With this commit we've started to propagate sequences and shell
tables within the object dependency resolution. So, ensuring any
dependencies for any object will consider shell tables and sequences
as well. Separate logics for both shell tables and sequences have
been removed.
Since both shell tables and sequences logic were implemented as a
part of the metadata handling before that logic, we were propagating
them while syncing table metadata. With this commit we've divided
metadata (which means anything except shards thereafter) syncing
logic into multiple parts and implemented it either as a part of
ActivateNode. You can check the functions called in ActivateNode
to check definition of different metadata.
Definitions of start_metadata_sync_to_node and citus_activate_node
have also been updated. citus_activate_node will basically create
an active node with all metadata and reference table shards.
start_metadata_sync_to_node will be same with citus_activate_node
except replicating reference tables. stop_metadata_sync_to_node
will remove all the metadata. All of those UDFs need to be called
by superuser.
BEGIN/COMMIT transaction block or in a UDF calling another UDF.
(2) Prohibit/Limit the delegated function not to do a 2PC (or any work on a
remote connection).
(3) Have a safety net to ensure the (2) i.e. we should block the connections
from the delegated procedure or make sure that no 2PC happens on the node.
(4) Such delegated functions are restricted to use only the distributed argument
value.
Note: To limit the scope of the project we are considering only Functions(not
procedures) for the initial work.
DESCRIPTION: Introduce a new flag "force_delegation" in create_distributed_function(),
which will allow a function to be delegated in an explicit transaction block.
Fixes#3265
Once the function is delegated to the worker, on that node during the planning
distributed_planner()
TryToDelegateFunctionCall()
CheckDelegatedFunctionExecution()
EnableInForceDelegatedFuncExecution()
Save the distribution argument (Constant)
ExecutorStart()
CitusBeginScan()
IsShardKeyValueAllowed()
Ensure to not use non-distribution argument.
ExecutorRun()
AdaptiveExecutor()
StartDistributedExecution()
EnsureNoRemoteExecutionFromWorkers()
Ensure all the shards are local to the node in the remoteTaskList.
NonPushableInsertSelectExecScan()
InitializeCopyShardState()
EnsureNoRemoteExecutionFromWorkers()
Ensure all the shards are local to the node in the placementList.
This also fixes a minor issue: Properly handle expressions+parameters in distribution arguments
Dropping sequences means we need to recreate
and hence losing the sequence.
With this commit, we keep the existing sequences
such that resyncing wouldn't drop the sequence.
We do that by breaking the dependency of the sequence
from the table.
With Citus 11, the default behavior is to sync the metadata.
However, partitioned tables created pre-Citus 11 might have
index names that are not compatiable with metadata syncing.
See https://github.com/citusdata/citus/issues/4962 for the
details.
With this commit, we record the existence of partitioned tables
such that we can fix it later if any exists.
With this commit, fix_partition_shard_index_names()
works significantly faster.
For example,
32 shards, 365 partitions, 5 indexes drop from ~120 seconds to ~44 seconds
32 shards, 1095 partitions, 5 indexes drop from ~600 seconds to ~265 seconds
`queryStringList` can be really long, because it may contain #partitions * #indexes entries.
Before this change, we were actually going through the executor where each command
in the query string triggers 1 round trip per entry in queryStringList.
The aim of this commit is to avoid the round-trips by creating a single query string.
I first simply tried sending `q1;q2;..;qn` . However, the executor is designed to
handle `q1;q2;..;qn` type of query executions via the infrastructure mentioned
above (e.g., by tracking the query indexes in the list and doing 1 statement
per round trip).
One another option could have been to change the executor such that only track
the query index when `queryStringList` is provided not with queryString
including multiple `;`s . That is (a) more work (b) could cause weird edge
cases with failure handling (c) felt like coding a special case in to the executor
This UDF coordinates connectivity checks accross the whole cluster.
This UDF gets the list of active readable nodes in the cluster, and
coordinates all connectivity checks in sequential order.
The algorithm is:
for sourceNode in activeReadableWorkerList:
c = connectToNode(sourceNode)
for targetNode in activeReadableWorkerList:
result = c.execute(
"SELECT citus_check_connection_to_node(targetNode.name,
targetNode.port")
emit sourceNode.name,
sourceNode.port,
targetNode.name,
targetNode.port,
result
- result -> true -> connection attempt from source to target succeeded
- result -> false -> connection attempt from source to target failed
- result -> NULL -> connection attempt from the current node to source node failed
I suggest you use the following query to get an overview on the connectivity:
SELECT bool_and(COALESCE(result, false))
FROM citus_check_cluster_node_health();
Whenever this query returns false, there is a connectivity issue, check in detail.
