2 DESC
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: (sum(value_1)) DESC
-> HashAggregate
Group Key: user_id
-> Seq Scan on users_table_1400256 users_table
(14 rows)
SELECT ut.user_id, avg(ut.value_2)
FROM users_table ut, events_table et
@ -331,30 +323,28 @@ WHERE ut.user_id = et.user_id and et.value_2 < 5
GROUP BY ut.user_id
ORDER BY MAX(et.time), AVG(ut.value_1)
LIMIT 5;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------
QUERY PLAN
-------------------------------------------------------------------------------------------
Limit
-> Sort
Sort Key: (max(remote_scan.worker_column_4)), ((pg_catalog.sum(remote_scan.worker_column_5) / pg_catalog.sum(remote_scan.worker_column_6)))
-> HashAggregate
Group Key: remote_scan.user_id
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: (max(et."time")), (avg(ut.value_1))
-> HashAggregate
Group Key: ut.user_id
-> Hash Join
Hash Cond: (ut.user_id = et.user_id)
-> Seq Scan on users_table_1400256 ut
-> Hash
-> Seq Scan on events_table_1400260 et
Filter: (value_2 < 5)
(21 rows)
Sort Key: remote_scan.worker_column_3, remote_scan.worker_column_4
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: (max(et."time")), (avg(ut.value_1))
-> HashAggregate
Group Key: ut.user_id
-> Hash Join
Hash Cond: (ut.user_id = et.user_id)
-> Seq Scan on users_table_1400256 ut
-> Hash
-> Seq Scan on events_table_1400260 et
Filter: (value_2 < 5)
(19 rows)
SELECT ut.user_id, avg(et.value_2)
FROM users_table ut, events_table et
@ -390,30 +380,28 @@ WHERE ut.user_id = et.user_id and et.value_2 < 5
GROUP BY ut.user_id
ORDER BY 2, AVG(ut.value_1), 1 DESC
LIMIT 5;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
QUERY PLAN
------------------------------------------------------------------------------------------------------------
Limit
-> Sort
Sort Key: (COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint)), ((pg_catalog.sum(remote_scan.worker_column_3) / pg_catalog.sum(remote_scan.worker_column_4))), remote_scan.user_id DESC
-> HashAggregate
Group Key: remote_scan.user_id
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: (count(DISTINCT ut.value_2)), (avg(ut.value_1)), ut.user_id DESC
-> GroupAggregate
Group Key: ut.user_id
-> Sort
Sort Key: ut.user_id DESC
-> Hash Join
Hash Cond: (ut.user_id = et.user_id)
-> Seq Scan on users_table_1400256 ut
-> Hash
-> Seq Scan on events_table_1400260 et
Filter: (value_2 < 5)
(23 rows)
Sort Key: remote_scan.count, remote_scan.worker_column_3, remote_scan.user_id DESC
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: (count(DISTINCT ut.value_2)), (avg(ut.value_1)), ut.user_id DESC
-> GroupAggregate
Group Key: ut.user_id
-> Sort
Sort Key: ut.user_id DESC
-> Hash Join
Hash Cond: (ut.user_id = et.user_id)
-> Seq Scan on users_table_1400256 ut
-> Hash
-> Seq Scan on events_table_1400260 et
Filter: (value_2 < 5)
(21 rows)

View File

@ -461,10 +461,10 @@ DEBUG: generated sql query for task 3
DETAIL: query string: "SELECT s_i_id, s_w_id, s_quantity FROM stock_690006 stock WHERE true"
DEBUG: generated sql query for task 4
DETAIL: query string: "SELECT s_i_id, s_w_id, s_quantity FROM stock_690007 stock WHERE true"
DEBUG: assigned task 1 to node localhost:57637
DEBUG: assigned task 2 to node localhost:57638
DEBUG: assigned task 3 to node localhost:57637
DEBUG: assigned task 4 to node localhost:57638
DEBUG: assigned task 2 to node localhost:57637
DEBUG: assigned task 1 to node localhost:57638
DEBUG: assigned task 4 to node localhost:57637
DEBUG: assigned task 3 to node localhost:57638
DEBUG: generated sql query for task 1
DETAIL: query string: "SELECT ol_i_id FROM order_line_690000 order_line WHERE true"
DEBUG: generated sql query for task 2
@ -490,13 +490,13 @@ DEBUG: join prunable for task partitionId 3 and 0
DEBUG: join prunable for task partitionId 3 and 1
DEBUG: join prunable for task partitionId 3 and 2
DEBUG: generated sql query for task 3
DETAIL: query string: "SELECT "pg_merge_job_0016.task_000005".intermediate_column_16_0 AS s_i_id, "pg_merge_job_0016.task_000005".intermediate_column_16_1 AS worker_column_2, any_value("pg_merge_job_0016.task_000005".intermediate_column_16_2) AS worker_column_3, any_value("pg_merge_job_0016.task_000005".intermediate_column_16_2) AS worker_column_4 FROM (pg_merge_job_0016.task_000005 "pg_merge_job_0016.task_000005" JOIN pg_merge_job_0017.task_000005 "pg_merge_job_0017.task_000005" ON (("pg_merge_job_0017.task_000005".intermediate_column_17_0 OPERATOR(pg_catalog.=) "pg_merge_job_0016.task_000005".intermediate_column_16_0))) WHERE true GROUP BY "pg_merge_job_0016.task_000005".intermediate_column_16_0, "pg_merge_job_0016.task_000005".intermediate_column_16_1 HAVING ((any_value("pg_merge_job_0016.task_000005".intermediate_column_16_2))::double precision OPERATOR(pg_catalog.>) random())"
