DESCRIPTION: Implement TEXT SEARCH CONFIGURATION propagation
The change adds support to Citus for propagating TEXT SEARCH CONFIGURATION objects. TSConfig objects cannot always be created in one create statement, and instead require a create statement followed by many alter statements to get turned into the object they should represent.
To support this we add functionality to the worker to create or replace objects based on a list of statements. When the lists of the local object and the remote object correspond 1:1 we skip the creation of the object and simply mark it distributed. This is especially important for TSConfig objects as initdb pre-populates databases with a dozen configurations (for many different languages).
When the user creates a new TSConfig based on the copy of an existing configuration there is no direct link to the object copied from. Since there is no link we can't simply rely on propagating the dependencies to the worker and send a qualified
Without this change the rebalancer progress monitor gets the shard sizes
from the `shardlength` column in `pg_dist_placement`. This column needs to
be updated manually by calling `citus_update_table_statistics`.
However, `citus_update_table_statistics` could lead to distributed
deadlocks while database traffic is on-going (see #4752).
To work around this we don't use `shardlength` column anymore. Instead
for every rebalance we now fetch all shard sizes on the fly.
Two additional things this does are:
1. It adds tests for the rebalance progress function.
2. If a shard move cannot be done because a source or target node is
unreachable, then we error in stop the rebalance, instead of showing
a warning and continuing. When using the by_disk_size rebalance
strategy it's not safe to continue with other moves if a specific
move failed. It's possible that the failed move made space for the
next move, and because the failed move never happened this space now
does not exist.
3. Adds two new columns to the result of `get_rebalancer_progress` which
shows the size of the shard on the source and target node.
Fixes#4930
This PR simply adds the columns to pg_dist_object and
implements the necessary metadata changes to keep track of
distribution argument of the functions/procedures.
This PR aims to add the minimal set of changes required to start
distributing functions. You can use create_distributed_function(regproc)
UDF to distribute a function.
SELECT create_distributed_function('add(int,int)');
The function definition should include the param types to properly
identify the correct function that we wish to distribute
@thanodnl told me it was a bit of a problem that it's impossible to see
the history of a UDF in git. The only way to do so is by reading all the
sql migration files from new to old. Another problem is that it's also
hard to review the changed UDF during code review, because to find out
what changed you have to do the same. I thought of a IMHO better (but
not perfect) way to handle this.
We keep the definition of a UDF in sql/udfs/{name_of_udf}/latest.sql.
That file we change whenever we need to make a change to the the UDF. On
top of that you also make a snapshot of the file in
sql/udfs/{name_of_udf}/{migration-version}.sql (e.g. 9.0-1.sql) by
copying the contents. This way you can easily view what the actual
changes were by looking at the latest.sql file.
There's still the question on how to use these files then. Sadly
postgres doesn't allow inclusion of other sql files in the migration sql
file (it does in psql using \i). So instead I used the C preprocessor+
make to compile a sql/xxx.sql to a build/sql/xxx.sql file. This final
build/sql/xxx.sql file has every occurence of #include "somefile.sql" in
sql/xxx.sql replaced by the contents of somefile.sql.