* Remove unused executor codes
All of the codes of real-time executor. Some functions
in router executor still remains there because there
are common functions. We'll move them to accurate places
in the follow-up commits.
* Move GUCs to transaction mngnt and remove unused struct
* Update test output
* Get rid of references of real-time executor from code
* Warn if real-time executor is picked
* Remove lots of unused connection codes
* Removed unused code for connection restrictions
Real-time and router executors cannot handle re-using of the existing
connections within a transaction block.
Adaptive executor and COPY can re-use the connections. So, there is no
reason to keep the code around for applying the restrictions in the
placement connection logic.
This completely hides `ListCell` to the user of the loop
Example usage:
```c
WorkerNode *workerNode = NULL;
foreach_ptr(workerNode, workerNodeList) {
// Do stuff with workerNode
}
```
Instead of:
```c
ListCell *workerNodeCell = NULL;
foreach(cell, workerNodeList) {
WorkerNode *workerNode = lfirst(workerNodeCell);
// Do stuff with workerNode
}
```
DESCRIPTION: Fix order for enum values and correctly support pg12
PG 12 introduces `ALTER TYPE ... ADD VALUE ...` during transactions. Earlier versions would error out when called in a transaction, hence we connect to workers outside of the transaction which could cause inconsistencies on pg12 now that postgres doesn't error with this syntax anymore.
During the implementation of this fix it became apparent there was an error with the ordering of enum labels when the type was recreated. A patch and test have been included.
Objectives:
(a) both super user and regular user should have the correct owner for the function on the worker
(b) The transactional semantics would work fine for both super user and regular user
(c) non-super-user and non-function owner would get a reasonable error message if tries to distribute the function
Co-authored-by: @serprex
DESCRIPTION: Disallow distributed functions for functions depending on an extension
Functions depending on an extension cannot (yet) be distributed by citus. If we would allow this it would cause issues with our dependency following mechanism as we stop following objects depending on an extension.
By not allowing functions to be distributed when they depend on an extension as well as not allowing to make distributed functions depend on an extension we won't break the ability to add new nodes. Allowing functions depending on extensions to be distributed at the moment could cause problems in that area.
DESCRIPTION: Propagate CREATE OR REPLACE FUNCTION
Distributed functions could be replaced, which should be propagated to the workers to keep the function in sync between all nodes.
Due to the complexity of deparsing the `CreateFunctionStmt` we actually produce the plan during the processing phase of our utilityhook. Since the changes have already been made in the catalog tables we can reuse `pg_get_functiondef` to get us the generated `CREATE OR REPLACE` sql.
DESCRIPTION: Propagate ALTER FUNCTION statements for distributed functions
Using the implemented deparser for function statements to propagate changes to both functions and procedures that are previously distributed.
When a function is marked as colocated with a distributed table,
we try delegating queries of kind "SELECT func(...)" to workers.
We currently only support this simple form, and don't delegate
forms like "SELECT f1(...), f2(...)", "SELECT f1(...) FROM ...",
or function calls inside transactions.
As a side effect, we also fix the transactional semantics of DO blocks.
Previously we didn't consider a DO block a multi-statement transaction.
Now we do.
Co-authored-by: Marco Slot <marco@citusdata.com>
Co-authored-by: serprex <serprex@users.noreply.github.com>
Co-authored-by: pykello <hadi.moshayedi@microsoft.com>
We started copying parse trees by default further on in `multi_ProcessUtility`. That's not a problem for maintenance command, but might register for things like `PREPARE` and `EXECUTE`, which might happen thousands of times per second. Add a few common commands to the check at the start.
Since the distributed functions are useful when the workers have
metadata, we automatically sync it.
Also, after master_add_node(). We do it lazily and let the deamon
sync it. That's mainly because the metadata syncing cannot be done
in transaction blocks, and we don't want to add lots of transactional
limitations to master_add_node() and create_distributed_function().
With this commit, we're changing the API for create_distributed_function()
such that users can provide the distribution argument and the colocation
information.
DESCRIPTION: Provide a GUC to turn of the new dependency propagation functionality
In the case the dependency propagation functionality introduced in 9.0 causes issues to a cluster of a user they can turn it off almost completely. The only dependency that will still be propagated and kept track of is the schema to emulate the old behaviour.
GUC to change is `citus.enable_object_propagation`. When set to `false` the functionality will be mostly turned off. Be aware that objects marked as distributed in `pg_dist_object` will still be kept in the catalog as a distributed object. Alter statements to these objects will not be propagated to workers and may cause desynchronisation.
DESCRIPTION: Rename remote types during type propagation
To prevent data to be destructed when a remote type differs from the type on the coordinator during type propagation we wanted to rename the type instead of `DROP CASCADE`.
This patch removes the `DROP` logic and adds the creation of a rename statement to a free name.
