Adds support for PostgreSQL 9.6 by copying in the requisite ruleutils
file and refactoring the out/readfuncs code to flexibly support the
old-style copy/pasted out/readfuncs (prior to 9.6) or use extensible
node APIs (in 9.6 and higher).
Most version-specific code within this change is only needed to set new
fields in the AggRef nodes we build for aggregations. Version-specific
test output files were added in certain cases, though in most they were
not necessary. Each such file begins by e.g. printing the major version
in order to clarify its purpose.
The comment atop citus_nodes.h details how to add support for new nodes
for when that becomes necessary.
This commit completes having support in Citus by adding having support for
real-time and task-tracker executors. Multiple tests are added to regression
tests to cover new supported queries with having support.
This change adds the required infrastructure about metadata snapshot from MX
codebase into Citus, mainly metadata_sync.c file and master_metadata_snapshot UDF.
So far placements were assigned an Oid, but that was just used to track
insertion order. It also did so incompletely, as it was not preserved
across changes of the shard state. The behaviour around oid wraparound
was also not entirely as intended.
The newly introduced, explicitly assigned, IDs are preserved across
shard-state changes.
The prime goal of this change is not to improve ordering of task
assignment policies, but to make it easier to reference shards. The
newly introduced UpdateShardPlacementState() makes use of that, and so
will the in-progress connection and transaction management changes.
Related to #786
This change adds the `pg_dist_node` table that contains the information
about the workers in the cluster, replacing the previously used
`pg_worker_list.conf` file (or the one specified with `citus.worker_list_file`).
Upon update, `pg_worker_list.conf` file is read and `pg_dist_node` table is
populated with the file's content. After that, `pg_worker_list.conf` file
is renamed to `pg_worker_list.conf.obsolete`
For adding and removing nodes, the change also includes two new UDFs:
`master_add_node` and `master_remove_node`, which require superuser
permissions.
'citus.worker_list_file' guc is kept for update purposes but not used after the
update is finished.
related to a table that might be distributed, allowing any name
that is within regular PostgreSQL length limits to be extended
with a shard ID for use in shards on workers. Handles multi-byte
character boundaries in identifiers when making prefixes for
shard-extended names. Includes tests.
Uses hash_any from PostgreSQL's access/hashfunc.c.
Removes AppendShardIdToStringInfo() as it's used only once
and arguably is best replaced there with a call to AppendShardIdToName().
Adds UDF shard_name(object_name, shard_id) to expose the shard-extended
name logic to other PL/PGSQL, UDFs and scripts.
Bumps version to 6.0-2 to allow for UDF to be created in migration script.
Fixescitusdata/citus#781 and citusdata/citus#179.
is now a `::regtype` using the qualified name of the column type,
not the column type OID which may differ between master/worker nodes.
Test coverage of a hash reparitition using a UDT as the join column.
Note that the UDFs `worker_hash_partition_table` and `worker_range_partition_table`
are unchanged, and rightly expect an OID for the column type; but the
planner code building the commands now allows for `::regtype` casting
to do its magic.
Fixescitusdata/citus#111.
This commit enables to create different worker and master temporary folders.
This change is important for citus-mx on task-tracker execution. In simple words,
on citus-mx, the worker could actually be reponsible for the master tasks as well.
Prior to this change, both master and worker logic on task-tracker executor was
accessing and using the same files for different purposes which was dangerous on
certain cases (i.e., when task_tracker_delay is low).
I had changed these callbacks to use the same method I chose for the
router executor (for consistency), but as that method is flawed, we now
want to ensure we directly register them from PG_init as well.
Not entirely sure why we went with the shared memory hook approach, but
it causes problems (multiple registration) during crashes. Changing to
a simple direct registration call from PG_init.
An interaction between ReraiseRemoteError and DML transaction support
causes segfaults:
* ReraiseRemoteError calls PurgeConnection, freeing a connection...
* That connection is still in the xactParticipantHash
At transaction end, the memory in the freed connection might happen to
pass the "is this connection OK?" check, causing us to try to send an
ABORT over that connection. By removing it from the transaction hash
before calling ReraiseRemoteError, we avoid this possibility.
UNIQUE or PRIMARY KEY constraints. Also, properly propagate valid
EXCLUDE constraints to worker shard tables.
If an EXCLUDE constraint includes the distribution column,
the operator must be an equality operator.
