With this commit, we only pull&push the necessary columns. In this
context, necessary columns means that the columns that are required
for the query to be executed when the relation is wrapped into a
subquery.
We could potentially optimize things further:
(a) If a column only appears as a qual filter, we don't need to
pull it to the coordinator
(b) We currently pull unnecessary columns as NULL. However, we
could potentially adjust remaining of the query tree and do
not add columns of the relation to the target entry.
PostgreSQL already keeps track of the restrictions that are on the relation.
With this commit, Citus uses that information and pushes down the filters
to the subquery that is recursively planned for the table that is in
considiration.
Description: Support round-robin `task_assignment_policy` for queries to reference tables.
This PR allows users to query multiple placements of shards in a round robin fashion. When `citus.task_assignment_policy` is set to `'round-robin'` the planner will use a round robin scheduling feature when multiple shard placements are available.
The primary use-case is spreading the load of reference table queries to all the nodes in the cluster instead of hammering only the first placement of the reference table. Since reference tables share the same path for selecting the shards with single shard queries that have multiple placements (`citus.shard_replication_factor > 1`) this setting also allows users to spread the query load on these shards.
For modifying queries we do not apply a round-robin strategy. This would be negated by an extra reordering step in the executor for such queries where a `first-replica` strategy is enforced.
The file handling the utility functions (DDL) for citus organically grew over time and became unreasonably large. This refactor takes that file and refactored the functionality into separate files per command. Initially modeled after the directory and file layout that can be found in postgres.
Although the size of the change is quite big there are barely any code changes. Only one two functions have been added for readability purposes:
- PostProcessIndexStmt which is extracted from PostProcessUtility
- PostProcessAlterTableStmt which is extracted from multi_ProcessUtility
A README.md has been added to `src/backend/distributed/commands` describing the contents of the module and every file in the module.
We need more documentation around the overloading of the COPY command, for now the boilerplate has been added for people with better knowledge to fill out.
Each PostgreSQL backend starts with a predefined amount of stack and this stack
size can be increased if there is a need. However, stack size increase during
high memory load may cause unexpected crashes, because if there is not enough
memory for stack size increase, there is nothing to do for process apart from
crashing. An interesting thing is; the process would get OOM error instead of
crash, if the process had an explicit memory request (with palloc) for example.
However, in the case of stack size increase, there is no system call to get OOM
error, so the process simply crashes.
With this change, we are increasing the stack size explicitly by requesting extra
memory from the stack, so that, even if there is not memory, we can at least get
an OOM instead of a crash.
After Fast ALTER TABLE ADD COLUMN with a non-NULL default in PG11, physical heaps might not contain all attributes after a ALTER TABLE ADD COLUMN happens. heap_getattr() returns NULL when the physical tuple doesn't contain an attribute. So we should use heap_deform_tuple() in these cases, which fills in the missing attributes.
Our catalog tables evolve over time, and an upgrade might involve some ALTER TABLE ADD COLUMN commands.
Note that we don't need to worry about postgres catalog tables and we can use heap_getattr() for them, because they only change between major versions.
This also fixes#2453.
PG 11 has change the way that PARAM_EXTERN is processed.
This commit ensures that Citus follows the same pattern.
For details see the related Postgres commit:
6719b238e8
Assign the distributed transaction id before trying to acquire the
executor advisory locks. This is useful to show this backend in citus
lock graphs (e.g., dump_global_wait_edges() and citus_lock_waits).
Both of these are a bit of a shot in the dark. In one case, we noticed
a stack trace where a caller received a null pointer and attempted to
dereference the memory context field (at 0x010). In the other, I saw
that any error thrown from within AdjustParseTree could keep the stack
from being cleaned up (presumably if we push we should always pop).
Both stack traces were collected during times of high memory pressure
and locally reproducing the problem locally or otherwise has been very
tricky (i.e. it hasn't been reproduced reliably at all).
* Keep track of cached entries in case of interruption.
Previously we set DistTableCacheEntry->sortedShardIntervalArray
and DistTableCacheEntry->shardIntervalArrayLength after we entered
all related shard entries into DistShardCacheHash. The drawback was
that if populating DistShardCacheHash was interrupted,
ResetDistTableCacheEntry() didn't see the shard hash entries created,
so was unable to clean them up.
This patch fixes that by setting sortedShardIntervalArray earlier,
and incrementing shardIntervalArrayLength as we enter shards into
the cache.
Drop schema command fails in mx mode if there
is a partitioned table with active partitions.
This is due to fact that sql drop trigger receives
all the dropped objects including partitions. When
we call drop table on parent partition, it also drops
the partitions on the mx node. This causes the drop
table command on partitions to fail on mx node because
they are already dropped when the partition parent was
dropped.
With this work we did not require the table to exist on
worker_drop_distributed_table.
PG now allows foreign keys on partitioned tables.
Each foreign key constraint on partitioned table
is propagated down to partitions.
We used to create all constraints on shards when we are creating
a new shard, or when just simply moving a shard from one worker
to another. We also used the same logic when creating a copy of
coordinator table in mx node.
With this change we create the constraint on worker node only if
it is not an inherited constraint.
We used to set the execution mode in the truncate trigger. However,
when multiple tables are truncated with a single command, we could
set the execution mode very late. Instead, now set the execution mode
on the utility hook.
With this commit, we all partitioned distributed tables with
replication factor > 1. However, we also have many restrictions.
In summary, we disallow all kinds of modifications (including DDLs)
on the partition tables. Instead, the user is allowed to run the
modifications over the parent table.
The necessity for such a restriction have two aspects:
- We need to acquire shard resource locks appropriately
- We need to handle marking partitions INVALID in case
of any failures. Note that, in theory, the parent table
should also become INVALID, which is too aggressive.
We acquire distributed lock on all mx nodes for truncated
tables before actually doing truncate operation.
This is needed for distributed serialization of the truncate
command without causing a deadlock.
Reason for the failure is that PG11 introduced a new relation kind
RELKIND_PARTITIONED_INDEX to be used for partitioned indices.
We expanded our check to cover that case.
This commit uses *_walker instead of *_mutator for performance reasons.
Given that we're only updating a functionId in the tree, the approach
seems fine.
In case a failure happens when a transaction is failed on PREPARE,
we used to hit an assertion for ensuring there is no pending
activity on the connection. However, that's not true after the
changes in #2031. Thus, we've replaced the assertion with a more
generic function call to consume any pending activity, if exists.