This creates consistent test output for isolation tests that involve
`CREATE INDEX CONCURRENTLY`. `CREATE INDEX CONCURRENTLY` is sometimes
temporarily detected as blocking, even though it will complete without any other
queries needing to be run. This change makes sure that we wait until that happens
without running any other queries in the meantime. This way we always get consistent
output. The way we do that is addressed by using an empty step in the same
session as the `CREATE INDEX CONCURRENLTY` command. Doing so forces
the isolation tester to wait until the command is finished and not continue with
steps from other sessions. This is [the recommended approach by Postgres][1].
There's two separate cases which are addressed in slightly different ways:
1. If `CREATE INDEX CONCURRENTLY` is actually blocked on another session: Add an
empty step right after the commit of blocking session.
e.g. `"s2-ddl-create-index-concurrently" "s1-commit" "s2-empty"`
2. If it's not actually blocked on another session: Add [an asterisk marker][2] to make
it look like it's blocked (because sometimes this happens randomly) and right
after that we add an empty step to trigger waiting.
e.g. `"s2-ddl-create-index-concurrently"(*) "s2-empty" "s1-commit"`
In passing this also enables isolation tests that were disabled due to a
bug that has already been fixed for a while.
Fixes#5993
Related to #5910 and #2966
[1]: 5f0adec253/src/test/isolation/README (L197-L204)
[2]: 5f0adec253/src/test/isolation/README (L174-L179)
Co-authored-by: Hanefi Onaldi <Hanefi.Onaldi@microsoft.com>
(cherry picked from commit fd07cc9baf)
This is a continuation of a refactor (with commit sha
2b7cf0c097) that aimed to use Citus helper
UDFs by default in iso tests.
PostgreSQL isolation test infrastructure uses some UDFs to detect
whether concurrent sessions block each other. Citus implements
alternatives to that UDF so that we are able to detect and report
distributed transactions that get blocked on the worker nodes as well.
We needed to explicitly replace PG helper functions with Citus
implementations in each isolation file. Now we replace them by default.
(cherry picked from commit ae58ca5783)
Use Citus helper UDFs by default in iso tests
PostgreSQL isolation test infrastructure uses some UDFs to detect
whether concurrent sessions block each other. Citus implements
alternatives to that UDF so that we are able to detect and report
distributed transactions that get blocked on the worker nodes as well.
We needed to explicitly replace PG helper functions with Citus
implementations in each isolation file. Now we replace them by default.
(cherry picked from commit 2b7cf0c097)
Since #6300/e29db74 changed the C symbol that our bigint overrides of
pg_cancel_backend and pg_terminate_backend called. We needed to do
something to continue to make these functions work after downgrading.
Recreating the old definition with a downgrade scripts is not really
possible, since people are expected to run the downgrade steps when
using the new .so file, which does not contain the old symbols.
So, the easiest way to solve it was also defining the new symbols in our
old Citus versions. Luckily our overrides haven't existed for long, so
these symbol definitions only needed to be backported to 11.0.
* Alter_distributed_table colocateWith:none bug fix for partitioned tables.
* Regression tests added for alter_distributed_table colocateWith:none for partitioned tables
* Update query comparision to be more accurate
(cherry picked from commit 69d2fcf5c0)
DESCRIPTION: Fix reference table lock contention
Dropping and creating reference tables unintentionally blocked on each other due to the use of an ExclusiveLock for both the Drop and conditionally copying existing reference tables to (new) nodes.
The patch does the following:
- Lower lock lever for dropping (reference) tables to `ShareLock` so they don't self conflict
- Treat reference tables and distributed tables equally and acquire the colocation lock when dropping any table that is in a colocation group
- Perform the precondition check for copying reference tables twice, first time with a lower lock that doesn't conflict with anything. Could have been a NoLock, however, in preparation for dropping a colocation group, it is an `AccessShareLock`
During normal operation the first check will always pass and we don't have to escalate that lock. Making it that we won't be blocked on adding and remove reference tables. Only after a node addition the first `create_reference_table` will still need to acquire an `ExclusiveLock` on the colocation group to perform the copy.