DESCRIPTION: Add feature flag to turn off create type propagation
When `citus.enable_create_type_propagation` is set to `false` citus will not propagate `CREATE TYPE` statements to the workers. Types are still distributed when tables that depend on these types are distributed.
This PR aims to add the minimal set of changes required to start
distributing functions. You can use create_distributed_function(regproc)
UDF to distribute a function.
SELECT create_distributed_function('add(int,int)');
The function definition should include the param types to properly
identify the correct function that we wish to distribute
DESCRIPTION: Distribute Types to worker nodes
When to propagate
==============
There are two logical moments that types could be distributed to the worker nodes
- When they get used ( just in time distribution )
- When they get created ( proactive distribution )
The just in time distribution follows the model used by how schema's get created right before we are going to create a table in that schema, for types this would be when the table uses a type as its column.
The proactive distribution is suitable for situations where it is benificial to have the type on the worker nodes directly. They can later on be used in queries where an intermediate result gets created with a cast to this type.
Just in time creation is always the last resort, you cannot create a distributed table before the type gets created. A good example use case is; you have an existing postgres server that needs to scale out. By adding the citus extension, add some nodes to the cluster, and distribute the table. The type got created before citus existed. There was no moment where citus could have propagated the creation of a type.
Proactive is almost always a good option. Types are not resource intensive objects, there is no performance overhead of having 100's of types. If you want to use them in a query to represent an intermediate result (which happens in our test suite) they just work.
There is however a moment when proactive type distribution is not beneficial; in transactions where the type is used in a distributed table.
Lets assume the following transaction:
```sql
BEGIN;
CREATE TYPE tt1 AS (a int, b int);
CREATE TABLE t1 AS (a int PRIMARY KEY, b tt1);
SELECT create_distributed_table('t1', 'a');
\copy t1 FROM bigdata.csv
```
Types are node scoped objects; meaning the type exists once per worker. Shards however have best performance when they are created over their own connection. For the type to be visible on all connections it needs to be created and committed before we try to create the shards. Here the just in time situation is most beneficial and follows how we create schema's on the workers. Outside of a transaction block we will just use 1 connection to propagate the creation.
How propagation works
=================
Just in time
-----------
Just in time propagation hooks into the infrastructure introduced in #2882. It adds types as a supported object in `SupportedDependencyByCitus`. This will make sure that any object being distributed by citus that depends on types will now cascade into types. When types are depending them self on other objects they will get created first.
Creation later works by getting the ddl commands to create the object by its `ObjectAddress` in `GetDependencyCreateDDLCommands` which will dispatch types to `CreateTypeDDLCommandsIdempotent`.
For the correct walking of the graph we follow array types, when later asked for the ddl commands for array types we return `NIL` (empty list) which makes that the object will not be recorded as distributed, (its an internal type, dependant on the user type).
Proactive distribution
---------------------
When the user creates a type (composite or enum) we will have a hook running in `multi_ProcessUtility` after the command has been applied locally. Running after running locally makes that we already have an `ObjectAddress` for the type. This is required to mark the type as being distributed.
Keeping the type up to date
====================
For types that are recorded in `pg_dist_object` (eg. `IsObjectDistributed` returns true for the `ObjectAddress`) we will intercept the utility commands that alter the type.
- `AlterTableStmt` with `relkind` set to `OBJECT_TYPE` encapsulate changes to the fields of a composite type.
- `DropStmt` with removeType set to `OBJECT_TYPE` encapsulate `DROP TYPE`.
- `AlterEnumStmt` encapsulates changes to enum values.
Enum types can not be changed transactionally. When the execution on a worker fails a warning will be shown to the user the propagation was incomplete due to worker communication failure. An idempotent command is shown for the user to re-execute when the worker communication is fixed.
Keeping types up to date is done via the executor. Before the statement is executed locally we create a plan on how to apply it on the workers. This plan is executed after we have applied the statement locally.
All changes to types need to be done in the same transaction for types that have already been distributed and will fail with an error if parallel queries have already been executed in the same transaction. Much like foreign keys to reference tables.
DESCRIPTION: Fix schema leak on CREATE INDEX statement
When a CREATE INDEX is cached between execution we might leak the schema name onto the cached statement of an earlier execution preventing the right index to be created.
Even though the cache is cleared when the search_path changes we can trigger this behaviour by having the schema already on the search path before a colliding table is created in a schema earlier on the `search_path`. When calling an unqualified create index via a function (used to trigger the caching behaviour) we see that the index is created on the wrong table after the schema leaked onto the statement.
By copying the complete `PlannedStmt` and `utilityStmt` during our planning phase for distributed ddls we make sure we are not leaking the schema name onto a cached data structure.
Caveat; COPY statements already have a lot of parsestree copying ongoing without directly putting it back on the `pstmt`. We should verify that copies modify the statement and potentially copy the complete `pstmt` there already.