DETAIL: query string: "SELECT "pg_merge_job_0016.task_000005".intermediate_column_16_0 AS s_i_id, "pg_merge_job_0016.task_000005".intermediate_column_16_1 AS worker_column_2, any_value("pg_merge_job_0016.task_000005".intermediate_column_16_2) AS worker_column_3 FROM (pg_merge_job_0016.task_000005 "pg_merge_job_0016.task_000005" JOIN pg_merge_job_0017.task_000005 "pg_merge_job_0017.task_000005" ON (("pg_merge_job_0017.task_000005".intermediate_column_17_0 OPERATOR(pg_catalog.=) "pg_merge_job_0016.task_000005".intermediate_column_16_0))) WHERE true GROUP BY "pg_merge_job_0016.task_000005".intermediate_column_16_0, "pg_merge_job_0016.task_000005".intermediate_column_16_1 HAVING ((any_value("pg_merge_job_0016.task_000005".intermediate_column_16_2))::double precision OPERATOR(pg_catalog.>) random())"
DEBUG: generated sql query for task 6
DETAIL: query string: "SELECT "pg_merge_job_0016.task_000010".intermediate_column_16_0 AS s_i_id, "pg_merge_job_0016.task_000010".intermediate_column_16_1 AS worker_column_2, any_value("pg_merge_job_0016.task_000010".intermediate_column_16_2) AS worker_column_3, any_value("pg_merge_job_0016.task_000010".intermediate_column_16_2) AS worker_column_4 FROM (pg_merge_job_0016.task_000010 "pg_merge_job_0016.task_000010" JOIN pg_merge_job_0017.task_000010 "pg_merge_job_0017.task_000010" ON (("pg_merge_job_0017.task_000010".intermediate_column_17_0 OPERATOR(pg_catalog.=) "pg_merge_job_0016.task_000010".intermediate_column_16_0))) WHERE true GROUP BY "pg_merge_job_0016.task_000010".intermediate_column_16_0, "pg_merge_job_0016.task_000010".intermediate_column_16_1 HAVING ((any_value("pg_merge_job_0016.task_000010".intermediate_column_16_2))::double precision OPERATOR(pg_catalog.>) random())"
DETAIL: query string: "SELECT "pg_merge_job_0016.task_000010".intermediate_column_16_0 AS s_i_id, "pg_merge_job_0016.task_000010".intermediate_column_16_1 AS worker_column_2, any_value("pg_merge_job_0016.task_000010".intermediate_column_16_2) AS worker_column_3 FROM (pg_merge_job_0016.task_000010 "pg_merge_job_0016.task_000010" JOIN pg_merge_job_0017.task_000010 "pg_merge_job_0017.task_000010" ON (("pg_merge_job_0017.task_000010".intermediate_column_17_0 OPERATOR(pg_catalog.=) "pg_merge_job_0016.task_000010".intermediate_column_16_0))) WHERE true GROUP BY "pg_merge_job_0016.task_000010".intermediate_column_16_0, "pg_merge_job_0016.task_000010".intermediate_column_16_1 HAVING ((any_value("pg_merge_job_0016.task_000010".intermediate_column_16_2))::double precision OPERATOR(pg_catalog.>) random())"
DEBUG: generated sql query for task 9
DETAIL: query string: "SELECT "pg_merge_job_0016.task_000015".intermediate_column_16_0 AS s_i_id, "pg_merge_job_0016.task_000015".intermediate_column_16_1 AS worker_column_2, any_value("pg_merge_job_0016.task_000015".intermediate_column_16_2) AS worker_column_3, any_value("pg_merge_job_0016.task_000015".intermediate_column_16_2) AS worker_column_4 FROM (pg_merge_job_0016.task_000015 "pg_merge_job_0016.task_000015" JOIN pg_merge_job_0017.task_000015 "pg_merge_job_0017.task_000015" ON (("pg_merge_job_0017.task_000015".intermediate_column_17_0 OPERATOR(pg_catalog.=) "pg_merge_job_0016.task_000015".intermediate_column_16_0))) WHERE true GROUP BY "pg_merge_job_0016.task_000015".intermediate_column_16_0, "pg_merge_job_0016.task_000015".intermediate_column_16_1 HAVING ((any_value("pg_merge_job_0016.task_000015".intermediate_column_16_2))::double precision OPERATOR(pg_catalog.>) random())"
DETAIL: query string: "SELECT "pg_merge_job_0016.task_000015".intermediate_column_16_0 AS s_i_id, "pg_merge_job_0016.task_000015".intermediate_column_16_1 AS worker_column_2, any_value("pg_merge_job_0016.task_000015".intermediate_column_16_2) AS worker_column_3 FROM (pg_merge_job_0016.task_000015 "pg_merge_job_0016.task_000015" JOIN pg_merge_job_0017.task_000015 "pg_merge_job_0017.task_000015" ON (("pg_merge_job_0017.task_000015".intermediate_column_17_0 OPERATOR(pg_catalog.=) "pg_merge_job_0016.task_000015".intermediate_column_16_0))) WHERE true GROUP BY "pg_merge_job_0016.task_000015".intermediate_column_16_0, "pg_merge_job_0016.task_000015".intermediate_column_16_1 HAVING ((any_value("pg_merge_job_0016.task_000015".intermediate_column_16_2))::double precision OPERATOR(pg_catalog.>) random())"