Tests in regression suite for exclusion constraints that include
the partition column, omit it, and include it but with non-equality
operator. Regression tests also verify that valid exclusion constraints
are propagated to the shard tables. And the tests work in different
timezones now.
Fixescitusdata/citus#748 and citusdata/citus#778.
Three changes here to get to true multi-statement, multi-relation DDL
transactions (same functionality pre-5.2, with benefits of atomicity):
1. Changed the multi-shard utility hook to always run (consistency
with router executor hook, removes ad-hoc "installed" boolean)
2. Change the global connection list in multi_shard_transaction to
instead be a hash; update related functions to operate on global
hash instead of local hash/global list
3. Remove check within DDL code to prevent subsequent DDL commands;
place unset/reset guard around call to ConnectToNode to permit
connecting to additional nodes after DDL transaction has begun
In addition, code has been added to raise an error if a ROLLBACK TO
SAVEPOINT is attempted (similar to router executor), and comprehensive
tests execute all multi-DDL scenarios (full success, user ROLLBACK, any
actual errors (say, duplicate index), partial failure (duplicate index
on one node but not others), partial COMMIT (one node fails), and 2PC
partial PREPARE (one node fails)). Interleavings with other commands
(DML, \copy) are similarly all covered.
In subquery pushdown, we allow outer joins if the join condition is on the
partition columns. WhereClauseList() used to return all join conditions including
outer joins. However, this has been changed with a commit related to outer join
support on regular queries. With this commit, we refactored ExtractFromExpressionWalker()
to return two lists of qualifiers. The first list is for inner join and filter
clauses and the second list is for outer join clauses. Therefore, we can also
use outer join clauses to check subquery pushdown prerequisites.
Before this change, we do not check whether given table which already contains any data
in master_create_distributed_table command. If that table contains any data, making it
it distributed, makes that data hidden to user. With this change, we now gave error to
user if the table contains data.
Recent changes to DDL and transaction logic resulted in a "regression"
from the viewpoint of users. Previously, DDL commands were allowed in
multi-command transaction blocks, though they were not processed in any
actual transactional manner. We improved the atomicity of our DDL code,
but added a restriction that DDL commands themselves must not occur in
any BEGIN/END transaction block.
To give users back the original functionality (and improved atomicity)
we now keep track of whether a multi-command transaction has modified
data (DML) or schema (DDL). Interleaving the two modification types in
a single transaction is disallowed.
This first step simply permits a single DDL command in such a block,
admittedly an incomplete solution, but one which will permit us to add
full multi-DDL command support in a subsequent commit.
Text datums can't be directly accessed via the struct equivalence trick
used to access catalogs. That's because, as an optimization, they're
sometimes aligned to 1 byte ("text"'s alignment), and sometimes to 4
bytes. That depends on it being a short
varlena (cf. VARATT_NOT_PAD_BYTE) or not.
In the case at hand here, partkey became longer than 127 characters -
the boundary for short varlenas (cf. VARATT_CAN_MAKE_SHORT()). Thus it
became 4 byte/int aligned. Which lead to the direct struct access
accessing the wrong data.
The fix is simply to never access partkey that way - to enforce that,
hide partkey ehind the usual ifdef.
Fixes: #674
This adds support for SERIAL/BIGSERIAL column types. Because we now can
evaluate functions on the master (during execution), adding this is a
matter of ensuring the table creation step works properly.
To accomplish this, I've added some logic to detect sequences owned by
a table (i.e. those related to its columns). Simply creating a sequence
and using it in a default value is insufficient; users who do so must
ensure the sequence is owned by the column using it.
Fortunately, this is exactly what SERIAL and BIGSERIAL do, which is the
use case we're targeting with this feature. While testing this, I found
that worker_apply_shard_ddl_command actually adds shard identifiers to
sequence names, though I found no places that use or test this path. I
removed that code so that sequence names are not mutated and will match
those used by a SERIAL default value expression.
Our use of the new-to-9.5 CREATE SEQUENCE IF NOT EXISTS syntax means we
are dropping support for 9.4 (which is being done regardless, but makes
this change simpler). I've removed 9.4 from the Travis build matrix.
Some edge cases are possible in ALTER SEQUENCE, COPY FROM (on workers),
and CREATE SEQUENCE OWNED BY. I've added errors for each so that users
understand when and why certain operations are prohibited.