/*
* local_executor.c
*
* The scope of the local execution is locally executing the queries on the
* shards. In other words, local execution does not deal with any local tables
* that are not shards on the node that the query is being executed. In that sense,
* the local executor is only triggered if the node has both the metadata and the
* shards (e.g., only Citus MX worker nodes).
*
* The goal of the local execution is to skip the unnecessary network round-trip
* happening on the node itself. Instead, identify the locally executable tasks and
* simply call PostgreSQL's planner and executor.
*
* The local executor is an extension of the adaptive executor. So, the executor uses
* adaptive executor's custom scan nodes.
*
* One thing to note that Citus MX is only supported with replication factor = 1, so
* keep that in mind while continuing the comments below.
*
* On the high level, there are 3 slightly different ways of utilizing local execution:
*
* (1) Execution of local single shard queries of a distributed table
*
* This is the simplest case. The executor kicks at the start of the adaptive
* executor, and since the query is only a single task the execution finishes
* without going to the network at all.
*
* Even if there is a transaction block (or recursively planned CTEs), as long
* as the queries hit the shards on the same, the local execution will kick in.
*
* (2) Execution of local single queries and remote multi-shard queries
*
* The rule is simple. If a transaction block starts with a local query execution,
* all the other queries in the same transaction block that touch any local shard
* have to use the local execution. Although this sounds restrictive, we prefer to
* implement in this way, otherwise we'd end-up with as complex scenarious as we
* have in the connection managements due to foreign keys.
*
* See the following example:
* BEGIN;
* -- assume that the query is executed locally
* SELECT count(*) FROM test WHERE key = 1;
*
* -- at this point, all the shards that reside on the
* -- node is executed locally one-by-one. After those finishes
* -- the remaining tasks are handled by adaptive executor
* SELECT count(*) FROM test;
*
*
* (3) Modifications of reference tables
*
* Modifications to reference tables have to be executed on all nodes. So, after the
* local execution, the adaptive executor keeps continuing the execution on the other
* nodes.
*
* Note that for read-only queries, after the local execution, there is no need to
* kick in adaptive executor.
*
* There are also few limitations/trade-offs that is worth mentioning. First, the
* local execution on multiple shards might be slow because the execution has to
* happen one task at a time (e.g., no parallelism). Second, if a transaction
* block/CTE starts with a multi-shard command, we do not use local query execution
* since local execution is sequential. Basically, we do not want to lose parallelism
* across local tasks by switching to local execution. Third, the local execution
* currently only supports queries. In other words, any utility commands like TRUNCATE,
* fails if the command is executed after a local execution inside a transaction block.
* Forth, the local execution cannot be mixed with the executors other than adaptive,
* namely task-tracker, real-time and router executors. Finally, related with the
* previous item, COPY command cannot be mixed with local execution in a transaction.
* The implication of that any part of INSERT..SELECT via coordinator cannot happen
* via the local execution.
*/
DESCRIPTION: Refactor ensure schema exists to dependency exists
Historically we only supported schema's as table dependencies to be created on the workers before a table gets distributed. This PR puts infrastructure in place to walk pg_depend to figure out which dependencies to create on the workers. Currently only schema's are supported as objects to create before creating a table.
We also keep track of dependencies that have been created in the cluster. When we add a new node to the cluster we use this catalog to know which objects need to be created on the worker.
Side effect of knowing which objects are already distributed is that we don't have debug messages anymore when creating schema's that are already created on the workers.
Before this commit, we've recorded the relation accesses in 3 different
places
- FindPlacementListConnection -- applies all executor in tx block
- StartPlacementExecutionOnSession() -- adaptive executor only
- StartPlacementListConnection() -- router/real-time only
This is different than Citus 8.2, and could lead to query execution times
increase considerably on multi-shard commands in transaction block
that are on partitioned tables.
Benchmarks:
```
1+8 c5.4xlarge cluster
Empty distributed partitioned table with 365 partitions: https://gist.github.com/onderkalaci/1edace4ed6bd6f061c8a15594865bb51#file-partitions_365-sql
./pgbench -f /tmp/multi_shard.sql -c10 -j10 -P 1 -T 120 postgres://citus:w3r6KLJpv3mxe9E-NIUeJw@c.fy5fkjcv45vcepaogqcaskmmkee.db.citusdata.com:5432/citus?sslmode=require
cat /tmp/multi_shard.sql
BEGIN;
DELETE FROM collections_list;
DELETE FROM collections_list;
DELETE FROM collections_list;
COMMIT;
cat /tmp/single_shard.sql
BEGIN;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
COMMIT;
cat /tmp/mix.sql
BEGIN;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list;
DELETE FROM collections_list;
DELETE FROM collections_list;
COMMIT;
```
The table shows `latency average` of pgbench runs explained above, so we have a pretty solid improvement even over 8.2.2.
| Test | Citus 8.2.2 | Citus 8.3.1 | Citus 8.3.2 (this branch) | Citus 8.3.1 (FKEYs disabled via GUC) |
| ------------- | ------------- | ------------- |------------- | ------------- |
|multi_shard | 2370.083 ms |3605.040 ms |1324.094 ms |1247.255 ms |
| single_shard | 85.338 ms |120.934 ms |73.216 ms | 78.765 ms |
| mix | 2434.459 ms | 3727.080 ms |1306.456 ms | 1280.326 ms |
With this commit, we're introducing the Adaptive Executor.