DEBUG: generated sql query for task 12
DETAIL: query string: "SELECT "pg_merge_job_0016.task_000020".intermediate_column_16_0 AS s_i_id, "pg_merge_job_0016.task_000020".intermediate_column_16_1 AS worker_column_2, any_value("pg_merge_job_0016.task_000020".intermediate_column_16_2) AS worker_column_3, any_value("pg_merge_job_0016.task_000020".intermediate_column_16_2) AS worker_column_4 FROM (pg_merge_job_0016.task_000020 "pg_merge_job_0016.task_000020" JOIN pg_merge_job_0017.task_000020 "pg_merge_job_0017.task_000020" ON (("pg_merge_job_0017.task_000020".intermediate_column_17_0 OPERATOR(pg_catalog.=) "pg_merge_job_0016.task_000020".intermediate_column_16_0))) WHERE true GROUP BY "pg_merge_job_0016.task_000020".intermediate_column_16_0, "pg_merge_job_0016.task_000020".intermediate_column_16_1 HAVING ((any_value("pg_merge_job_0016.task_000020".intermediate_column_16_2))::double precision OPERATOR(pg_catalog.>) random())"
DETAIL: query string: "SELECT "pg_merge_job_0016.task_000020".intermediate_column_16_0 AS s_i_id, "pg_merge_job_0016.task_000020".intermediate_column_16_1 AS worker_column_2, any_value("pg_merge_job_0016.task_000020".intermediate_column_16_2) AS worker_column_3 FROM (pg_merge_job_0016.task_000020 "pg_merge_job_0016.task_000020" JOIN pg_merge_job_0017.task_000020 "pg_merge_job_0017.task_000020" ON (("pg_merge_job_0017.task_000020".intermediate_column_17_0 OPERATOR(pg_catalog.=) "pg_merge_job_0016.task_000020".intermediate_column_16_0))) WHERE true GROUP BY "pg_merge_job_0016.task_000020".intermediate_column_16_0, "pg_merge_job_0016.task_000020".intermediate_column_16_1 HAVING ((any_value("pg_merge_job_0016.task_000020".intermediate_column_16_2))::double precision OPERATOR(pg_catalog.>) random())"
DEBUG: pruning merge fetch taskId 1
DETAIL: Creating dependency on merge taskId 5
DEBUG: pruning merge fetch taskId 2

View File

@ -207,13 +207,12 @@ EXPLAIN (COSTS FALSE)
GROUP BY 1
HAVING count(*) > 5
ORDER BY 2 DESC, 1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
QUERY PLAN
----------------------------------------------------------------------------------------
Sort
Sort Key: (COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint)) DESC, remote_scan.l_orderkey
Sort Key: remote_scan.count DESC, remote_scan.l_orderkey
-> HashAggregate
Group Key: remote_scan.l_orderkey
Filter: (COALESCE((pg_catalog.sum(remote_scan.worker_column_3))::bigint, '0'::bigint) > 5)
Group Key: remote_scan.count, remote_scan.l_orderkey
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
@ -224,7 +223,7 @@ EXPLAIN (COSTS FALSE)
Filter: (count(*) > 5)
-> Seq Scan on lineitem_hash_part_360041 lineitem_hash_part
Filter: (l_orderkey < 200)
(15 rows)
(14 rows)
-- check the plan if the hash aggreate is disabled
SET enable_hashagg TO off;
@ -235,15 +234,13 @@ EXPLAIN (COSTS FALSE)
GROUP BY 1
HAVING count(*) > 5
ORDER BY 2 DESC, 1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
QUERY PLAN
----------------------------------------------------------------------------------------------
Sort
Sort Key: (COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint)) DESC, remote_scan.l_orderkey
-> GroupAggregate
Group Key: remote_scan.l_orderkey
Filter: (COALESCE((pg_catalog.sum(remote_scan.worker_column_3))::bigint, '0'::bigint) > 5)
Sort Key: remote_scan.count DESC, remote_scan.l_orderkey
-> Unique
-> Sort
Sort Key: remote_scan.l_orderkey
Sort Key: remote_scan.count DESC, remote_scan.l_orderkey
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
@ -254,7 +251,7 @@ EXPLAIN (COSTS FALSE)
Filter: (count(*) > 5)
-> Seq Scan on lineitem_hash_part_360041 lineitem_hash_part
Filter: (l_orderkey < 200)
(17 rows)
(15 rows)
SET enable_hashagg TO on;
-- distinct on aggregate of group by columns, we try to check whether we handle
@ -782,8 +779,7 @@ EXPLAIN (COSTS FALSE)
Limit
-> Sort
Sort Key: remote_scan.l_orderkey, remote_scan.l_partkey
-> GroupAggregate
Group Key: remote_scan.l_orderkey, remote_scan.l_partkey, remote_scan.l_suppkey, remote_scan.l_linenumber, remote_scan.l_quantity, remote_scan.l_extendedprice, remote_scan.l_discount, remote_scan.l_tax, remote_scan.l_returnflag, remote_scan.l_linestatus, remote_scan.l_shipdate, remote_scan.l_commitdate, remote_scan.l_receiptdate, remote_scan.l_shipinstruct, remote_scan.l_shipmode, remote_scan.l_comment