There are 3 different ways that a sequence can be interacting
with tables. (1) and (2) are already supported. This commit adds
support for (3).
(1) column DEFAULT nextval('seq'):
The dependency is roughly like below,
and ExpandCitusSupportedTypes() is responsible
for finding the depending sequences.
schema <--- table <--- column <---- default value
^ |
|------------------ sequence <--------|
(2) serial columns: Bigserial/small serial etc:
The dependency is roughly like below,
and ExpandCitusSupportedTypes() is responsible
for finding the depending sequences.
schema <--- table <--- column <---- default value
^ |
| |
sequence <--------|
(3) Sequence OWNED BY table.column: Added support for
this type of resolution in this commit.
The dependency is almost like the following, and
ExpandCitusSupportedTypes() is NOT responsible for finding
the dependency.
schema <--- table <--- column
^
|
sequence
(cherry picked from commit 9ec8e627c1)
For some reason search_path is not always set correctly on the worker
when calling a distributed function, this shows up when calling
`insert_document` in our distributed_triggers test. The underlying
reason is currently unknown and warrants deeper investigation.
Currently this test is one of the main causes for random CI failures. So
this change sets the search_path of each function explicitly, to reduce
these failures. So other devs can be more efficient, while I continue
investigating the root cause of this issue.
Also changes explicit `SET citus.enable_unsafe_triggers = false` to
`RESET citus.enable_unsafe_triggers` in passing.
(cherry picked from commit 6d8c5931d6)
Reported bug #5803 shows that we are currently not sending the IN clause to our planner for columnar. This PR fixes it by checking for ScalarArrayOpExpr in ExtractPushdownClause so that we do not skip it. Also added a test case for this new addition.
It turns out that create_distributed_table
and citus_move/copy_shard_placement does not
work well concurrently.
To fix that, we need to acquire a lock, which
sounds like a good use of colocation lock.
However, the current usage of colocation lock is
limited to higher level UDFs like rebalance_table_shards
etc. Those usage of lock is still useful, but
we cannot acquire the same lock on citus_move_shard_placement
etc. because the coordinator connects to itself to acquire
the lock. Hence, the high level UDF blocks itself.
To fix that, we use one more colocation lock, with the placements
are the main objects to consider.
(cherry picked from commit 12fa3aaf6b)
Before this commit, we required multiple copies of the
same stringInfo if we needed to append/prepend data to
the stringInfo. Now, we optionally get prefix/postfix.
For large string operations, this can save up to %10
memory.
(cherry picked from commit 26fdcb68f0)
Previously, CreateFixPartitionShardIndexNames() created all
the relevant query strings for all the shards, and executed
the large query string. And, in terms of the memory consumption,
this huge command (and its ExprContext generated while running
the command) is the main bottleneck/
With this change, we are reducing the total amount of memory
usage to almost 1/shard_count.
On my local machine, a distributed partitioned table with 120 partitions,
each 32 shards, the total memory consumption reduced from ~3GB
to ~0.1GB. And, the total execution time increased from ~28 seconds
to ~30 seconds. This seems like a good trade-off.
(cherry picked from commit b8008999dc)
DESCRIPTION:
Fix Bug #4949 where Blocking shard moves fails if there is a foreign key between partitioned distributed tables (from child to parent). This is because we try to create constraints before attaching child partitions to parent. This causes constraint failure as parent table will be empty. Fix is to reverse the order i.e. attach partitions before we create constraints.
TESTING:
Added a new test 'shard_move_constraints_blocking' inspired for existing 'shard_move_constraints' where we trigger shard move with 'block_writes' instead of 'force_logical' to add coverage for this scenario.
This PR makes all of the features open source that were previously only
available in Citus Enterprise.