The commit message consists of two distinct sections. The first part explains
how the executor works. The second part consists of the commit messages of
the individual smaller commits that resulted in this commit. The readers
can search for the each of the smaller commit messages on
https://github.com/citusdata/citus and can learn more about the history
of the change.
/*-------------------------------------------------------------------------
*
* adaptive_executor.c
*
* The adaptive executor executes a list of tasks (queries on shards) over
* a connection pool per worker node. The results of the queries, if any,
* are written to a tuple store.
*
* The concepts in the executor are modelled in a set of structs:
*
* - DistributedExecution:
* Execution of a Task list over a set of WorkerPools.
* - WorkerPool
* Pool of WorkerSessions for the same worker which opportunistically
* executes "unassigned" tasks from a queue.
* - WorkerSession:
* Connection to a worker that is used to execute "assigned" tasks
* from a queue and may execute unasssigned tasks from the WorkerPool.
* - ShardCommandExecution:
* Execution of a Task across a list of placements.
* - TaskPlacementExecution:
* Execution of a Task on a specific placement.
* Used in the WorkerPool and WorkerSession queues.
*
* Every connection pool (WorkerPool) and every connection (WorkerSession)
* have a queue of tasks that are ready to execute (readyTaskQueue) and a
* queue/set of pending tasks that may become ready later in the execution
* (pendingTaskQueue). The tasks are wrapped in a ShardCommandExecution,
* which keeps track of the state of execution and is referenced from a
* TaskPlacementExecution, which is the data structure that is actually
* added to the queues and describes the state of the execution of a task
* on a particular worker node.
*
* When the task list is part of a bigger distributed transaction, the
* shards that are accessed or modified by the task may have already been
* accessed earlier in the transaction. We need to make sure we use the
* same connection since it may hold relevant locks or have uncommitted
* writes. In that case we "assign" the task to a connection by adding
* it to the task queue of specific connection (in
* AssignTasksToConnections). Otherwise we consider the task unassigned
* and add it to the task queue of a worker pool, which means that it
* can be executed over any connection in the pool.
*
* A task may be executed on multiple placements in case of a reference
* table or a replicated distributed table. Depending on the type of
* task, it may not be ready to be executed on a worker node immediately.
* For instance, INSERTs on a reference table are executed serially across
* placements to avoid deadlocks when concurrent INSERTs take conflicting
* locks. At the beginning, only the "first" placement is ready to execute
* and therefore added to the readyTaskQueue in the pool or connection.
* The remaining placements are added to the pendingTaskQueue. Once
* execution on the first placement is done the second placement moves
* from pendingTaskQueue to readyTaskQueue. The same approach is used to
* fail over read-only tasks to another placement.
*
* Once all the tasks are added to a queue, the main loop in
* RunDistributedExecution repeatedly does the following:
*
* For each pool:
* - ManageWorkPool evaluates whether to open additional connections
* based on the number unassigned tasks that are ready to execute
* and the targetPoolSize of the execution.
*
* Poll all connections:
* - We use a WaitEventSet that contains all (non-failed) connections
* and is rebuilt whenever the set of active connections or any of
* their wait flags change.
*
* We almost always check for WL_SOCKET_READABLE because a session
* can emit notices at any time during execution, but it will only
* wake up WaitEventSetWait when there are actual bytes to read.
*
* We check for WL_SOCKET_WRITEABLE just after sending bytes in case
* there is not enough space in the TCP buffer. Since a socket is
* almost always writable we also use WL_SOCKET_WRITEABLE as a
* mechanism to wake up WaitEventSetWait for non-I/O events, e.g.
* when a task moves from pending to ready.
*
* For each connection that is ready:
* - ConnectionStateMachine handles connection establishment and failure
* as well as command execution via TransactionStateMachine.
*
* When a connection is ready to execute a new task, it first checks its
* own readyTaskQueue and otherwise takes a task from the worker pool's
* readyTaskQueue (on a first-come-first-serve basis).
*
* In cases where the tasks finish quickly (e.g. <1ms), a single
* connection will often be sufficient to finish all tasks. It is
* therefore not necessary that all connections are established
* successfully or open a transaction (which may be blocked by an
* intermediate pgbouncer in transaction pooling mode). It is therefore
* essential that we take a task from the queue only after opening a
* transaction block.
