Shard id to index mapping stored in cache entry as there may now be multiple entries alive for a given relation
insert_select_executor: revert copying cache entry, which was a hack added to avoid memory safety issues
* reimplement ExecuteUtilityTaskListWithoutResults for local utility command execution
* introduce new functions for local execution of utility commands
* change ErrorIfTransactionAccessedPlacementsLocally logic for local utility command execution
* enable local execution for TRUNCATE command on distributed & reference tables
* update existing tests for local utility command execution
* enable local execution for DDL commands on distributed & reference tables
* enable local execution for DROP command on distributed & reference tables
* add normalization rules for cascaded commands
* add new tests for local utility command execution
DESCRIPTION: Replace the query planner for the coordinator part with the postgres planner
Closes#2761
Citus had a simple rule based planner for the query executed on the query coordinator. This planner grew over time with the addigion of SQL support till it was getting close to the functionality of the postgres planner. Except the code was brittle and its complexity rose which made it hard to add new SQL support.
Given its resemblance with the postgres planner it was a long outstanding wish to replace our hand crafted planner with the well supported postgres planner. This patch replaces our planner with a call to postgres' planner.
Due to the functionality of the postgres planner we needed to support both projections and filters/quals on the citus custom scan node. When a sort operation is planned above the custom scan it might require fields to be reordered in the custom scan before returning the tuple (projection). The postgres planner assumes every custom scan node implements projections. Because we controlled the plan that was created we prevented reordering in the custom scan and never had implemented it before.
A same optimisation applies to having clauses that could have been where clauses. Instead of applying the filter as a having on the aggregate it will push it down into the plan which could reach a custom scan node.
For both filters and projections we have implemented them when tuples are read from the tuple store. If no projections or filters are required it will directly return the tuple from the tuple store. Otherwise it will loop tuples from the tuple store through the filter and projection until a tuple is found and returned.
Besides filters being pushed down a side effect of having quals that could have been a where clause is that a call to read intermediate result could be called before the first tuple is fetched from the custom scan. This failed because the intermediate result would only be pulled to the coordinator on the first tuple fetch. To overcome this problem we do run the distributed subplans now before we run the postgres executor. This ensures the intermediate result is present on the coordinator in time. We do account for total time instrumentation by removing the instrumentation before handing control to the psotgres executor and update the timings our self.
For future SQL support it is enough to create a valid query structure for the part of the query to be executed on the query coordinating node. As a utility we do serialise and print the query at debug level4 for engineers to inspect what kind of query is being planned on the query coordinator.
DESCRIPTION: Fix counter that keeps track of internal depth in executor
While reviewing #3302 I ran into the `ExecutorLevel` variable which used a variable to keep the original value to restore on successful exit. I haven't explored the full space and if it is possible to get into an inconsistent state. However using `PG_TRY`/`PG_CATCH` seems generally more correct.
Given very bad things will happen if this level is not reset, I kept the failsafe of setting the variiable back to 0 on the `XactCallback` but I did add an assert to treat it as a developer bug.
Test ALTER ROLE doesn't deadlock when coordinator added, or propagate from mx workers
Consolidate wait_until_metadata_sync & verify_metadata to multi_test_helpers
In plain words, each distributed plan pulls the necessary intermediate
results to the worker nodes that the plan hits. This is primarily useful
in three ways.
(i) If the distributed plan that uses intermediate
result(s) is a router query, then the intermediate results are only
broadcasted to a single node.
(ii) If a distributed plan consists of only intermediate results, which
is not uncommon, the intermediate results are broadcasted to a single
node only.
(iii) If a distributed query hits a sub-set of the shards in multiple
workers, the intermediate results will be broadcasted to the relevant
node(s).
The final item (iii) becomes crucial for append/range distributed
tables where typically the distributed queries hit a small subset of
shards/workers.
