It is often useful to be able to sync the metadata in parallel
across nodes.
Also citus_finalize_upgrade_to_citus11() uses
start_metadata_sync_to_primary_nodes() after this commit.
Note that this commit does not parallelize all pieces of node
activation or metadata syncing. Instead, it tries to parallelize
potenially large parts of metadata, which is the objects and
distributed tables (in general Citus tables).
In the future, it would be nice to sync the reference tables
in parallel across nodes.
Create ~720 distributed tables / ~23450 shards
```SQL
-- declaratively partitioned table
CREATE TABLE github_events_looooooooooooooong_name (
event_id bigint,
event_type text,
event_public boolean,
repo_id bigint,
payload jsonb,
repo jsonb,
actor jsonb,
org jsonb,
created_at timestamp
) PARTITION BY RANGE (created_at);
SELECT create_time_partitions(
table_name := 'github_events_looooooooooooooong_name',
partition_interval := '1 day',
end_at := now() + '24 months'
);
CREATE INDEX ON github_events_looooooooooooooong_name USING btree (event_id, event_type, event_public, repo_id);
SELECT create_distributed_table('github_events_looooooooooooooong_name', 'repo_id');
SET client_min_messages TO ERROR;
```
across 1 node: almost same as expected
```SQL
SELECT start_metadata_sync_to_primary_nodes();
Time: 15664.418 ms (00:15.664)
select start_metadata_sync_to_node(nodename,nodeport) from pg_dist_node;
Time: 14284.069 ms (00:14.284)
```
across 7 nodes: ~3.5x improvement
```SQL
SELECT start_metadata_sync_to_primary_nodes();
┌──────────────────────────────────────┐
│ start_metadata_sync_to_primary_nodes │
├──────────────────────────────────────┤
│ t │
└──────────────────────────────────────┘
(1 row)
Time: 25711.192 ms (00:25.711)
-- across 7 nodes
select start_metadata_sync_to_node(nodename,nodeport) from pg_dist_node;
Time: 82126.075 ms (01:22.126)
```
(cherry picked from commit dd02e1755f)
1) Remove useless columns
2) Show backends that are blocked on a DDL even before
gpid is assigned
3) One minor bugfix, where we clear distributedCommandOriginator
properly.
DESCRIPTION: Move pg_dist_object to pg_catalog
Historically `pg_dist_object` had been created in the `citus` schema as an experiment to understand if we could move our catalog tables to a branded schema. We quickly realised that this interfered with the UX on our managed services and other environments, where users connected via a user with the name of `citus`.
By default postgres put the username on the search_path. To be able to read the catalog in the `citus` schema we would need to grant access permissions to the schema. This caused newly created objects like tables etc, to default to this schema for creation. This failed due to the write permissions to that schema.
With this change we move the `pg_dist_object` catalog table to the `pg_catalog` schema, where our other schema's are also located. This makes the catalog table visible and readable by any user, like our other catalog tables, for debugging purposes.
Note: due to the change of schema, we had to disable 1 test that was running into a discrepancy between the schema and binary. Secondly, we needed to make the lookup functions for the `pg_dist_object` relation and their indexes less strict on the fallback of the naming due to an other test that, due to an unfortunate cache invalidation, needed to lookup the relation again. This makes that we won't default to _only_ resolving from `pg_catalog` outside of upgrades.
And also citus_calculate_gpid(nodeId,pid). These UDFs are just
wrappers for the existing functions. Useful for testing and simple
manipulation of citus_stat_activity.
Clusters created pre-Citus 11 mostly didn't have metadata sync enabled.
For those clusters, we add a utility UDF which fixes some minor issues
and sync the necessary objects to the workers.
Before this commit, dumping wait edges can only be used for
distributed deadlock detection purposes. With this commit,
we open the possibility that we can use it for any backend.
DESCRIPTION: Implement TEXT SEARCH CONFIGURATION propagation
The change adds support to Citus for propagating TEXT SEARCH CONFIGURATION objects. TSConfig objects cannot always be created in one create statement, and instead require a create statement followed by many alter statements to get turned into the object they should represent.
To support this we add functionality to the worker to create or replace objects based on a list of statements. When the lists of the local object and the remote object correspond 1:1 we skip the creation of the object and simply mark it distributed. This is especially important for TSConfig objects as initdb pre-populates databases with a dozen configurations (for many different languages).