We remove schema name parameter from worker_fetch_foreign_file and
worker_fetch_regular_table functions. We now send schema name
concatanated with table name.
Fixes#676
We added old versions (i.e. without schema name) of worker_apply_shard_ddl_command,
worker_fetch_foreign_file and worker_fetch_regular_table back. During function call
of one of these functions, we set schema name as public schema and call the newer
version of the functions.
We can now support richer set of queries in router planner.
This allow us to support CTEs, joins, window function, subqueries
if they are known to be executed at a single worker with a single
task (all tables are filtered down to a single shard and a single
worker contains all table shards referenced in the query).
Fixes : #501
Allows the use of modification commands (INSERT/UPDATE/DELETE) within
transaction blocks (delimited by BEGIN and ROLLBACK/COMMIT), so long as
all modifications hit a subset of nodes involved in the first such com-
mand in the transaction. This does not circumvent the requirement that
each individual modification command must still target a single shard.
For instance, after sending BEGIN, a user might INSERT some rows to a
shard replicated on two nodes. Subsequent modifications can hit other
shards, so long as they are on one or both of these nodes.
SAVEPOINTs are supported, though if the user actually attempts to send
a ROLLBACK command that specifies a SAVEPOINT they will receive an
ERROR at the end of the topmost transaction.
Placements are only marked inactive if at least one replica succeeds
in a transaction where others fail. Non-atomic behavior is possible if
the shard targeted by the initial modification within a transaction has
a higher replication factor than another shard within the same block
and a node with the latter shard has a failure during the COMMIT phase.
Other methods of denoting transaction blocks (multi-statement commands
sent all at once and functions written in e.g. PL/pgSQL or other such
languages) are not presently supported; their treatment remains the
same as before.
Fixes#555
Before this change, we were resolving HLL function and type Oid without qualified name.
Now we find the schema name where HLL objects are stored and generate qualified names for
each objects.
Similar fix is also applied for cstore_table_size function call.
Fixes#565Fixes#626
To add schema support to citus, we need to schema-prefix all table names, object names etc.
in the queries sent to worker nodes. However; query deparsing is not available for most of
DDL commands, therefore it is not easy to generate worker query in the master node.
As a solution we are sending schema names along with shard id and query to run to worker
nodes with worker_apply_shard_ddl_command.
To not break \STAGE command we pass public schema as paramater while calling
worker_apply_shard_ddl_command from there. This will not cause problem if user uses \STAGE
in different schema because passes schema name is used only if there is no schema name is
given in the query.
Fixes#513
This change modifies the DDL Propagation logic so that DDL queries
are propagated via 2-Phase Commit protocol. This way, failures during
the execution of distributed DDL commands will not leave the table in
an intermediate state and the pending prepared transactions can be
commited manually.
DDL commands are not allowed inside other transaction blocks or functions.
DDL commands are performed with 2PC regardless of the value of
`citus.multi_shard_commit_protocol` parameter.
The workflow of the successful case is this:
1. Open individual connections to all shard placements and send `BEGIN`
2. Send `SELECT worker_apply_shard_ddl_command(<shardId>, <DDL Command>)`
to all connections, one by one, in a serial manner.
3. Send `PREPARE TRANSCATION <transaction_id>` to all connections.
4. Sedn `COMMIT` to all connections.
Failure cases:
- If a worker problem occurs before sending of all DDL commands is finished, then
all changes are rolled back.
- If a worker problem occurs after all DDL commands are sent but not after
`PREPARE TRANSACTION` commands are finished, then all changes are rolled back.
However, if a worker node is failed, then the prepared transactions in that worker
should be rolled back manually.
- If a worker problem occurs during `COMMIT PREPARED` statements are being sent,
then the prepared transactions on the failed workers should be commited manually.
- If master fails before the first 'PREPARE TRANSACTION' is sent, then nothing is
changed on workers.
- If master fails during `PREPARE TRANSACTION` commands are being sent, then the
prepared transactions on workers should be rolled back manually.
- If master fails during `COMMIT PREPARED` or `ROLLBACK PREPARED` commands are being
sent, then the remaining prepared transactions on the workers should be handled manually.
This change also helps with #480, since failed DDL changes no longer mark
failed placements as inactive.