Before that PR we were updating citus.pg_dist_object metadata, which keeps
the metadata related to objects on Citus, only on the coordinator node. In
order to allow using those object from worker nodes (or erroring out with
proper error message) we've started to propagate that metedata to worker
nodes as well.
citus_check_connection_to_node runs a simple query on a remote node and
reports whether this attempt was successful.
This UDF will be used to make sure each worker node can connect to all
the worker nodes in the cluster.
parameters:
nodename: required
nodeport: optional (default: 5432)
return value:
boolean success
As of master branch, Citus does all the modifications to replicated tables
(e.g., reference tables and distributed tables with replication factor > 1),
via 2PC and avoids any shardstate=3. As a side-effect of those changes,
handling node failures for replicated tables change.
With this PR, when one (or multiple) node failures happen, the users would
see query errors on modifications. If the problem is intermitant, that's OK,
once the node failure(s) recover by themselves, the modification queries would
succeed. If the node failure(s) are permenant, the users should call
`SELECT citus_disable_node(...)` to disable the node. As soon as the node is
disabled, modification would start to succeed. However, now the old node gets
behind. It means that, when the node is up again, the placements should be
re-created on the node. First, use `SELECT citus_activate_node()`. Then, use
`SELECT replicate_table_shards(...)` to replicate the missing placements on
the re-activated node.
During pg upgrades, we have seen that it is not guaranteed that a
columnar table will be created after metadata objects got created.
Prior to changes done in this commit, we had such a dependency
relationship in `pg_depend`:
```
columnar_table ----> columnarAM ----> citus extension
^ ^
| |
columnar.storage_id_seq -------------------- |
|
columnar.stripe -------------------------------
```
Since `pg_upgrade` just knows to follow topological sort of the objects
when creating database dump, above dependency graph doesn't imply that
`columnar_table` should be created before metadata objects such as
`columnar.storage_id_seq` and `columnar.stripe` are created.
For this reason, with this commit we add new records to `pg_depend` to
make columnarAM depending on all rel objects living in `columnar`
schema. That way, `pg_upgrade` will know it needs to create those before
creating `columnarAM`, and similarly, before creating any tables using
`columnarAM`.
Note that in addition to inserting those records via installation script,
we also do the same in `citus_finish_pg_upgrade()`. This is because,
`pg_upgrade` rebuilds catalog tables in the new cluster and that means,
we must insert them in the new cluster too.
We recently introduced a set of patches to 10.2, and introduced 10.2-4
migration version. This migration version only resides on `release-10.2`
branch, and is missing on our default branch. This creates a problem
because we do not have a valid migration path from 10.2 to latest 11.0.
To remedy this issue, I copied the relevant migration files from
`release-10.2` branch, and renamed some of our migration files on
default branch to make sure we have a linear upgrade path.
* Refactor some checks in citus local tables
* all existing citus local tables are auto converted after upgrade
* Update warning messages in CreateCitusLocalTable
* Hide notice msg for auto converting local tables
* Hide hint msg
Co-authored-by: Ahmet Gedemenli <afgedemenli@gmail.com>
* Add udf to include shardId in broken partition shard index names
* Address reviews: rename index such that operations can be done on it
* More comprehensive index tests
* Final touches and formatting
* Make (columnar.stripe) first_row_number index a unique constraint
Since stripe_first_row_number_idx is required to scan a columnar
table, we need to make sure that it is created before doing anything
with columnar tables during pg upgrades.
However, a plain btree index is not a dependency of a table, so
pg_upgrade cannot guarantee that stripe_first_row_number_idx gets
created when creating columnar.stripe, unless we make it a unique
"constraint".
To do that, drop stripe_first_row_number_idx and create a unique
constraint with the same name to keep the code change at minimum.
* Add more pg upgrade tests for columnar
* Fix a logic error in uprade_columnar_after test
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
- get_missing_time_partition_ranges: Gets the ranges of missing partitions for the given table, interval and range unless any existing partition conflicts with calculated missing ranges.
- create_time_partitions: Creates partitions by getting range values from get_missing_time_partition_ranges.
- drop_old_time_partitions: Drops partitions of the table older than given threshold.