When the user creates a new TSConfig based on the copy of an existing configuration there is no direct link to the object copied from. Since there is no link we can't simply rely on propagating the dependencies to the worker and send a qualified
With this commit we've started to propagate sequences and shell
tables within the object dependency resolution. So, ensuring any
dependencies for any object will consider shell tables and sequences
as well. Separate logics for both shell tables and sequences have
been removed.
Since both shell tables and sequences logic were implemented as a
part of the metadata handling before that logic, we were propagating
them while syncing table metadata. With this commit we've divided
metadata (which means anything except shards thereafter) syncing
logic into multiple parts and implemented it either as a part of
ActivateNode. You can check the functions called in ActivateNode
to check definition of different metadata.
Definitions of start_metadata_sync_to_node and citus_activate_node
have also been updated. citus_activate_node will basically create
an active node with all metadata and reference table shards.
start_metadata_sync_to_node will be same with citus_activate_node
except replicating reference tables. stop_metadata_sync_to_node
will remove all the metadata. All of those UDFs need to be called
by superuser.
BEGIN/COMMIT transaction block or in a UDF calling another UDF.
(2) Prohibit/Limit the delegated function not to do a 2PC (or any work on a
remote connection).
(3) Have a safety net to ensure the (2) i.e. we should block the connections
from the delegated procedure or make sure that no 2PC happens on the node.
(4) Such delegated functions are restricted to use only the distributed argument
value.
Note: To limit the scope of the project we are considering only Functions(not
procedures) for the initial work.
DESCRIPTION: Introduce a new flag "force_delegation" in create_distributed_function(),
which will allow a function to be delegated in an explicit transaction block.
Fixes#3265
Once the function is delegated to the worker, on that node during the planning
distributed_planner()
TryToDelegateFunctionCall()
CheckDelegatedFunctionExecution()
EnableInForceDelegatedFuncExecution()
Save the distribution argument (Constant)
ExecutorStart()
CitusBeginScan()
IsShardKeyValueAllowed()
Ensure to not use non-distribution argument.
ExecutorRun()
AdaptiveExecutor()
StartDistributedExecution()
EnsureNoRemoteExecutionFromWorkers()
Ensure all the shards are local to the node in the remoteTaskList.
NonPushableInsertSelectExecScan()
InitializeCopyShardState()
EnsureNoRemoteExecutionFromWorkers()
Ensure all the shards are local to the node in the placementList.
This also fixes a minor issue: Properly handle expressions+parameters in distribution arguments
Dropping sequences means we need to recreate
and hence losing the sequence.
With this commit, we keep the existing sequences
such that resyncing wouldn't drop the sequence.
We do that by breaking the dependency of the sequence
from the table.
With this commit, fix_partition_shard_index_names()
works significantly faster.
For example,
32 shards, 365 partitions, 5 indexes drop from ~120 seconds to ~44 seconds
32 shards, 1095 partitions, 5 indexes drop from ~600 seconds to ~265 seconds
`queryStringList` can be really long, because it may contain #partitions * #indexes entries.
Before this change, we were actually going through the executor where each command
in the query string triggers 1 round trip per entry in queryStringList.
The aim of this commit is to avoid the round-trips by creating a single query string.
I first simply tried sending `q1;q2;..;qn` . However, the executor is designed to
handle `q1;q2;..;qn` type of query executions via the infrastructure mentioned
above (e.g., by tracking the query indexes in the list and doing 1 statement
per round trip).
One another option could have been to change the executor such that only track
the query index when `queryStringList` is provided not with queryString
including multiple `;`s . That is (a) more work (b) could cause weird edge
cases with failure handling (c) felt like coding a special case in to the executor
This UDF coordinates connectivity checks accross the whole cluster.
This UDF gets the list of active readable nodes in the cluster, and
coordinates all connectivity checks in sequential order.
The algorithm is:
for sourceNode in activeReadableWorkerList:
c = connectToNode(sourceNode)
for targetNode in activeReadableWorkerList:
result = c.execute(
"SELECT citus_check_connection_to_node(targetNode.name,
targetNode.port")
emit sourceNode.name,
sourceNode.port,
targetNode.name,
targetNode.port,
result
- result -> true -> connection attempt from source to target succeeded
- result -> false -> connection attempt from source to target failed
- result -> NULL -> connection attempt from the current node to source node failed
I suggest you use the following query to get an overview on the connectivity:
SELECT bool_and(COALESCE(result, false))
FROM citus_check_cluster_node_health();
Whenever this query returns false, there is a connectivity issue, check in detail.