-> Unique
-> Sort
Sort Key: remote_scan.l_orderkey, remote_scan.l_partkey, remote_scan.l_suppkey, remote_scan.l_linenumber, remote_scan.l_quantity, remote_scan.l_extendedprice, remote_scan.l_discount, remote_scan.l_tax, remote_scan.l_returnflag, remote_scan.l_linestatus, remote_scan.l_shipdate, remote_scan.l_commitdate, remote_scan.l_receiptdate, remote_scan.l_shipinstruct, remote_scan.l_shipmode, remote_scan.l_comment
-> Custom Scan (Citus Adaptive)
@ -798,7 +794,7 @@ EXPLAIN (COSTS FALSE)
-> Sort
Sort Key: l_orderkey, l_partkey, l_suppkey, l_linenumber, l_quantity, l_extendedprice, l_discount, l_tax, l_returnflag, l_linestatus, l_shipdate, l_commitdate, l_receiptdate, l_shipinstruct, l_shipmode, l_comment
-> Seq Scan on lineitem_hash_part_360041 lineitem_hash_part
(19 rows)
(18 rows)
SET enable_hashagg TO on;
-- distinct on count distinct
@ -842,14 +838,39 @@ EXPLAIN (COSTS FALSE)
FROM lineitem_hash_part
GROUP BY l_orderkey
ORDER BY 1,2;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------------------------------
QUERY PLAN
----------------------------------------------------------------------------------------------
Sort
Sort Key: (COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint)), (COALESCE((pg_catalog.sum(remote_scan.count_1))::bigint, '0'::bigint))
Sort Key: remote_scan.count, remote_scan.count_1
-> HashAggregate
Group Key: COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint), COALESCE((pg_catalog.sum(remote_scan.count_1))::bigint, '0'::bigint)
-> HashAggregate
Group Key: remote_scan.worker_column_3
Group Key: remote_scan.count, remote_scan.count_1
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> GroupAggregate
Group Key: l_orderkey
-> Sort
Sort Key: l_orderkey
-> Seq Scan on lineitem_hash_part_360041 lineitem_hash_part
(14 rows)
-- check the plan if the hash aggreate is disabled. We expect to see sort + unique
-- plans for the outer distinct.
SET enable_hashagg TO off;
EXPLAIN (COSTS FALSE)
SELECT DISTINCT count(DISTINCT l_partkey), count(DISTINCT l_shipmode)
FROM lineitem_hash_part
GROUP BY l_orderkey
ORDER BY 1,2;
QUERY PLAN
----------------------------------------------------------------------------------------------------
Sort
Sort Key: remote_scan.count, remote_scan.count_1
-> Unique
-> Sort
Sort Key: remote_scan.count, remote_scan.count_1
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
@ -860,38 +881,7 @@ EXPLAIN (COSTS FALSE)
-> Sort
Sort Key: l_orderkey
-> Seq Scan on lineitem_hash_part_360041 lineitem_hash_part
(16 rows)
-- check the plan if the hash aggreate is disabled. We expect to see sort + unique
-- plans for the outer distinct.
SET enable_hashagg TO off;
EXPLAIN (COSTS FALSE)
SELECT DISTINCT count(DISTINCT l_partkey), count(DISTINCT l_shipmode)
FROM lineitem_hash_part
GROUP BY l_orderkey
ORDER BY 1,2;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Sort
Sort Key: (COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint)), (COALESCE((pg_catalog.sum(remote_scan.count_1))::bigint, '0'::bigint))
-> Unique
-> Sort
Sort Key: (COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint)), (COALESCE((pg_catalog.sum(remote_scan.count_1))::bigint, '0'::bigint))
-> GroupAggregate
Group Key: remote_scan.worker_column_3
-> Sort
Sort Key: remote_scan.worker_column_3
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> GroupAggregate
Group Key: l_orderkey
-> Sort
Sort Key: l_orderkey
-> Seq Scan on lineitem_hash_part_360041 lineitem_hash_part
(19 rows)
(15 rows)
SET enable_hashagg TO on;
-- distinct on aggregation with filter and expression
@ -968,15 +958,41 @@ EXPLAIN (COSTS FALSE)
GROUP BY l_orderkey
ORDER BY 2
LIMIT 15;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------
QUERY PLAN
----------------------------------------------------------------------------------------------------
Limit
-> Sort
Sort Key: (array_length(array_cat_agg(remote_scan.array_length), 1))
Sort Key: remote_scan.array_length
-> HashAggregate
Group Key: array_length(array_cat_agg(remote_scan.array_length), 1), array_cat_agg(remote_scan.array_agg)
-> HashAggregate
Group Key: remote_scan.worker_column_3
Group Key: remote_scan.array_length, remote_scan.array_agg
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> GroupAggregate
Group Key: l_orderkey
-> Sort
Sort Key: l_orderkey
-> Seq Scan on lineitem_hash_part_360041 lineitem_hash_part
(15 rows)
-- check the plan if the hash aggreate is disabled.