Relevant PG commit:
9e38c2bb5093ceb0c04d6315ccd8975bd17add66
fix array_cat_agg for pg upgrades
array_cat_agg now needs to take anycompatiblearray instead of anyarray
because array_cat changed its type from anyarray to anycompatiblearray
with pg14.
To handle upgrades correctly, we drop the aggregate in
citus_pg_prepare_upgrade. To be able to drop it, we first remove the
dependency from pg_depend.
Then we create the right aggregate in citus_finish_pg_upgrade and we
also add the dependency back to pg_depend.
update_distributed_table_colocation can be called by the relation
owner, and internally it updates pg_dist_partition. With this
commit, update_distributed_table_colocation uses an internal
UDF to access pg_dist_partition.
As a result, this operation can now be done by regular users
on MX.
Before this commit, we always synced the metadata with superuser.
However, that creates various edge cases such as visibility errors
or self distributed deadlocks or complicates user access checks.
Instead, with this commit, we use the current user to sync the metadata.
Note that, `start_metadata_sync_to_node` still requires super user
because accessing certain metadata (like pg_dist_node) always require
superuser (e.g., the current user should be a superuser).
However, metadata syncing operations regarding the distributed
tables can now be done with regular users, as long as the user
is the owner of the table. A table owner can still insert non-sense
metadata, however it'd only affect its own table. So, we cannot do
anything about that.
* Add parameter to cleanup metadata
* Set clear metadata default to true
* Add test for clearing metadata
* Separate test file for start/stop metadata syncing
* Fix stop_sync bug for secondary nodes
* Use PreventInTransactionBlock
* DRemovedebuggiing logs
* Remove relation not found logs from mx test
* Revert localGroupId when doing stop_sync
* Move metadata sync test to mx schedule
* Add test with name that needs to be quoted
* Add test for views and matviews
* Add test for distributed table with custom type
* Add comments to test
* Add test with stats, indexes and constraints
* Fix matview test
* Add test for dropped column
* Add notice messages to stop_metadata_sync
* Add coordinator check to stop metadat sync
* Revert local_group_id only if clearMetadata is true
* Add a final check to see the metadata is sane
* Remove the drop verbosity in test
* Remove table description tests from sync test
* Add stop sync to coordinator test
* Change the order in stop_sync
* Add test for hybrid (columnar+heap) partitioned table
* Change error to notice for stop sync to coordinator
* Sync at the end of the test to prevent any failures
* Add test case in a transaction block
* Remove relation not found tests
Sometimes the background daemon doesn't cleanup orphaned shards quickly
enough. It's useful to have a UDF to trigger this removal when needed.
We already had a UDF like this but it was only used during testing. This
exposes that UDF to users. As a safety measure it cannot be run in a
transaction, because that would cause the background daemon to stop
cleaning up shards while this transaction is running.
Without this change the rebalancer progress monitor gets the shard sizes
from the `shardlength` column in `pg_dist_placement`. This column needs to
be updated manually by calling `citus_update_table_statistics`.
However, `citus_update_table_statistics` could lead to distributed
deadlocks while database traffic is on-going (see #4752).
To work around this we don't use `shardlength` column anymore. Instead
for every rebalance we now fetch all shard sizes on the fly.
Two additional things this does are:
1. It adds tests for the rebalance progress function.
2. If a shard move cannot be done because a source or target node is
unreachable, then we error in stop the rebalance, instead of showing
a warning and continuing. When using the by_disk_size rebalance
strategy it's not safe to continue with other moves if a specific
move failed. It's possible that the failed move made space for the
next move, and because the failed move never happened this space now
does not exist.
3. Adds two new columns to the result of `get_rebalancer_progress` which
shows the size of the shard on the source and target node.
Fixes#4930
DESCRIPTION: Add support for ALTER DATABASE OWNER
This adds support for changing the database owner. It achieves this by marking the database as a distributed object. By marking the database as a distributed object it will look for its dependencies and order the user creation commands (enterprise only) before the alter of the database owner. This is mostly important when adding new nodes.
By having the database marked as a distributed object it can easily understand for which `ALTER DATABASE ... OWNER TO ...` commands to propagate by resolving the object address of the database and verifying it is a distributed object, and hence should propagate changes of owner ship to all workers.
Given the ownership of the database might have implications on subsequent commands in transactions we force sequential mode for transactions that have a `ALTER DATABASE ... OWNER TO ...` command in them. This will fail the transaction with meaningful help when the transaction already executed parallel statements.