Features that this adds:
1. Non blocking shard moves/shard rebalancer
(`citus.logical_replication_timeout`)
2. Propagation of CREATE/DROP/ALTER ROLE statements
3. Propagation of GRANT statements
4. Propagation of CLUSTER statements
5. Propagation of ALTER DATABASE ... OWNER TO ...
6. Optimization for COPY when loading JSON to avoid double parsing of
the JSON object (`citus.skip_jsonb_validation_in_copy`)
7. Support for row level security
8. Support for `pg_dist_authinfo`, which allows storing different
authentication options for different users, e.g. you can store
passwords or certificates here.
9. Support for `pg_dist_poolinfo`, which allows using connection poolers
in between coordinator and workers
10. Tracking distributed query execution times using
citus_stat_statements (`citus.stat_statements_max`,
`citus.stat_statements_purge_interval`,
`citus.stat_statements_track`). This is disabled by default.
11. Blocking tenant_isolation
12. Support for `sslkey` and `sslcert` in `citus.node_conninfo`
We already have tests relying on citus_finalize_upgrade_to_citus11().
Now, adjust those to rely on citus_finish_citus_upgrade() and
always call citus_finish_citus_upgrade().
We remove `<waiting ...>` and `<... completed>` outputs for some CREATE
INDEX CONCURRENTLY commands since they can cause flakiness in some scenarios.
Postgres calls WaitForOlderSnapshots() and this can cause CREATE INDEX
CONCURRENTLY commands for shards to get blocked by each other for brief
periods of time. The extra waits can pop-up, or they can get completed
at different lines in the output files. To remedy that, we rename those
indexes to be captured by the new normalization rule.
(cherry picked from commit 52541c5802)
The error comes due to the datum jsonb in pg_dist_metadata_node.metadata being 0 in some scenarios. This is likely due to not copying the data when receiving a datum from a tuple and pg deciding to deallocate that memory when the table that the tuple was from is closed.
Also fix another place in the code that might have been susceptible to this issue.
I tested on both multi-vg and multi-1-vg and the test were successful.
(cherry picked from commit beef392f5a)
The general rule is:
If the data is used within the bounds of table_open ... table_close > no need to copy
If the data is required for use even after the table is closed > copy
(cherry picked from commit dc9da7630f)
altering the distributed table.
To be able to alter view's owner without enforcing sequential mode.
Alter view process functions have been udpated to use metadata
connection.
Do not obtain AccessShareLock before acquiring the distributed locks.
Acquiring an AccessShareLock ensures that the relations which we are trying to get a distributed lock on will not be dropped in the time between when the LOCK command is issued and the LOCK commands are send to the worker. However, this also leads to distributed deadlocks in such scenarios:
```sql
-- for dist lock acquiring order coor, w1, w2
-- on w2
LOCK t1 IN ACCESS EXLUSIVE MODE;
-- acquire AccessShareLock locally on t1 to ensure it is not dropped while we get ready to distribute the lock
-- concurrently on w1
LOCK t1 IN ACCESS EXLUSIVE MODE;
-- acquire AccessShareLock locally on t1 to ensure it is not dropped while we get ready to distribute the lock
-- acquire dist lock on coor, w1, gets blocked on local AccessShareLock on w2
-- on w2 continuation of the execution above
-- starts to acquire dist locks and gets blocked on the coor by the lock acquired by w1
-- distributed deadlock
```
We opt for avoiding such deadlocks with the cost of the possibility of running into errors when the relations on which we are trying to acquire locks on get dropped.
(cherry picked from commit 27ddb4fc8e)
It is often useful to be able to sync the metadata in parallel
across nodes.
Also citus_finalize_upgrade_to_citus11() uses
start_metadata_sync_to_primary_nodes() after this commit.
Note that this commit does not parallelize all pieces of node
activation or metadata syncing. Instead, it tries to parallelize
potenially large parts of metadata, which is the objects and
distributed tables (in general Citus tables).
In the future, it would be nice to sync the reference tables
in parallel across nodes.