SET enable_hashagg TO off;
EXPLAIN (COSTS FALSE)
SELECT DISTINCT array_agg(l_linenumber), array_length(array_agg(l_linenumber), 1)
FROM lineitem_hash_part
GROUP BY l_orderkey
ORDER BY 2
LIMIT 15;
QUERY PLAN
----------------------------------------------------------------------------------------------------------
Limit
-> Sort
Sort Key: remote_scan.array_length
-> Unique
-> Sort
Sort Key: remote_scan.array_length, remote_scan.array_agg
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
@ -987,39 +1003,7 @@ EXPLAIN (COSTS FALSE)
-> Sort
Sort Key: l_orderkey
-> Seq Scan on lineitem_hash_part_360041 lineitem_hash_part
(17 rows)
-- check the plan if the hash aggreate is disabled.
SET enable_hashagg TO off;
EXPLAIN (COSTS FALSE)
SELECT DISTINCT array_agg(l_linenumber), array_length(array_agg(l_linenumber), 1)
FROM lineitem_hash_part
GROUP BY l_orderkey
ORDER BY 2
LIMIT 15;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------
Limit
-> Sort
Sort Key: (array_length(array_cat_agg(remote_scan.array_length), 1))
-> Unique
-> Sort
Sort Key: (array_length(array_cat_agg(remote_scan.array_length), 1)), (array_cat_agg(remote_scan.array_agg))
-> GroupAggregate
Group Key: remote_scan.worker_column_3
-> Sort
Sort Key: remote_scan.worker_column_3
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> GroupAggregate
Group Key: l_orderkey
-> Sort
Sort Key: l_orderkey
-> Seq Scan on lineitem_hash_part_360041 lineitem_hash_part
(20 rows)
(16 rows)
SET enable_hashagg TO on;
-- distinct on non-partition column with aggregate

View File

@ -807,8 +807,8 @@ EXPLAIN (COSTS FALSE) SELECT *
(23 rows)
EXPLAIN (COSTS FALSE) SELECT et.* FROM recent_10_users JOIN events_table et USING(user_id) ORDER BY et.time DESC LIMIT 10;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
Limit
-> Sort
Sort Key: remote_scan."time" DESC
@ -816,20 +816,18 @@ EXPLAIN (COSTS FALSE) SELECT et.* FROM recent_10_users JOIN events_table et USIN
-> Distributed Subplan 90_1
-> Limit
-> Sort
Sort Key: (max(remote_scan.lastseen)) DESC
-> HashAggregate
Group Key: remote_scan.user_id
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: (max("time")) DESC
-> HashAggregate
Group Key: user_id
-> Seq Scan on users_table_1400256 users_table
Sort Key: remote_scan.lastseen DESC
-> Custom Scan (Citus Adaptive)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
-> Sort
Sort Key: (max("time")) DESC
-> HashAggregate
Group Key: user_id
-> Seq Scan on users_table_1400256 users_table
Task Count: 4
Tasks Shown: One of 4
-> Task
@ -842,7 +840,7 @@ EXPLAIN (COSTS FALSE) SELECT et.* FROM recent_10_users JOIN events_table et USIN
-> Function Scan on read_intermediate_result intermediate_result
-> Hash
-> Seq Scan on events_table_1400260 et
(33 rows)
(31 rows)
SET citus.subquery_pushdown to ON;
EXPLAIN (COSTS FALSE) SELECT et.* FROM recent_10_users JOIN events_table et USING(user_id) ORDER BY et.time DESC LIMIT 10;
@ -910,7 +908,7 @@ DELETE FROM small_view;
ERROR: cannot modify views over distributed tables
INSERT INTO small_view VALUES(8, 5) ON CONFLICT(tenant_id) DO UPDATE SET tenant_id=99;
ERROR: cannot modify views over distributed tables
-- using views in modify statements' FROM / WHERE clauses is still valid
-- using views in modify statements' FROM / WHERE clauses is still valid
UPDATE large SET id=20 FROM small_view WHERE small_view.id=large.id;
SELECT * FROM large order by 1, 2;
id | tenant_id
@ -924,7 +922,7 @@ SELECT * FROM large order by 1, 2;
-- we should still have identical rows for next test statements, then insert new rows to both tables
INSERT INTO large VALUES(14, 14);
INSERT INTO small VALUES(14, 14);
-- using views in subqueries within modify statements is still valid
-- using views in subqueries within modify statements is still valid
UPDATE large SET id=23 FROM (SELECT *, id*2 from small_view ORDER BY 1,2 LIMIT 5) as small_view WHERE small_view.id=large.id;
SELECT * FROM large order by 1, 2;
id | tenant_id
@ -938,8 +936,8 @@ SELECT * FROM large order by 1, 2;
-- we should still have identical rows for next test statements, then insert a new row to large table
INSERT INTO large VALUES(14, 14);
-- using views in modify statements' FROM / WHERE clauses is still valid