By default the feature is turned off since roles are not automatically propagated, having it turned on would cause hard to understand errors for the user. It can be turned on by the user via setting the `citus.enable_alter_database_owner`.
Every move in the rebalancer algorithm results in an improvement in the
balance. However, even if the improvement in the balance was very small
the move was still chosen. This is especially problematic if the shard
itself is very big and the move will take a long time.
This changes the rebalancer algorithm to take the relative size of the
balance improvement into account when choosing moves. By default a move
will not be chosen if it improves the balance by less than half of the
size of the shard. An extra argument is added to the rebalancer
functions so that the user can decide to lower the default threshold if
the ignored move is wanted anyway.
* When moving a shard to a new node ensure there is enough space
* Add WairForMiliseconds time utility
* Add more tests and increase readability
* Remove the retry loop and use a single udf for disk stats
* Address review
* address review
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
* Introduce 3 partitioned size udfs
* Add tests for new partition size udfs
* Fix type incompatibilities
* Convert UDFs into pure sql functions
* Fix function comment
Postgres keeps AFTER trigger state for each transaction, because we can have deferred AFTER triggers which will be fired at the end of a transaction. Postgres cleans up this state at the end of transaction.
Postgres processes ON COMMIT triggers after cleaning-up the AFTER trigger states. So if we fire any triggers in ON COMMIT, the AFTER trigger state won't be cleaned-up properly and the transaction state will be left in an inconsistent state, which might result in assertion failure.
So with this commit, we remove foreign keys between columnar metadata tables and enforce constraints between them manually when dropping columnar tables.
* Reimplement citus_update_table_statistics
* Update stats for the given table not colocation group
* Add tests for reimplemented citus_update_table_statistics
* Use coordinated transaction, merge with citus_shard_sizes functions
* Update the old master_update_table_statistics as well
* Sort results in citus_shards and give raw size
Sort results so that it is consistent and also similar to citus_tables.
Use raw size in the output so that doing operations on the size is
easier.
* Change column ordering
* Fix partition column index issue
We send column names to worker_hash/range_partition_table methods, and
in these methods we check the column name index from tuple descriptor.
Then this index is used to decide the bucket that the current row will
be sent for the repartition.
This becomes a problem when there are the same column names in the
tupleDescriptor. Then we can choose the wrong index. Hence the
partitioned data will be put to wrong workers. Then the result could
miss some data because workers might contain different range of data.
An example:
TupleDescriptor contains "trip_id", "car_id", "car_id" for one table.
It contains only "car_id" for the other table. And assuming that the
tables will be partitioned by car_id, it is not certain what should be
used for deciding the bucket number for the first table. Assuming value
2 goes to bucket 2 and value 3 goes to bucket 3, it is not certain which
bucket "1 2 3" (trip_id, car_id, car_id) row will go to.
As a solution we send the index of partition column in targetList
instead of the column name.
The old API is kept so that if workers upgrade work, it still works
(though it will have the same bug)
* Use the same method so that backporting is easier
With citus shard helper view, we can easily see:
- where each shard is, which node, which port
- what kind of table it belongs to
- its size
With such a view, we can see shards that have a size bigger than some
value, which could be useful. Also debugging can be easier in production
as well with this view.
Fetch shards in one go per node
The previous implementation was slow because it would do a lot of round
trips, one per shard to be exact. Hence it is improved so that we fetch
all the shard_name, shard-size pairs per node in one go.
Construct shards_names, sizes query on coordinator
* Replace master_add_node with citus_add_node
* Replace master_activate_node with citus_activate_node
* Replace master_add_inactive_node with citus_add_inactive_node
* Use master udfs in old scripts
* Replace master_add_secondary_node with citus_add_secondary_node
* Replace master_disable_node with citus_disable_node
* Replace master_drain_node with citus_drain_node
* Replace master_remove_node with citus_remove_node
* Replace master_set_node_property with citus_set_node_property
* Replace master_unmark_object_distributed with citus_unmark_object_distributed
* Replace master_update_node with citus_update_node
* Replace master_update_shard_statistics with citus_update_shard_statistics
* Replace master_update_table_statistics with citus_update_table_statistics
* Rename master_conninfo_cache_invalidate to citus_conninfo_cache_invalidate
Rename master_dist_local_group_cache_invalidate to citus_dist_local_group_cache_invalidate
* Replace master_copy_shard_placement with citus_copy_shard_placement
* Replace master_move_shard_placement with citus_move_shard_placement
* Rename master_dist_node_cache_invalidate to citus_dist_node_cache_invalidate
* Rename master_dist_object_cache_invalidate to citus_dist_object_cache_invalidate
* Rename master_dist_partition_cache_invalidate to citus_dist_partition_cache_invalidate
* Rename master_dist_placement_cache_invalidate to citus_dist_placement_cache_invalidate
* Rename master_dist_shard_cache_invalidate to citus_dist_shard_cache_invalidate
* Drop master_modify_multiple_shards
* Rename master_drop_all_shards to citus_drop_all_shards
* Drop master_create_distributed_table
* Drop master_create_worker_shards
* Revert old function definitions
* Add missing revoke statement for citus_disable_node
The prepare for upgrade script creates the `'public.pg_dist_rebalance_strategy` table which is not dropped when the upgrade is finished. This may block future upgrades.