To do this, for each query that Citus creates a distributed plan, we keep
track of the subPlans used in the queryTree, and save it in the distributed
plan. Just before Citus executes each subPlan, Citus first keeps track of
every worker node that the distributed plan hits, and marks every subPlan
should be broadcasted to these nodes. Later, for each subPlan which is a
distributed plan, Citus does this operation recursively since these
distributed plans may access to different subPlans, and those have to be
recorded as well.
* Remove unused executor codes
All of the codes of real-time executor. Some functions
in router executor still remains there because there
are common functions. We'll move them to accurate places
in the follow-up commits.
* Move GUCs to transaction mngnt and remove unused struct
* Update test output
* Get rid of references of real-time executor from code
* Warn if real-time executor is picked
* Remove lots of unused connection codes
* Removed unused code for connection restrictions
Real-time and router executors cannot handle re-using of the existing
connections within a transaction block.
Adaptive executor and COPY can re-use the connections. So, there is no
reason to keep the code around for applying the restrictions in the
placement connection logic.
/*
* local_executor.c
*
* The scope of the local execution is locally executing the queries on the
* shards. In other words, local execution does not deal with any local tables
* that are not shards on the node that the query is being executed. In that sense,
* the local executor is only triggered if the node has both the metadata and the
* shards (e.g., only Citus MX worker nodes).
*
* The goal of the local execution is to skip the unnecessary network round-trip
* happening on the node itself. Instead, identify the locally executable tasks and
* simply call PostgreSQL's planner and executor.
*
* The local executor is an extension of the adaptive executor. So, the executor uses
* adaptive executor's custom scan nodes.
*
* One thing to note that Citus MX is only supported with replication factor = 1, so
* keep that in mind while continuing the comments below.
*
* On the high level, there are 3 slightly different ways of utilizing local execution:
*
* (1) Execution of local single shard queries of a distributed table
*
* This is the simplest case. The executor kicks at the start of the adaptive
* executor, and since the query is only a single task the execution finishes
* without going to the network at all.
*
* Even if there is a transaction block (or recursively planned CTEs), as long
* as the queries hit the shards on the same, the local execution will kick in.
*
* (2) Execution of local single queries and remote multi-shard queries
*
* The rule is simple. If a transaction block starts with a local query execution,
* all the other queries in the same transaction block that touch any local shard
* have to use the local execution. Although this sounds restrictive, we prefer to
* implement in this way, otherwise we'd end-up with as complex scenarious as we
* have in the connection managements due to foreign keys.
*
* See the following example:
* BEGIN;
* -- assume that the query is executed locally
* SELECT count(*) FROM test WHERE key = 1;
*
* -- at this point, all the shards that reside on the
* -- node is executed locally one-by-one. After those finishes
* -- the remaining tasks are handled by adaptive executor
* SELECT count(*) FROM test;
*
*
* (3) Modifications of reference tables
*
* Modifications to reference tables have to be executed on all nodes. So, after the
* local execution, the adaptive executor keeps continuing the execution on the other
* nodes.
*
* Note that for read-only queries, after the local execution, there is no need to
* kick in adaptive executor.
*
* There are also few limitations/trade-offs that is worth mentioning. First, the
* local execution on multiple shards might be slow because the execution has to
* happen one task at a time (e.g., no parallelism). Second, if a transaction
* block/CTE starts with a multi-shard command, we do not use local query execution
* since local execution is sequential. Basically, we do not want to lose parallelism
* across local tasks by switching to local execution. Third, the local execution
* currently only supports queries. In other words, any utility commands like TRUNCATE,
* fails if the command is executed after a local execution inside a transaction block.
* Forth, the local execution cannot be mixed with the executors other than adaptive,
* namely task-tracker, real-time and router executors. Finally, related with the
* previous item, COPY command cannot be mixed with local execution in a transaction.
* The implication of that any part of INSERT..SELECT via coordinator cannot happen
* via the local execution.
*/
The file handling the utility functions (DDL) for citus organically grew over time and became unreasonably large. This refactor takes that file and refactored the functionality into separate files per command. Initially modeled after the directory and file layout that can be found in postgres.