- Enables using VOLATILE functions (like nextval()) in INSERT queries
- Enables using STABLE functions (like now()) targetLists and joinTrees
UPDATE and INSERT can now contain non-immutable functions. INSERT can contain any kind of
expression, while UPDATE can contain any STABLE function, so long as a Var is not passed
into the STABLE function, even indirectly. UPDATE TagetEntry's can now also include Vars.
There's an exception, CASE/COALESCE statements may not contain mutable functions.
Functions calls in master_modify_multiple_shards are also evaluated.
The upcoming RETURNING support would otherwise require too much
duplication. This contains most of the pieces required for RETURNING
support, except removing the planner checks and adjusting regression
test output.
Fixes#78
With this change, it is possible to append a table in any schema to shard. The function
master_append_table_to_shard now supports schema names.
When executing queries with citus.task_executor = 'real-time', query
execution could, so far, spend a significant amount of time
sleeping. That's because we were
a) sleeping after several phases of query execution, even if we're not
waiting for network IO
b) sleeping for a fixed amount of time when waiting for network IO;
often a lot longer than actually required.
Just reducing the amount of time slept isn't a real solution, because
that just increases CPU usage.
Instead have the real-time executor's ManageTaskExecution return whether
a task is currently being processed, waiting for reads or writes, or
failed. When all tasks are waiting for IO use poll() to wait for IO
readyness.
That requires to slightly redefine how connection timeouts are handled:
before we counted the number of times ManageTaskExecution() was called,
and compared that with the timeout divided by the task check
interval. That, if processing of tasks took a while, could significantly
increase the time till a timeout occurred. Because it was based on the
ManageTaskExecution() being called on a constant interval, this approach
isn't feasible anymore. Instead measure the actual time since
connection establishment was started. That could in theory, if task
processing takes a very long time, lead to few passes over
PQconnectPoll().
The problem of sleeping too much also exists for the 'task-tracker'
executor, but is generally less problematic there, as processing the
individual tasks usually will take longer. That said, for e.g. the
regression tests it'd be helpful to use a similar approach.
Single table repartition subqueries now support count(distinct column)
and count(distinct (case when ...)) expressions. Repartition query
extracts column used in aggregate expression and adds them to target
list and group by list, master query stays the same (count (distinct ...))
but attribute numbers inside the aggregate expression is modified to
reflect changes in repartition query.
Now, master_create_empty_shard() will create shards according to the
value of citus.shard_placement_policy which also makes default round-robin
instead of random.
Fixes#10
This change creates a new UDF: master_modify_multiple_shards
Parameters:
modify_query: A simple DELETE or UPDATE query as a string.
The UDF is similar to the existing master_apply_delete_command UDF.
Basically, given the modify query, it prunes the shard list, re-constructs
the query for each shard and sends the query to the placements.
Depending on the value of citus.multi_shard_commit_protocol, the commit
can be done in one-phase or two-phase manner.
Limitations:
* It cannot be called inside a transaction block
* It only be called with simple operator expressions (like Single Shard Modify)
Sample Usage:
```
SELECT master_modify_multiple_shards(
'DELETE FROM customer_delete_protocol WHERE c_custkey > 500 AND c_custkey < 500');
```
Now, we can copy to an append-partitioned distributed relation from
any worker node by providing master options such as;
COPY relation_name FROM file_path WITH (delimiter '|', master_host 'localhost', master_port 5432);
where master_port is optional and default is 5432.
This change renames the distributed transaction manager parameter from
citus.copy_transaction_manager to citus.multi_shard_commit_protocol.
Distributed transaction manager has been used only by the COPY on hash
partitioned tables but it can be used by upcoming features so, we needed
to rename so that its name do not contain a reference to COPY.
The change also includes renames like transaction_manager_options to
commit_protocol_options and TRANSACTION_MANAGER_1PC to COMMIT_PROTOCOL_1PC.
With this change, declaration of MultiShardCommitProtocol (was
CopyTransactionManager) is moved from multi_copy.c to multi_transaction.c.
That's important because ownership of relations implies special
privileges. Without this change, a distributed table can be accessible
by a table's owner, but a shard created by another user might not.
Some small parts of citus currently require superuser privileges; which
is obviously not desirable for production scenarios. Run these small
parts under superuser privileges (we use the extension owner) to avoid
that.
This does not yet coordinate grants between master and workers. Thus it
allows to create shards, load data, and run queries as a non-superuser,
but it is not easily possible to allow differentiated accesses to
several users.