*
* When a command on a worker finishes or the connection is lost, we call
* PlacementExecutionDone, which then updates the state of the task
* based on whether we need to run it on other placements. When a
* connection fails or all connections to a worker fail, we also call
* PlacementExecutionDone for all queued tasks to try the next placement
* and, if necessary, mark shard placements as inactive. If a task fails
* to execute on all placements, the execution fails and the distributed
* transaction rolls back.
*
* For multi-row INSERTs, tasks are executed sequentially by
* SequentialRunDistributedExecution instead of in parallel, which allows
* a high degree of concurrency without high risk of deadlocks.
* Conversely, multi-row UPDATE/DELETE/DDL commands take aggressive locks
* which forbids concurrency, but allows parallelism without high risk
* of deadlocks. Note that this is unrelated to SEQUENTIAL_CONNECTION,
* which indicates that we should use at most one connection per node, but
* can run tasks in parallel across nodes. This is used when there are
* writes to a reference table that has foreign keys from a distributed
* table.
*
* Execution finishes when all tasks are done, the query errors out, or
* the user cancels the query.
*
*-------------------------------------------------------------------------
*/
All the commits involved here:
* Initial unified executor prototype
* Latest changes
* Fix rebase conflicts to master branch
* Add missing variable for assertion
* Ensure that master_modify_multiple_shards() returns the affectedTupleCount
* Adjust intermediate result sizes
The real-time executor uses COPY command to get the results
from the worker nodes. Unified executor avoids that which
results in less data transfer. Simply adjust the tests to lower
sizes.
* Force one connection per placement (or co-located placements) when requested
The existing executors (real-time and router) always open 1 connection per
placement when parallel execution is requested.
That might be useful under certain circumstances:
(a) User wants to utilize as much as CPUs on the workers per
distributed query
(b) User has a transaction block which involves COPY command
Also, lots of regression tests rely on this execution semantics.
So, we'd enable few of the tests with this change as well.
* For parameters to be resolved before using them
For the details, see PostgreSQL's copyParamList()
* Unified executor sorts the returning output
* Ensure that unified executor doesn't ignore sequential execution of DDLJob's
Certain DDL commands, mainly creating foreign keys to reference tables,
should be executed sequentially. Otherwise, we'd end up with a self
distributed deadlock.
To overcome this situaiton, we set a flag `DDLJob->executeSequentially`
and execute it sequentially. Note that we have to do this because
the command might not be called within a transaction block, and
we cannot call `SetLocalMultiShardModifyModeToSequential()`.
This fixes at least two test: multi_insert_select_on_conflit.sql and
multi_foreign_key.sql
Also, I wouldn't mind scattering local `targetPoolSize` variables within
the code. The reason is that we'll soon have a GUC (or a global
variable based on a GUC) that'd set the pool size. In that case, we'd
simply replace `targetPoolSize` with the global variables.
* Fix 2PC conditions for DDL tasks
* Improve closing connections that are not fully established in unified execution
* Support foreign keys to reference tables in unified executor
The idea for supporting foreign keys to reference tables is simple:
Keep track of the relation accesses within a transaction block.
- If a parallel access happens on a distributed table which
has a foreign key to a reference table, one cannot modify
the reference table in the same transaction. Otherwise,
we're very likely to end-up with a self-distributed deadlock.
- If an access to a reference table happens, and then a parallel
access to a distributed table (which has a fkey to the reference
table) happens, we switch to sequential mode.
Unified executor misses the function calls that marks the relation
accesses during the execution. Thus, simply add the necessary calls
and let the logic kick in.
* Make sure to close the failed connections after the execution
* Improve comments
* Fix savepoints in unified executor.
* Rebuild the WaitEventSet only when necessary
* Unclaim connections on all errors.
* Improve failure handling for unified executor
- Implement the notion of errorOnAnyFailure. This is similar to
Critical Connections that the connection managament APIs provide
- If the nodes inside a modifying transaction expand, activate 2PC
- Fix few bugs related to wait event sets
- Mark placement INACTIVE during the execution as much as possible
as opposed to we do in the COMMIT handler
- Fix few bugs related to scheduling next placement executions
- Improve decision on when to use 2PC
Improve the logic to start a transaction block for distributed transactions
- Make sure that only reference table modifications are always
executed with distributed transactions
- Make sure that stored procedures and functions are executed
with distributed transactions
* Move waitEventSet to DistributedExecution
This could also be local to RunDistributedExecution(), but in that case
we had to mark it as "volatile" to avoid PG_TRY()/PG_CATCH() issues, and
cast it to non-volatile when doing WaitEventSetFree(). We thought that
would make code a bit harder to read than making this non-local, so we
move it here. See comments for PG_TRY() in postgres/src/include/elog.h
and "man 3 siglongjmp" for more context.
* Fix multi_insert_select test outputs
Two things:
1) One complex transaction block is now supported. Simply update
the test output
2) Due to dynamic nature of the unified executor, the orders of
the errors coming from the shards might change (e.g., all of
the queries on the shards would fail, but which one appears
on the error message?). To fix that, we simply added it to
our shardId normalization tool which happens just before diff.