Although the size of the change is quite big there are barely any code changes. Only one two functions have been added for readability purposes:
- PostProcessIndexStmt which is extracted from PostProcessUtility
- PostProcessAlterTableStmt which is extracted from multi_ProcessUtility
A README.md has been added to `src/backend/distributed/commands` describing the contents of the module and every file in the module.
We need more documentation around the overloading of the COPY command, for now the boilerplate has been added for people with better knowledge to fill out.
-[x] drop constraint
-[x] drop column
-[x] alter column type
-[x] truncate
are sequentialized if there is a foreign constraint from
a distributed table to a reference table on the affected relations
by the above commands.
We're relying on multi_shard_modify_mode GUC for real-time SELECTs.
The name of the GUC is unfortunate, but, adding one more GUC
(or renaming the GUC) would make the UX even worse. Given that this
mode is mostly important for transaction blocks that involve modification
/DDL queries along with real-time SELECTs, we can live with the confusion.
This is a pretty substantial refactoring of the existing modify path
within the router executor and planner. In particular, we now hunt for
all VALUES range table entries in INSERT statements and group the rows
contained therein by shard identifier. These rows are stashed away for
later in "ModifyRoute" elements. During deparse, the appropriate RTE
is extracted from the Query and its values list is replaced by these
rows before any SQL is generated.
In this way, we can create multiple Tasks, but only one per shard, to
piecemeal execute a multi-row INSERT. The execution of jobs containing
such tasks now exclusively go through the "multi-router executor" which
was previously used for e.g. INSERT INTO ... SELECT.
By piggybacking onto that executor, we participate in ongoing trans-
actions, get rollback-ability, etc. In short order, the only remaining
use of the "single modify" router executor will be for bare single-
row INSERT statements (i.e. those not in a transaction).
This change appropriately handles deferred pruning as well as master-
evaluated functions.
Adds support for PostgreSQL 10 by copying in the requisite ruleutils
and updating all API usages to conform with changes in PostgreSQL 10.
Most changes are fairly minor but they are numerous. One particular
obstacle was the change in \d behavior in PostgreSQL 10's psql; I had
to add SQL implementations (views, mostly) to mimic the pre-10 output.
Add a second implementation of INSERT INTO distributed_table SELECT ... that is used if
the query cannot be pushed down. The basic idea is to execute the SELECT query separately
and pass the results into the distributed table using a CopyDestReceiver, which is also
used for COPY and create_distributed_table. When planning the SELECT, we go through
planner hooks again, which means the SELECT can also be a distributed query.
EXPLAIN is supported, but EXPLAIN ANALYZE is not because preventing double execution was
a lot more complicated in this case.
Custom Scan is a node in the planned statement which helps external providers
to abstract data scan not just for foreign data wrappers but also for regular
relations so you can benefit your version of caching or hardware optimizations.
This sounds like only an abstraction on the data scan layer, but we can use it
as an abstraction for our distributed queries. The only thing we need to do is
to find distributable parts of the query, plan for them and replace them with
a Citus Custom Scan. Then, whenever PostgreSQL hits this custom scan node in
its Vulcano style execution, it will call our callback functions which run
distributed plan and provides tuples to the upper node as it scans a regular
relation. This means fewer code changes, fewer bugs and more supported features
for us!
First, in the distributed query planner phase, we create a Custom Scan which
wraps the distributed plan. For real-time and task-tracker executors, we add
this custom plan under the master query plan. For router executor, we directly
pass the custom plan because there is not any master query. Then, we simply let
the PostgreSQL executor run this plan. When it hits the custom scan node, we
call the related executor parts for distributed plan, fill the tuple store in
the custom scan and return results to PostgreSQL executor in Vulcano style,
a tuple per XXX_ExecScan() call.
* Modify planner to utilize Custom Scan node.
* Create different scan methods for different executors.
* Use native PostgreSQL Explain for master part of queries.