Previously several commands, amongst them commands like
master_create_distributed_table(), were allowed for everyone. That's not
good: Even though citus currently requires superuser permissions, we
shouldn't allow non-superusers to perform actions as sensitive as making
a table distributed.
There's no checks on the worker_* functions, as these usually just punt
the action to underlying postgres functionality, which then perform the
necessary checks.
So far we've always used libpq defaults when connecting to workers; bar
special environment variables being set that'll always be the user that
started the server. That's not desirable because it prevents using
users with fewer privileges.
Thus change the various APIs creating connections to workers to always
use usernames. That means:
1) MultiClientConnect() needs to, optionally, accept a username
2) GetOrEstablishConnection(), including the underlying cache, need to
use the current user as part of the connection cache key. That way
connections for separate users are distinct, and we always use one
with the correct authorization.
3) The task tracker needs to keep track of the username associated with
a task, so it can use it when establishing connections outside the
originating session.
This commit adds a fast shard pruning path for INSERTs on
hash-partitioned tables. The rationale behind this change is
that if there exists a sorted shard interval array, a single
index lookup on the array allows us to find the corresponding
shard interval. As mentioned above, we need a sorted
(wrt shardminvalue) shard interval array. Thus, this commit
updates shardIntervalArray to sortedShardIntervalArray in the
metadata cache. Then uses the low-level API that is defined in
multi_copy to handle the fast shard pruning.
The performance impact of this change is more apparent as more
shards exist for a distributed table. Previous implementation
was relying on linear search through the shard intervals. However,
this commit relies on constant lookup time on shard interval
array. Thus, the shard pruning becomes less dependent on the
shard count.
- non-router plannable queries can be executed
by router executor if they satisfy the criteria
- router executor is removed from configuration,
now task executor can not be set to router
- removed some tests that error out for router executor
This macro is intended to receive a bare integer literal (no suffix).
It adds a suffix as necessary, depending upon available features. On
e.g. 32-bit platforms, the existing code failed to compile because a
suffix was added to the existing suffix. This fixes that problem.
I came across several places we weren't as flexible or resilient as we
should have been in our build logic. They include:
* Not using `DESTDIR` in the install-header destination
* Allowing callers to specify `VPATH` or `srcdir` (which breaks)
* Using absolute path for SCRIPTS (9.5 prepends srcdir)
* Including libpq-int in a confusing way (extracted this function)
* Having server includes come first during csql build (client must)
In particular, I hit all of these attempting to build with pg_buildext
in Debian. It passes in an explicit VPATH, as well as srcdir (breaking
all recursive make invocations), and also uses DESTDIR during install.
In addition, a PGDG-enabled Debian box will have the latest libpq-dev
headers (e.g. 9.5) even when building against an older server version
(e.g. 9.4). This leads to problems when including e.g. `c.h`, which
is ambiguous. While compiling more client-side code (csql), we need to
ensure the newer libpq headers are included _first_, so I fixed that.
- Flexed the check which prevented append operation cstore tables
since its storage type is not SHARD_STORAGE_TABLE.
- Used process utility function to perform copy operation in
worker_append_table_to shard() instead of directly calling
postgresql DoCopy().
- Removed the additional check in master_create_empty_shard() function.
This check was redundant and erroneous since it was called after
CheckDistributedTable() call.
- Modified WorkerTableSize() function to retrieve cstore table shard
size correctly.
After this change, shards and associated metadata are automatically
dropped when running DROP TABLE on a distributed table, which fixes#230.
It also adds schema support for master_apply_delete_command, which
fixes#73.
Dropping the shards happens in the master_drop_all_shards UDF, which is
called from the SQL_DROP trigger. Inside the trigger, the table is no
longer visible and calling master_apply_delete_command directly wouldn't
work and oid <-> name mappings are not available. The
master_drop_all_shards function therefore takes the relation id, schema
name, and table name as parameters, which can be obtained from
pg_event_trigger_dropped_objects() in the SQL_DROP trigger. If the user
calls master_drop_all_shards while the table still exists, the schema
name and table name are ignored.
Author: Marco Slot
Reviewed-By: Andres Freund
All citusdb references in
- extension, binary names
- file headers
- all configuration name prefixes
- error/warning messages
- some functions names
- regression tests
are changed to be citus.
The postgres_fdw extension has an extern function with an identical
signature, which can cause problems when both extensions are loaded.
A simple rename can fix this for now (this is the only function with)
such a conflict.