As the previous versions of Citus don't know how to handle citus local
tables, we should prevent downgrading from 9.5 to older versions if any
citus local tables exists.
* use adaptive executor even if task-tracker is set
* Update check-multi-mx tests for adaptive executor
Basically repartition joins are enabled where necessary. For parallel
tests max adaptive executor pool size is decresed to 2, otherwise we
would get too many clients error.
* Update limit_intermediate_size test
It seems that when we use adaptive executor instead of task tracker, we
exceed the intermediate result size less in the test. Therefore updated
the tests accordingly.
* Update multi_router_planner
It seems that there is one problem with multi_router_planner when we use
adaptive executor, we should fix the following error:
+ERROR: relation "authors_range_840010" does not exist
+CONTEXT: while executing command on localhost:57637
* update repartition join tests for check-multi
* update isolation tests for repartitioning
* Error out if shard_replication_factor > 1 with repartitioning
As we are removing the task tracker, we cannot switch to it if
shard_replication_factor > 1. In that case, we simply error out.
* Remove MULTI_EXECUTOR_TASK_TRACKER
* Remove multi_task_tracker_executor
Some utility methods are moved to task_execution_utils.c.
* Remove task tracker protocol methods
* Remove task_tracker.c methods
* remove unused methods from multi_server_executor
* fix style
* remove task tracker specific tests from worker_schedule
* comment out task tracker udf calls in tests
We were using task tracker udfs to test permissions in
multi_multiuser.sql. We should find some other way to test them, then we
should remove the commented out task tracker calls.
* remove task tracker test from follower schedule
* remove task tracker tests from multi mx schedule
* Remove task-tracker specific functions from worker functions
* remove multi task tracker extra schedule
* Remove unused methods from multi physical planner
* remove task_executor_type related things in tests
* remove LoadTuplesIntoTupleStore
* Do initial cleanup for repartition leftovers
During startup, task tracker would call TrackerCleanupJobDirectories and
TrackerCleanupJobSchemas to clean up leftover directories and job
schemas. With adaptive executor, while doing repartitions it is possible
to leak these things as well. We don't retry cleanups, so it is possible
to have leftover in case of errors.
TrackerCleanupJobDirectories is renamed as
RepartitionCleanupJobDirectories since it is repartition specific now,
however TrackerCleanupJobSchemas cannot be used currently because it is
task tracker specific. The thing is that this function is a no-op
currently.
We should add cleaning up intermediate schemas to DoInitialCleanup
method when that problem is solved(We might want to solve it in this PR
as well)
* Revert "remove task tracker tests from multi mx schedule"
This reverts commit 03ecc0a681.
* update multi mx repartition parallel tests
* not error with task_tracker_conninfo_cache_invalidate
* not run 4 repartition queries in parallel
It seems that when we run 4 repartition queries in parallel we get too
many clients error on CI even though we don't get it locally. Our guess
is that, it is because we open/close many connections without doing some
work and postgres has some delay to close the connections. Hence even
though connections are removed from the pg_stat_activity, they might
still not be closed. If the above assumption is correct, it is unlikely
for it to happen in practice because:
- There is some network latency in clusters, so this leaves some times
for connections to be able to close
- Repartition joins return some data and that also leaves some time for
connections to be fully closed.
As we don't get this error in our local, we currently assume that it is
not a bug. Ideally this wouldn't happen when we get rid of the
task-tracker repartition methods because they don't do any pruning and
might be opening more connections than necessary.
If this still gives us "too many clients" error, we can try to increase
the max_connections in our test suite(which is 100 by default).