Create ~720 distributed tables / ~23450 shards
```SQL
-- declaratively partitioned table
CREATE TABLE github_events_looooooooooooooong_name (
event_id bigint,
event_type text,
event_public boolean,
repo_id bigint,
payload jsonb,
repo jsonb,
actor jsonb,
org jsonb,
created_at timestamp
) PARTITION BY RANGE (created_at);
SELECT create_time_partitions(
table_name := 'github_events_looooooooooooooong_name',
partition_interval := '1 day',
end_at := now() + '24 months'
);
CREATE INDEX ON github_events_looooooooooooooong_name USING btree (event_id, event_type, event_public, repo_id);
SELECT create_distributed_table('github_events_looooooooooooooong_name', 'repo_id');
SET client_min_messages TO ERROR;
```
across 1 node: almost same as expected
```SQL
SELECT start_metadata_sync_to_primary_nodes();
Time: 15664.418 ms (00:15.664)
select start_metadata_sync_to_node(nodename,nodeport) from pg_dist_node;
Time: 14284.069 ms (00:14.284)
```
across 7 nodes: ~3.5x improvement
```SQL
SELECT start_metadata_sync_to_primary_nodes();
┌──────────────────────────────────────┐
│ start_metadata_sync_to_primary_nodes │
├──────────────────────────────────────┤
│ t │
└──────────────────────────────────────┘
(1 row)
Time: 25711.192 ms (00:25.711)
-- across 7 nodes
select start_metadata_sync_to_node(nodename,nodeport) from pg_dist_node;
Time: 82126.075 ms (01:22.126)
```
(cherry picked from commit dd02e1755f)
There are two problems in this area. First, when there are expressions
on the index name, we should call `transformIndexExpression()` before
generating the index name. That is what Postgres does.
Second, because of 40c24bfef9
PG 13 and PG 14 generates different names for indexes with function calls even for local PG tables.
Assume we have:
```SQL
create table t(id int);
select create_distributed_table('t', 'id');
create index ON t (my_very_boring_function(id));
```
On PG 13, the name of the index is `t_expr_idx`
```SQL
\d t
Table "public.t"
┌────────┬─────────┬───────────┬──────────┬─────────┐
│ Column │ Type │ Collation │ Nullable │ Default │
├────────┼─────────┼───────────┼──────────┼─────────┤
│ id │ integer │ │ │ │
└────────┴─────────┴───────────┴──────────┴─────────┘
Indexes:
"t_expr_idx" btree (my_very_boring_function(id::bigint))
```
On PG 14, the name of the index is `t_my_very_boring_function_idx`
```SQL
\d t
Table "public.t"
┌────────┬─────────┬───────────┬──────────┬─────────┐
│ Column │ Type │ Collation │ Nullable │ Default │
├────────┼─────────┼───────────┼──────────┼─────────┤
│ id │ integer │ │ │ │
└────────┴─────────┴───────────┴──────────┴─────────┘
Indexes:
"t_my_very_boring_function_idx" btree (my_very_boring_function(id::bigint))
```
The second issue is not very critical. The important part is that
we adjust regression tests to drop all the indexes, which ensures
the index names are sane on any version.
(cherry picked from commit 2cc4053fc1)
We have a mechanism which ensures that newly distributed
objects are recorded during `alter extension citus update`.
However, the logic was lacking "view"s. With this commit, we make
sure that existing views are also marked as distributed during
upgrade.
(cherry picked from commit ee45e7bfbf)
Breaking down #5899 into smaller PR-s
This particular PR changes the way TRUNCATE acquires distributed locks on the relations it is truncating to use the LOCK command instead of lock_relation_if_exists. This has the benefit of using pg's recursive locking logic it implements for the LOCK command instead of us having to resolve relation dependencies and lock them explicitly. While this does not directly affect truncate, it will allow us to generalize this locking logic to then log different relations where the pg recursive locking will become useful (e.g. locking views).