UPDATE large SET id=27 FROM small_view WHERE small_view.tenant_id=large.tenant_id;
-- using views in modify statements' FROM / WHERE clauses is still valid
UPDATE large SET id=27 FROM small_view WHERE small_view.tenant_id=large.tenant_id;
SELECT * FROM large ORDER BY 1, 2;
id | tenant_id
----+-----------
@ -1150,7 +1148,7 @@ SELECT create_distributed_table('small','tenant_id');
CREATE VIEW small_view AS SELECT id, tenant_id FROM (SELECT *, id*2 FROM small WHERE id < 100 ORDER BY 1,2 LIMIT 5) as foo;
\copy small FROM STDIN DELIMITER ','
\copy large FROM STDIN DELIMITER ','
-- using views in modify statements' FROM / WHERE clauses is still valid
-- using views in modify statements' FROM / WHERE clauses is still valid
UPDATE large SET id=20 FROM small_view WHERE small_view.id=large.id;
SELECT * FROM large order by 1, 2;
id | tenant_id
@ -1164,7 +1162,7 @@ SELECT * FROM large order by 1, 2;
-- we should still have identical rows for next test statements, then insert new rows to both tables
INSERT INTO large VALUES(14, 14);
INSERT INTO small VALUES(14, 14);
-- using views in subqueries within modify statements is still valid
-- using views in subqueries within modify statements is still valid
UPDATE large SET id=23 FROM (SELECT *, id*2 from small_view ORDER BY 1,2 LIMIT 5) as small_view WHERE small_view.id=large.id;
SELECT * FROM large order by 1, 2;
id | tenant_id
@ -1178,8 +1176,8 @@ SELECT * FROM large order by 1, 2;
-- we should still have identical rows for next test statements, then insert a new row to large table
INSERT INTO large VALUES(14, 14);
-- using views in modify statements' FROM / WHERE clauses is still valid
UPDATE large SET id=27 FROM small_view WHERE small_view.tenant_id=large.tenant_id;
-- using views in modify statements' FROM / WHERE clauses is still valid
UPDATE large SET id=27 FROM small_view WHERE small_view.tenant_id=large.tenant_id;
SELECT * FROM large ORDER BY 1, 2;
id | tenant_id
----+-----------

View File

@ -54,11 +54,11 @@ SELECT
FROM
(
SELECT
array_agg(users_table.user_id ORDER BY users_table.time)
array_agg(users_table.value_2 ORDER BY users_table.time)
FROM
users_table, (SELECT user_id FROM events_table) as evs
WHERE users_table.user_id = evs.user_id
GROUP BY users_table.user_id
GROUP BY users_table.value_2
LIMIT 5
) as foo;
ERROR: array_agg with order by is unsupported

View File

@ -33,7 +33,7 @@ SELECT create_distributed_table('lineitem_hash', 'l_orderkey', 'hash');
ANALYZE lineitem_hash;
SET citus.task_executor_type to "task-tracker";
-- count(distinct) is supported on top level query if there
-- is a grouping on the partition key
-- is a grouping on the partition key
SELECT
l_orderkey, count(DISTINCT l_partkey)
FROM lineitem_hash
@ -61,33 +61,30 @@ SELECT
GROUP BY l_orderkey
ORDER BY 2 DESC, 1 DESC
LIMIT 10;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Limit
Output: remote_scan.l_orderkey, (COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint))
Output: remote_scan.l_orderkey, remote_scan.count
-> Sort
Output: remote_scan.l_orderkey, (COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint))
Sort Key: (COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint)) DESC, remote_scan.l_orderkey DESC
-> HashAggregate
Output: remote_scan.l_orderkey, COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint)
Group Key: remote_scan.l_orderkey
-> Custom Scan (Citus Task-Tracker)
Output: remote_scan.l_orderkey, remote_scan.count
Task Count: 8
Tasks Shown: One of 8
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
Output: remote_scan.l_orderkey, remote_scan.count
Sort Key: remote_scan.count DESC, remote_scan.l_orderkey DESC
-> Custom Scan (Citus Task-Tracker)
Output: remote_scan.l_orderkey, remote_scan.count
Task Count: 8
Tasks Shown: One of 8
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
Output: l_orderkey, (count(DISTINCT l_partkey))
-> Sort
Output: l_orderkey, (count(DISTINCT l_partkey))
-> Sort
Output: l_orderkey, (count(DISTINCT l_partkey))
Sort Key: (count(DISTINCT lineitem_hash.l_partkey)) DESC, lineitem_hash.l_orderkey DESC
-> GroupAggregate
Output: l_orderkey, count(DISTINCT l_partkey)
Group Key: lineitem_hash.l_orderkey
-> Index Scan Backward using lineitem_hash_pkey_240000 on public.lineitem_hash_240000 lineitem_hash