Also there are different places where this error is given in postgres,
but adding some backtrace it seems that we get this from
ProcessStartupPacket. The backtraces can be found in this link:
https://circleci.com/gh/citusdata/citus/138702
* Set distributePlan->relationIdList when it is needed
It seems that we were setting the distributedPlan->relationIdList after
JobExecutorType is called, which would choose task-tracker if
replication factor > 1 and there is a repartition query. However, it
uses relationIdList to decide if the query has a repartition query, and
since it was not set yet, it would always think it is not a repartition
query and would choose adaptive executor when it should choose
task-tracker.
* use adaptive executor even with shard_replication_factor > 1
It seems that we were already using adaptive executor when
replication_factor > 1. So this commit removes the check.
* remove multi_resowner.c and deprecate some settings
* remove TaskExecution related leftovers
* change deprecated API error message
* not recursively plan single relatition repartition subquery
* recursively plan single relation repartition subquery
* test depreceated task tracker functions
* fix overlapping shard intervals in range-distributed test
* fix error message for citus_metadata_container
* drop task-tracker deprecated functions
* put the implemantation back to worker_cleanup_job_schema_cachesince citus cloud uses it
* drop some functions, add downgrade script
Some deprecated functions are dropped.
Downgrade script is added.
Some gucs are deprecated.
A new guc for repartition joins bucket size is added.
* order by a test to fix flappiness
Here are the updated make targets:
- install: install everything except downgrade scripts.
- install-downgrades: build and install only the downgrade migration scripts.
- install-all: install everything along with the downgrade migration scripts.
Implements worker_save_query_explain_analyze and worker_last_saved_explain_analyze.
worker_save_query_explain_analyze executes and returns results of query while
saving its EXPLAIN ANALYZE to be fetched later.
worker_last_saved_explain_analyze returns the saved EXPLAIN ANALYZE result.
* invalidate plan cache in master_update_node
If a plan is cached by postgres but a user uses master_update_node, then
when the plan cache is used for the updated node, they will get the old
nodename/nodepost in the plan. This is because the plan cache doesn't
know about the master_update_node. This could be a problem in prepared
statements or anything that goes into plancache. As a solution the plan
cache is invalidated inside master_update_node.
* add invalidate_inactive_shared_connections test function
We introduce invalidate_inactive_shared_connections udf to be used in
testing. It is possible that a connection count for an inactive node
will be greater than 0 and in that case it will not be removed at the
time of invalidation. However, later we don't have a mechanism to remove
it, which means that it will stay in the hash. For this not to cause a
problem, we use this udf in testing.
* move invalidate_inactive_shared_connections to udfs from test as it will be used in mx
* remove the test udf
* remove the IsInactive check
DESCRIPTION: Alter role only works for citus managed roles
Alter role was implemented before we implemented good role management that hooks into the object propagation framework. This is a refactor of all alter role commands that have been implemented to
- be on by default
- only work for supported roles
- make the citus extension owner a supported role
Instead of distributing the alter role commands for roles at the beginning of the node activation role it now _only_ executes the alter role commands for all users in all databases and in the current database.
In preparation of full role support small refactors have been done in the deparser.
Earlier tests targeting other roles than the citus extension owner have been either slightly changed or removed to be put back where we have full role support.
Fixes#2549
With this commit, we're introducing a new infrastructure to throttle
connections to the worker nodes. This infrastructure is useful for
multi-shard queries, router queries are have not been affected by this.
The goal is to prevent establishing more than citus.max_shared_pool_size
number of connections per worker node in total, across sessions.
To do that, we've introduced a new connection flag OPTIONAL_CONNECTION.
The idea is that some connections are optional such as the second
(and further connections) for the adaptive executor. A single connection
is enough to finish the distributed execution, the others are useful to
execute the query faster. Thus, they can be consider as optional connections.
When an optional connection is not allowed to the adaptive executor, it
simply skips it and continues the execution with the already established
connections. However, it'll keep retrying to establish optional
connections, in case some slots are open again.
If two tables have the same distribution column type, we implicitly
colocate them. This is useful since colocation has a big performance
impact in most applications.
When a table is rebalanced, all of the colocated tables are also
rebalanced. If table A and table B are colocated and we want to
rebalance table A, table B will also be rebalanced. We need replica
identity so that logical replication can replicate updates and deletes
during rebalancing. If table B does not have a replica identity we
error out.
A solution to this is to introduce a UDF so that colocation can be
updated. The remaining tables in the colocation group will stay
colocated. For example if table A, B and C are colocated and after
updating table B's colocations, table A and table C stay colocated.