This implementation is a bit more complex that it needs to be due to pg not supporting locking foreign tables. We can however, still lock foreign tables with lock_relation_if_exists. So for a command:
TRUNCATE dist_table_1, dist_table_2, foreign_table_1, foreign_table_2, dist_table_3;
We generate and send the following command to all the workers in metadata:
```sql
SEL citus.enable_ddl_propagation TO FALSE;
LOCK dist_table_1, dist_table_2 IN ACCESS EXCLUSIVE MODE;
SELECT lock_relation_if_exists('foreign_table_1', 'ACCESS EXCLUSIVE');
SELECT lock_relation_if_exists('foreign_table_2', 'ACCESS EXCLUSIVE');
LOCK dist_table_3 IN ACCESS EXCLUSIVE MODE;
SEL citus.enable_ddl_propagation TO TRUE;
```
Note that we need to alternate between the lock command and lock_table_if_exists in order to preserve the TRUNCATE order of relations.
When pg supports locking foreign tables, we will be able to massive simplify this logic and send a single LOCK command.
(cherry picked from commit 4c6f62efc6)
Adds support for propagation ALTER VIEW commands to
- Change owner of view
- SET/RESET option
- Rename view and view's column name
- Change schema of the view
Since PG also supports targeting views with ALTER TABLE
commands, related code also added to direct such ALTER TABLE
commands to ALTER VIEW commands while sending them to workers.
Adds support for propagating create/drop view commands and views to
worker node while scaling out the cluster. Since views are dropped while
converting the table type, metadata connection will be used while
propagating view commands to not switch to sequential mode.
With Citus MX enabled, when a reference table is modified, it does
some operations on the first worker node(e.g., acquire locks).
If node metadata is locked (via add node or create restore point),
the changes to the reference tables should be blocked.
First, it is not needed. Second, in the past we had issues regarding
this: https://github.com/citusdata/citus/pull/4344
When I create 10k tables, ~120K shards, this saves
40Mb of memory during ALTER EXTENSION citus UPDATE.
Before the change: MetadataCacheMemoryContext: 41943040 ~ 40MB
After the change: MetadataCacheMemoryContext: 8192
(cherry picked from commit f193e16a01)
In the past, for all modifications on the local execution,
we enabled 2PC (with 6a7ed7b309).
This also required us to enable coordinated transactions
via https://github.com/citusdata/citus/pull/4831 .
However, it does have a very substantial impact on the
distributed deadlock detection. The distributed deadlock
detection is designed to avoid single-statement transactions
because they cannot lead to any actual deadlocks.
The implementation is to skip backends without distributed
transactions are assigned. Now that we assign single
statement local executions in the lock graphs, we are
conflicting with the design of distributed deadlock
detection.
In general, we should fix it. However, one might
think that it is not a big deal, even if the processes
show up in the lock graphs, the deadlock detection
should not be causing any false positives. That is
false, unless https://github.com/citusdata/citus/issues/1803
is fixed. Now that local processes are considered as a single
distributed backend, the lock graphs might find:
local execution 1 [tx id: 1] -> any local process [tx id: 0]
any local process [tx id: 0] -> local execution 2 [tx id: 2]
And, decides that there is a distributed deadlock.
This commit is:
(a) right thing to do, as local execuion should not need any
distributed tx id
(b) Eliminates performance issues that might come up with
deadlock detection does a lot of unncessary checks
(c) After moving local execution after the remote execution
via https://github.com/citusdata/citus/pull/4301, the
vauge requirement for assigning distributed tx ids are
already gone.
(cherry picked from commit a2debe0f02)
The aim of hiding shards is to hide shards from client applications.
Certain bg workers (such as pg_cron or Citus maintanince daemon)
should be treated like client applications because users can run
queries from such bg workers. And, these bg workers should follow
the similar application_name checks as client backeends.
Certain other bg workers, such as logical replication or postgres'
parallel workers, should never hide shards. They are internal
operations.
Similarly the other backend types like the walsender or
checkpointer or autovacuum should never hide shards.
(cherry picked from commit 9043a1ed3f)