* Fix subeury_and_cte test
The error message is updated from:
failed to execute task
To:
more than one row returned by a subquery or an expression
which is a lot clearer to the user.
* Fix intermediate_results test outputs
Simply update the error message from:
could not receive query results
to
result "squares" does not exist
which makes a lot more sense.
* Fix multi_function_in_join test
The error messages update from:
Failed to execute task XXX
To:
function f(..) does not exist
* Fix multi_query_directory_cleanup test
The unified executor does not create any intermediate files.
* Fix with_transactions test
A test case that just started to work fine
* Fix multi_router_planner test outputs
The error message is update from:
Could not receive query results
To:
Relation does not exists
which is a lot more clearer for the users
* Fix multi_router_planner_fast_path test
The error message is update from:
Could not receive query results
To:
Relation does not exists
which is a lot more clearer for the users
* Fix isolation_copy_placement_vs_modification by disabling select_opens_transaction_block
* Fix ordering in isolation_multi_shard_modify_vs_all
* Add executor locks to unified executor
* Make sure to allocate enought WaitEvents
The previous code was missing the waitEvents for the latch and
postmaster death.
* Fix rebase conflicts for master rebase
* Make sure that TRUNCATE relies on unified executor
* Implement true sequential execution for multi-row INSERTS
Execute the individual tasks executed one by one. Note that this is different than
MultiShardConnectionType == SEQUENTIAL_CONNECTION case (e.g., sequential execution
mode). In that case, running the tasks across the nodes in parallel is acceptable
and implemented in that way.
However, the executions that are qualified here would perform poorly if the
tasks across the workers are executed in parallel. We currently qualify only
one class of distributed queries here, multi-row INSERTs. If we do not enforce
true sequential execution, concurrent multi-row upserts could easily form
a distributed deadlock when the upserts touch the same rows.
* Remove SESSION_LIFESPAN flag in unified_executor
* Apply failure test updates
We've changed the failure behaviour a bit, and also the error messages
that show up to the user. This PR covers majority of the updates.
* Unified executor honors citus.node_connection_timeout
With this commit, unified executor errors out if even
a single connection cannot be established within
citus.node_connection_timeout.
And, as a side effect this fixes failure_connection_establishment
test.
* Properly increment/decrement pool size variables
Before this commit, the idle and active connection
counts were not properly calculated.
* insert_select_executor goes through unified executor.
* Add missing file for task tracker
* Modify ExecuteTaskListExtended()'s signature
* Sort output of INSERT ... SELECT ... RETURNING
* Take partition locks correctly in unified executor
* Alternative implementation for force_max_query_parallelization
* Fix compile warnings in unified executor
* Fix style issues
* Decrement idleConnectionCount when idle connection is lost
* Always rebuild the wait event sets
In the previous implementation, on waitFlag changes, we were only
modifying the wait events. However, we've realized that it might
be an over optimization since (a) we couldn't see any performance
benefits (b) we see some errors on failures and because of (a)
we prefer to disable it now.
* Make sure to allocate enough sized waitEventSet
With multi-row INSERTs, we might have more sessions than
task*workerCount after few calls of RunDistributedExecution()
because the previous sessions would also be alive.
Instead, re-allocate events when the connectino set changes.
* Implement SELECT FOR UPDATE on reference tables
On master branch, we do two extra things on SELECT FOR UPDATE
queries on reference tables:
- Acquire executor locks
- Execute the query on all replicas
With this commit, we're implementing the same logic on the
new executor.
* SELECT FOR UPDATE opens transaction block even if SelectOpensTransactionBlock disabled
Otherwise, users would be very confused and their logic is very likely
to break.
* Fix build error
* Fix the newConnectionCount calculation in ManageWorkerPool
* Fix rebase conflicts
* Fix minor test output differences
* Fix citus indent
* Remove duplicate sorts that is added with rebase
* Create distributed table via executor
* Fix wait flags in CheckConnectionReady
* failure_savepoints output for unified executor.
* failure_vacuum output (pg 10) for unified executor.
* Fix WaitEventSetWait timeout in unified executor
* Stabilize failure_truncate test output
* Add an ORDER BY to multi_upsert
* Fix regression test outputs after rebase to master
* Add executor.c comment
* Rename executor.c to adaptive_executor.c
* Do not schedule tasks if the failed placement is not ready to execute
Before the commit, we were blindly scheduling the next placement executions
even if the failed placement is not on the ready queue. Now, we're ensuring
that if failed placement execution is on a failed pool or session where the
execution is on the pendingQueue, we do not schedule the next task. Because
the other placement execution should be already running.