Output: l_orderkey, l_partkey, l_suppkey, l_linenumber, l_quantity, l_extendedprice, l_discount, l_tax, l_returnflag, l_linestatus, l_shipdate, l_commitdate, l_receiptdate, l_shipinstruct, l_shipmode, l_comment
(24 rows)
Sort Key: (count(DISTINCT lineitem_hash.l_partkey)) DESC, lineitem_hash.l_orderkey DESC
-> GroupAggregate
Output: l_orderkey, count(DISTINCT l_partkey)
Group Key: lineitem_hash.l_orderkey
-> Index Scan Backward using lineitem_hash_pkey_240000 on public.lineitem_hash_240000 lineitem_hash
Output: l_orderkey, l_partkey, l_suppkey, l_linenumber, l_quantity, l_extendedprice, l_discount, l_tax, l_returnflag, l_linestatus, l_shipdate, l_commitdate, l_receiptdate, l_shipinstruct, l_shipmode, l_comment
(21 rows)
-- it is also supported if there is no grouping or grouping is on non-partition field
SELECT
@ -206,33 +203,30 @@ SELECT
GROUP BY l_orderkey
ORDER BY 3 DESC, 2 DESC, 1
LIMIT 10;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Limit
Output: remote_scan.l_orderkey, (COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint)), (COALESCE((pg_catalog.sum(remote_scan.count_1))::bigint, '0'::bigint))
Output: remote_scan.l_orderkey, remote_scan.count, remote_scan.count_1
-> Sort
Output: remote_scan.l_orderkey, (COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint)), (COALESCE((pg_catalog.sum(remote_scan.count_1))::bigint, '0'::bigint))
Sort Key: (COALESCE((pg_catalog.sum(remote_scan.count_1))::bigint, '0'::bigint)) DESC, (COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint)) DESC, remote_scan.l_orderkey
-> HashAggregate
Output: remote_scan.l_orderkey, COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint), COALESCE((pg_catalog.sum(remote_scan.count_1))::bigint, '0'::bigint)
Group Key: remote_scan.l_orderkey
-> Custom Scan (Citus Task-Tracker)
Output: remote_scan.l_orderkey, remote_scan.count, remote_scan.count_1
Task Count: 8
Tasks Shown: One of 8
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
Output: remote_scan.l_orderkey, remote_scan.count, remote_scan.count_1
Sort Key: remote_scan.count_1 DESC, remote_scan.count DESC, remote_scan.l_orderkey
-> Custom Scan (Citus Task-Tracker)
Output: remote_scan.l_orderkey, remote_scan.count, remote_scan.count_1
Task Count: 8
Tasks Shown: One of 8
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
Output: l_orderkey, (count(DISTINCT l_partkey)), (count(DISTINCT l_shipmode))
-> Sort
Output: l_orderkey, (count(DISTINCT l_partkey)), (count(DISTINCT l_shipmode))
-> Sort
Output: l_orderkey, (count(DISTINCT l_partkey)), (count(DISTINCT l_shipmode))
Sort Key: (count(DISTINCT lineitem_hash.l_shipmode)) DESC, (count(DISTINCT lineitem_hash.l_partkey)) DESC, lineitem_hash.l_orderkey
-> GroupAggregate
Output: l_orderkey, count(DISTINCT l_partkey), count(DISTINCT l_shipmode)
Group Key: lineitem_hash.l_orderkey
-> Index Scan using lineitem_hash_pkey_240000 on public.lineitem_hash_240000 lineitem_hash
Output: l_orderkey, l_partkey, l_suppkey, l_linenumber, l_quantity, l_extendedprice, l_discount, l_tax, l_returnflag, l_linestatus, l_shipdate, l_commitdate, l_receiptdate, l_shipinstruct, l_shipmode, l_comment
(24 rows)
Sort Key: (count(DISTINCT lineitem_hash.l_shipmode)) DESC, (count(DISTINCT lineitem_hash.l_partkey)) DESC, lineitem_hash.l_orderkey
-> GroupAggregate
Output: l_orderkey, count(DISTINCT l_partkey), count(DISTINCT l_shipmode)
Group Key: lineitem_hash.l_orderkey
-> Index Scan using lineitem_hash_pkey_240000 on public.lineitem_hash_240000 lineitem_hash
Output: l_orderkey, l_partkey, l_suppkey, l_linenumber, l_quantity, l_extendedprice, l_discount, l_tax, l_returnflag, l_linestatus, l_shipdate, l_commitdate, l_receiptdate, l_shipinstruct, l_shipmode, l_comment
(21 rows)
-- partition/non-partition column count distinct no grouping
SELECT
@ -490,33 +484,30 @@ SELECT
GROUP BY l_orderkey
ORDER BY 2 DESC, 3 DESC, 1
LIMIT 10;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Limit
Output: remote_scan.l_orderkey, (COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint)), (COALESCE((pg_catalog.sum(remote_scan.count_1))::bigint, '0'::bigint))
Output: remote_scan.l_orderkey, remote_scan.count, remote_scan.count_1
-> Sort