Before that PR we were updating citus.pg_dist_object metadata, which keeps
the metadata related to objects on Citus, only on the coordinator node. In
order to allow using those object from worker nodes (or erroring out with
proper error message) we've started to propagate that metedata to worker
nodes as well.
citus_check_connection_to_node runs a simple query on a remote node and
reports whether this attempt was successful.
This UDF will be used to make sure each worker node can connect to all
the worker nodes in the cluster.
parameters:
nodename: required
nodeport: optional (default: 5432)
return value:
boolean success
As of master branch, Citus does all the modifications to replicated tables
(e.g., reference tables and distributed tables with replication factor > 1),
via 2PC and avoids any shardstate=3. As a side-effect of those changes,
handling node failures for replicated tables change.
With this PR, when one (or multiple) node failures happen, the users would
see query errors on modifications. If the problem is intermitant, that's OK,
once the node failure(s) recover by themselves, the modification queries would
succeed. If the node failure(s) are permenant, the users should call
`SELECT citus_disable_node(...)` to disable the node. As soon as the node is
disabled, modification would start to succeed. However, now the old node gets
behind. It means that, when the node is up again, the placements should be
re-created on the node. First, use `SELECT citus_activate_node()`. Then, use
`SELECT replicate_table_shards(...)` to replicate the missing placements on
the re-activated node.
During pg upgrades, we have seen that it is not guaranteed that a
columnar table will be created after metadata objects got created.
Prior to changes done in this commit, we had such a dependency
relationship in `pg_depend`:
```
columnar_table ----> columnarAM ----> citus extension
^ ^
| |
columnar.storage_id_seq -------------------- |
|
columnar.stripe -------------------------------
```
Since `pg_upgrade` just knows to follow topological sort of the objects
when creating database dump, above dependency graph doesn't imply that
`columnar_table` should be created before metadata objects such as
`columnar.storage_id_seq` and `columnar.stripe` are created.
For this reason, with this commit we add new records to `pg_depend` to
make columnarAM depending on all rel objects living in `columnar`
schema. That way, `pg_upgrade` will know it needs to create those before
creating `columnarAM`, and similarly, before creating any tables using
`columnarAM`.
Note that in addition to inserting those records via installation script,
we also do the same in `citus_finish_pg_upgrade()`. This is because,
`pg_upgrade` rebuilds catalog tables in the new cluster and that means,
we must insert them in the new cluster too.
We recently introduced a set of patches to 10.2, and introduced 10.2-4
migration version. This migration version only resides on `release-10.2`
branch, and is missing on our default branch. This creates a problem
because we do not have a valid migration path from 10.2 to latest 11.0.
To remedy this issue, I copied the relevant migration files from
`release-10.2` branch, and renamed some of our migration files on
default branch to make sure we have a linear upgrade path.
* Add udf to include shardId in broken partition shard index names
* Address reviews: rename index such that operations can be done on it
* More comprehensive index tests
* Final touches and formatting
* Make (columnar.stripe) first_row_number index a unique constraint
Since stripe_first_row_number_idx is required to scan a columnar
table, we need to make sure that it is created before doing anything
with columnar tables during pg upgrades.
However, a plain btree index is not a dependency of a table, so
pg_upgrade cannot guarantee that stripe_first_row_number_idx gets
created when creating columnar.stripe, unless we make it a unique
"constraint".
To do that, drop stripe_first_row_number_idx and create a unique
constraint with the same name to keep the code change at minimum.
* Add more pg upgrade tests for columnar
* Fix a logic error in uprade_columnar_after test
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
- get_missing_time_partition_ranges: Gets the ranges of missing partitions for the given table, interval and range unless any existing partition conflicts with calculated missing ranges.
- create_time_partitions: Creates partitions by getting range values from get_missing_time_partition_ranges.
- drop_old_time_partitions: Drops partitions of the table older than given threshold.
update_distributed_table_colocation can be called by the relation
owner, and internally it updates pg_dist_partition. With this
commit, update_distributed_table_colocation uses an internal
UDF to access pg_dist_partition.
As a result, this operation can now be done by regular users
on MX.