* Implement a proper custom scan node for adaptive executor
- Switch between the executors, add GUC to set the pool size
- Add non-adaptive regression test suites
- Enable CIRCLE CI for non-adaptive tests
- Adjust test output files
* Add slow start interval to the executor
* Expose max_cached_connection_per_worker to user
* Do not start slow when there are cached connections
* Consider ExecutorSlowStartInterval in NextEventTimeout
* Fix memory issues with ReceiveResults().
* Disable executor via TaskExecutorType
* Make sure to execute the tests with the other executor
* Use task_executor_type to enable-disable adaptive executor
* Remove useless code
* Adjust the regression tests
* Add slow start regression test
* Rebase to master
* Fix test failures in adaptive executor.
* Rebase to master - 2
* Improve comments & debug messages
* Set force_max_query_parallelization in isolation_citus_dist_activity
* Force max parallelization for creating shards when asked to use exclusive connection.
* Adjust the default pool size
* Expand description of max_adaptive_executor_pool_size GUC
* Update warnings in FinishRemoteTransactionCommit()
* Improve session clean up at the end of execution
Explicitly list all the states that the execution might end,
otherwise warn.
* Remove MULTI_CONNECTION_WAIT_RETRY which is not used at all
* Add more ORDER BYs to multi_mx_partitioning
- All the schema creations on the workers will now be via superuser connections
- If a shard is being repaired or a shard is replicated, we will create the
schema only in the relevant worker; and in all the other cases where a schema
creation is needed, we will block operations until we ensure the schema exists
in all the workers
Adds support for propagation of SET LOCAL commands to all workers
involved in a query. For now, SET SESSION (i.e. plain SET) is not
supported whatsoever, though this code is intended as somewhat of a
base for implementing such support in the future.
As SET LOCAL modifications are scoped to the body of a BEGIN/END xact
block, queries wishing to use SET LOCAL propagation must be within such
a block. In addition, subsequent modifications after e.g. any SAVEPOINT
or ROLLBACK statements will correspondingly push or pop variable mod-
ifications onto an internal stack such that the behavior of changed
values across the cluster will be identical to such behavior on e.g.
single-node PostgreSQL (or equivalently, what values are visible to
the end user by running SHOW on such variables on the coordinator).
If nodes enter the set of participants at some point after SET LOCAL
modifications (or SAVEPOINT, ROLLBACK, etc.) have occurred, the SET
variable state is eagerly propagated to them upon their entrance (this
is identical to, and indeed just augments, the existing logic for the
propagation of the SAVEPOINT "stack").
A new GUC (citus.propagate_set_commands) has been added to control this
behavior. Though the code suggests the valid settings are 'none', 'local',
'session', and 'all', only 'none' (the default) and 'local' are presently
implemented: attempting to use other values will result in an error.
Before this commit, shardPlacements were identified with shardId, nodeName
and nodeport. Instead of using nodeName and nodePort, we now use nodeId
since it apparently has performance benefits in several places in the
code.
Following scenario resulted in distributed deadlock before this commit:
CREATE TABLE partitioning_test(id int, time date) PARTITION BY RANGE (time);
CREATE TABLE partitioning_test_2009 (LIKE partitioning_test);
CREATE TABLE partitioning_test_reference(id int PRIMARY KEY, subid int);
SELECT create_distributed_table('partitioning_test_2009', 'id'),
create_distributed_table('partitioning_test', 'id'),
create_reference_table('partitioning_test_reference');
ALTER TABLE partitioning_test ADD CONSTRAINT partitioning_reference_fkey FOREIGN KEY (id) REFERENCES partitioning_test_reference(id) ON DELETE CASCADE;
ALTER TABLE partitioning_test_2009 ADD CONSTRAINT partitioning_reference_fkey_2009 FOREIGN KEY (id) REFERENCES partitioning_test_reference(id) ON DELETE CASCADE;
ALTER TABLE partitioning_test ATTACH PARTITION partitioning_test_2009 FOR VALUES FROM ('2009-01-01') TO ('2010-01-01');
PG recently started propagating foreign key constraints
to partition tables. This came with a select query
to validate the the constaint.
We are already setting sequential mode execution for this
command. In order for validation select query to respect
this setting we need to explicitly set the GUC.
This commit also handles detach partition part.
Before this commit, Citus supported INSERT...SELECT queries with
ON CONFLICT or RETURNING clauses only for pushdownable ones, since
queries supported via coordinator were utilizing COPY infrastructure
of PG to send selected tuples to the target worker nodes.
After this PR, INSERT...SELECT queries with ON CONFLICT or RETURNING
clauses will be performed in two phases via coordinator. In the first
phase selected tuples will be saved to the intermediate table which
is colocated with target table of the INSERT...SELECT query. Note that,
a utility function to save results to the colocated intermediate result
also implemented as a part of this commit. In the second phase, INSERT..
SELECT query is directly run on the worker node using the intermediate
table as the source table.