The "updating colocation" step does not move any data around, it only
updated pg_dist_partition and pg_dist_colocation tables. Specifically it
creates a new colocation group for the table and updates the entry in
pg_dist_partition while invalidating any cache.
DESCRIPTION: Replace the query planner for the coordinator part with the postgres planner
Closes#2761
Citus had a simple rule based planner for the query executed on the query coordinator. This planner grew over time with the addigion of SQL support till it was getting close to the functionality of the postgres planner. Except the code was brittle and its complexity rose which made it hard to add new SQL support.
Given its resemblance with the postgres planner it was a long outstanding wish to replace our hand crafted planner with the well supported postgres planner. This patch replaces our planner with a call to postgres' planner.
Due to the functionality of the postgres planner we needed to support both projections and filters/quals on the citus custom scan node. When a sort operation is planned above the custom scan it might require fields to be reordered in the custom scan before returning the tuple (projection). The postgres planner assumes every custom scan node implements projections. Because we controlled the plan that was created we prevented reordering in the custom scan and never had implemented it before.
A same optimisation applies to having clauses that could have been where clauses. Instead of applying the filter as a having on the aggregate it will push it down into the plan which could reach a custom scan node.
For both filters and projections we have implemented them when tuples are read from the tuple store. If no projections or filters are required it will directly return the tuple from the tuple store. Otherwise it will loop tuples from the tuple store through the filter and projection until a tuple is found and returned.
Besides filters being pushed down a side effect of having quals that could have been a where clause is that a call to read intermediate result could be called before the first tuple is fetched from the custom scan. This failed because the intermediate result would only be pulled to the coordinator on the first tuple fetch. To overcome this problem we do run the distributed subplans now before we run the postgres executor. This ensures the intermediate result is present on the coordinator in time. We do account for total time instrumentation by removing the instrumentation before handing control to the psotgres executor and update the timings our self.
For future SQL support it is enough to create a valid query structure for the part of the query to be executed on the query coordinating node. As a utility we do serialise and print the query at debug level4 for engineers to inspect what kind of query is being planned on the query coordinator.
* Update shardPlacement->nodeId to uint
As the source of the shardPlacement->nodeId is always workerNode->nodeId,
and that is uint32.
We had this hack because of: 0ea4e52df5 (r266421409)
And, that is gone with: 90056f7d3c (diff-c532177d74c72d3f0e7cd10e448ab3c6L1123)
So, we're safe to do it now.
* Relax the restrictions on using the local execution
Previously, whenever any local execution happens, we disabled further
commands to do any remote queries. The basic motivation for doing that
is to prevent any accesses in the same transaction block to access the
same placements over multiple sessions: one is local session the other
is remote session to the same placement.
However, the current implementation does not distinguish local accesses
being to a placement or not. For example, we could have local accesses
that only touches intermediate results. In that case, we should not
implement the same restrictions as they become useless.
So, this is a pre-requisite for executing the intermediate result only
queries locally.
* Update the error messages
As the underlying implementation has changed, reflect it in the error
messages.
* Keep track of connections to local node
With this commit, we're adding infrastructure to track if any connection
to the same local host is done or not.
The main motivation for doing this is that we've previously were more
conservative about not choosing local execution. Simply, we disallowed
local execution if any connection to any remote node is done. However,
if we want to use local execution for intermediate result only queries,
this'd be annoying because we expect all queries to touch remote node
before the final query.
Note that this approach is still limiting in Citus MX case, but for now
we can ignore that.
* Formalize the concept of Local Node
Also some minor refactoring while creating the dummy placement
* Write intermediate results locally when the results are only needed locally
Before this commit, Citus used to always broadcast all the intermediate
results to remote nodes. However, it is possible to skip pushing
the results to remote nodes always.
There are two notable cases for doing that:
(a) When the query consists of only intermediate results
(b) When the query is a zero shard query
In both of the above cases, we don't need to access any data on the shards. So,
it is a valuable optimization to skip pushing the results to remote nodes.
The pattern mentioned in (a) is actually a common patterns that Citus users
use in practice. For example, if you have the following query:
WITH cte_1 AS (...), cte_2 AS (....), ... cte_n (...)
SELECT ... FROM cte_1 JOIN cte_2 .... JOIN cte_n ...;
The final query could be operating only on intermediate results. With this patch,
the intermediate results of the ctes are not unnecessarily pushed to remote
nodes.