Output: remote_scan.l_orderkey, (COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint)), (COALESCE((pg_catalog.sum(remote_scan.count_1))::bigint, '0'::bigint))
Sort Key: (COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint)) DESC, (COALESCE((pg_catalog.sum(remote_scan.count_1))::bigint, '0'::bigint)) DESC, remote_scan.l_orderkey
-> HashAggregate
Output: remote_scan.l_orderkey, COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint), COALESCE((pg_catalog.sum(remote_scan.count_1))::bigint, '0'::bigint)
Group Key: remote_scan.l_orderkey
-> Custom Scan (Citus Task-Tracker)
Output: remote_scan.l_orderkey, remote_scan.count, remote_scan.count_1
Task Count: 8
Tasks Shown: One of 8
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
Output: remote_scan.l_orderkey, remote_scan.count, remote_scan.count_1
Sort Key: remote_scan.count DESC, remote_scan.count_1 DESC, remote_scan.l_orderkey
-> Custom Scan (Citus Task-Tracker)
Output: remote_scan.l_orderkey, remote_scan.count, remote_scan.count_1
Task Count: 8
Tasks Shown: One of 8
-> Task
Node: host=localhost port=57637 dbname=regression
-> Limit
Output: l_orderkey, (count(DISTINCT l_suppkey) FILTER (WHERE (l_shipmode = 'AIR'::bpchar))), (count(DISTINCT l_suppkey))
-> Sort
Output: l_orderkey, (count(DISTINCT l_suppkey) FILTER (WHERE (l_shipmode = 'AIR'::bpchar))), (count(DISTINCT l_suppkey))
-> Sort
Output: l_orderkey, (count(DISTINCT l_suppkey) FILTER (WHERE (l_shipmode = 'AIR'::bpchar))), (count(DISTINCT l_suppkey))
Sort Key: (count(DISTINCT lineitem_hash.l_suppkey) FILTER (WHERE (lineitem_hash.l_shipmode = 'AIR'::bpchar))) DESC, (count(DISTINCT lineitem_hash.l_suppkey)) DESC, lineitem_hash.l_orderkey
-> GroupAggregate
Output: l_orderkey, count(DISTINCT l_suppkey) FILTER (WHERE (l_shipmode = 'AIR'::bpchar)), count(DISTINCT l_suppkey)
Group Key: lineitem_hash.l_orderkey
-> Index Scan using lineitem_hash_pkey_240000 on public.lineitem_hash_240000 lineitem_hash
Output: l_orderkey, l_partkey, l_suppkey, l_linenumber, l_quantity, l_extendedprice, l_discount, l_tax, l_returnflag, l_linestatus, l_shipdate, l_commitdate, l_receiptdate, l_shipinstruct, l_shipmode, l_comment
(24 rows)
Sort Key: (count(DISTINCT lineitem_hash.l_suppkey) FILTER (WHERE (lineitem_hash.l_shipmode = 'AIR'::bpchar))) DESC, (count(DISTINCT lineitem_hash.l_suppkey)) DESC, lineitem_hash.l_orderkey
-> GroupAggregate
Output: l_orderkey, count(DISTINCT l_suppkey) FILTER (WHERE (l_shipmode = 'AIR'::bpchar)), count(DISTINCT l_suppkey)
Group Key: lineitem_hash.l_orderkey
-> Index Scan using lineitem_hash_pkey_240000 on public.lineitem_hash_240000 lineitem_hash
Output: l_orderkey, l_partkey, l_suppkey, l_linenumber, l_quantity, l_extendedprice, l_discount, l_tax, l_returnflag, l_linestatus, l_shipdate, l_commitdate, l_receiptdate, l_shipinstruct, l_shipmode, l_comment
(21 rows)
-- group by on non-partition column
SELECT
@ -922,7 +913,7 @@ SELECT *
-- distinct on non-var (type cast/field select) columns are also
-- supported if grouped on distribution column
-- random is added to prevent flattening by postgresql
SELECT
SELECT
l_orderkey, count(a::int), count(distinct a::int)
FROM (
SELECT l_orderkey, l_orderkey * 1.5 a, random() b

View File

@ -97,6 +97,14 @@ SELECT create_distributed_function('last(anyelement)');
SELECT key, first(val ORDER BY id), last(val ORDER BY id)
FROM aggdata GROUP BY key ORDER BY key;
-- However, GROUP BY on distribution column gets pushed down
SELECT id, first(val ORDER BY key), last(val ORDER BY key)
FROM aggdata GROUP BY id ORDER BY id;
-- Test that expressions don't slip past. This fails
SELECT id%5, first(val ORDER BY key), last(val ORDER BY key)
FROM aggdata GROUP BY id%5 ORDER BY id%5;
-- test aggregate with stype which is not a by-value datum
-- also test our handling of the aggregate not existing on workers
create function sumstring_sfunc(state text, x text)

View File

@ -53,11 +53,11 @@ SELECT
FROM
(
SELECT
array_agg(users_table.user_id ORDER BY users_table.time)
array_agg(users_table.value_2 ORDER BY users_table.time)
FROM
users_table, (SELECT user_id FROM events_table) as evs
WHERE users_table.user_id = evs.user_id
GROUP BY users_table.user_id
GROUP BY users_table.value_2
LIMIT 5
) as foo;