* Add specific regression tests
As there are edge cases in Citus MX and with round-robin policy,
use the same queries on those cases as well.
* Fix failure tests
By forcing not to use local execution for intermediate results since
all the tests expects the results to be pushed remotely.
* Fix flaky test
* Apply code-review feedback
Mostly style changes
* Limit the max value of pg_dist_node_seq to reserve for internal use
* WIP
* wip
* add basic logic to run a single job with repartioning joins with adaptive executor
* fix some warnings and return in ExecuteDependedTasks if there is none
* Add the logic to run depended jobs in adaptive executor
The execution of depended tasks logic is changed. With the current
logic:
- All tasks are created from the top level task list.
- At one iteration:
- CurTasks whose dependencies are executed are found.
- CurTasks are executed in parallel with adapter executor main
logic.
- The iteration is repeated until all tasks are completed.
* Separate adaptive executor repartioning logic
* Remove duplicate parts
* cleanup directories and schemas
* add basic repartion tests for adaptive executor
* Use the first placement to fetch data
In task tracker, when there are replicas, we try to fetch from a replica
for which a map task is succeeded. TaskExecution is used for this,
however TaskExecution is not used in adaptive executor. So we cannot use
the same thing as task tracker.
Since adaptive executor fails when a map task fails (There is no retry
logic yet). We know that if we try to execute a fetch task, all of its
map tasks already succeeded, so we can just use the first one to fetch
from.
* fix clean directories logic
* do not change the search path while creating a udf
* Enable repartition joins with adaptive executor with only enable_reparitition_joins guc
* Add comments to adaptive_executor_repartition
* dont run adaptive executor repartition test in paralle with other tests
* execute cleanup only in the top level execution
* do cleanup only in the top level ezecution
* not begin a transaction if repartition query is used
* use new connections for repartititon specific queries
New connections are opened to send repartition specific queries. The
opened connections will be closed at the FinishDistributedExecution.
While sending repartition queries no transaction is begun so that
we can see all changes.
* error if a modification was done prior to repartition execution
* not start a transaction if a repartition query and sql task, and clean temporary files and schemas at each subplan level
* fix cleanup logic
* update tests
* add missing function comments
* add test for transaction with DDL before repartition query
* do not close repartition connections in adaptive executor
* rollback instead of commit in repartition join test
* use close connection instead of shutdown connection
* remove unnecesary connection list, ensure schema owner before removing directory
* rename ExecuteTaskListRepartition
* put fetch query string in planner not executor as we currently support only replication factor = 1 with adaptive executor and repartition query and we know the query string in the planner phase in that case
* split adaptive executor repartition to DAG execution logic and repartition logic
* apply review items
* apply review items
* use an enum for remote transaction state and fix cleanup for repartition
* add outside transaction flag to find connections that are unclaimed instead of always opening a new transaction
* fix style
* wip
* rename removejobdir to partition cleanup
* do not close connections at the end of repartition queries
* do repartition cleanup in pg catch
* apply review items
* decide whether to use transaction or not at execution creation
* rename isOutsideTransaction and add missing comment
* not error in pg catch while doing cleanup
* use replication factor of the creation time, not current time to decide if task tracker should be chosen
* apply review items
* apply review items
* apply review item
Use partition column's collation for range distributed tables
Don't allow non deterministic collations for hash distributed tables
CoPartitionedTables: don't compare unequal types
Phase 1 seeks to implement minimal infrastructure, so does not include:
- dynamic generation of support aggregates to handle multiple arguments
- configuration methods to direct aggregation strategy,
or mark an aggregate's serialize/deserialize as safe to operate across nodes
Aggregates can be distributed when:
- they have a single argument
- they have a combinefunc
- their transition type is not a pseudotype
Postgres doesn't require you to add all columns that are in the target list to
the GROUP BY when you group by a unique column (or columns). It even actively
removes these group by clauses when you do.
This is normally fine, but for repartition joins it is not. The reason for this
is that the temporary tables don't have these primary key columns. So when the
worker executes the query it will complain that it is missing columns in the
group by.
This PR fixes that by adding an ANY_VALUE aggregate around each variable in
the target list that does is not contained in the group by or in an aggregate.
This is done only for repartition joins.
The ANY_VALUE aggregate chooses the value from an undefined row in the
group.
This is an improvement over #2512.
This adds the boolean shouldhaveshards column to pg_dist_node. When it's false, create_distributed_table for new collocation groups will not create shards on that node. Reference tables will still be created on nodes where it is false.