The file handling the utility functions (DDL) for citus organically grew over time and became unreasonably large. This refactor takes that file and refactored the functionality into separate files per command. Initially modeled after the directory and file layout that can be found in postgres.
Although the size of the change is quite big there are barely any code changes. Only one two functions have been added for readability purposes:
- PostProcessIndexStmt which is extracted from PostProcessUtility
- PostProcessAlterTableStmt which is extracted from multi_ProcessUtility
A README.md has been added to `src/backend/distributed/commands` describing the contents of the module and every file in the module.
We need more documentation around the overloading of the COPY command, for now the boilerplate has been added for people with better knowledge to fill out.
With this commit, we all partitioned distributed tables with
replication factor > 1. However, we also have many restrictions.
In summary, we disallow all kinds of modifications (including DDLs)
on the partition tables. Instead, the user is allowed to run the
modifications over the parent table.
The necessity for such a restriction have two aspects:
- We need to acquire shard resource locks appropriately
- We need to handle marking partitions INVALID in case
of any failures. Note that, in theory, the parent table
should also become INVALID, which is too aggressive.
This commit fixes a bug where a concurrent DROP TABLE deadlocks
with SELECT (or DML) when the SELECT is executed from the workers.
The problem was that Citus used to remove the metadata before
droping the table on the workers. That creates a time window
where the SELECT starts running on some of the nodes and DROP
table on some of the other nodes.
When a hash distributed table have a foreign key to a reference
table, there are few restrictions we have to apply in order to
prevent distributed deadlocks or reading wrong results.
The necessity to apply the restrictions arise from cascading
nature of foreign keys. When a foreign key on a reference table
cascades to a distributed table, a single operation over a single
connection can acquire locks on multiple shards of the distributed
table. Thus, any parallel operation on that distributed table, in the
same transaction should not open parallel connections to the shards.
Otherwise, we'd either end-up with a self-distributed deadlock or
read wrong results.
As briefly described above, the restrictions that we apply is done
by tracking the distributed/reference relation accesses inside
transaction blocks, and act accordingly when necessary.
The two main rules are as follows:
- Whenever a parallel distributed relation access conflicts
with a consecutive reference relation access, Citus errors
out
- Whenever a reference relation access is followed by a
conflicting parallel relation access, the execution mode
is switched to sequential mode.
There are also some other notes to mention:
- If the user does SET LOCAL citus.multi_shard_modify_mode
TO 'sequential';, all the queries should simply work with
using one connection per worker and sequentially executing
the commands. That's obviously a slower approach than Citus'
usual parallel execution. However, we've at least have a way
to run all commands successfully.
- If an unrelated parallel query executed on any distributed
table, we cannot switch to sequential mode. Because, the essense
of sequential mode is using one connection per worker. However,
in the presence of a parallel connection, the connection manager
picks those connections to execute the commands. That contradicts
with our purpose, thus we error out.
- COPY to a distributed table cannot be executed in sequential mode.
Thus, if we switch to sequential mode and COPY is executed, the
operation fails and there is currently no way of implementing that.
Note that, when the local table is not empty and create_distributed_table
is used, citus uses COPY internally. Thus, in those cases,
create_distributed_table() will also fail.
- There is a GUC called citus.enforce_foreign_key_restrictions
to disable all the checks. We added that GUC since the restrictions
we apply is sometimes a bit more restrictive than its necessary.
The user might want to relax those. Similarly, if you don't have
CASCADEing reference tables, you might consider disabling all the
checks.
- changes in ruleutils_11.c is reflected
- vacuum statement api change is handled. We now allow
multi-table vacuum commands.
- some other function header changes are reflected
- api conflicts between PG11 and earlier versions
are handled by adding shims in version_compat.h
- various regression tests are fixed due output and
functionality in PG1
- no change is made to support new features in PG11
they need to be handled by new commit
Previously, we prevented creation of partitioned tables on Citus MX.
We decided to not focus on this feature until there is a need. Since
now there are requests for this feature, we are implementing support
for partitioned tables on Citus MX.
Postgres provides OS agnosting formatting macros for
formatting 64 bit numbers. Replaced %ld %lu with
INT64_FORMAT and UINT64_FORMAT respectively.
Also found some incorrect usages of formatting
flags and fixed them.
It's possible to build INSERT SELECT queries which include implicit
casts, currently we attempt to support these by adding explicit casts to
the SELECT query, but this sometimes crashes because we don't update all
nodes with the new types. (SortClauses, for instance)
This commit removes those explicit casts and passes an unmodified SELECT
query to the COPY executor (how we implement INSERT SELECT under the
scenes). In lieu of those cases, COPY has been given some extra logic to
inspect queries, notice that the types don't line up with the table it's
supposed to be inserting into, and "manually" casting every tuple before
sending them to workers.
When a NULL connection is provided to PQerrorMessage(), the
returned error message is a static text. Modifying that static
text, which doesn't necessarly be in a writeable memory, is
dangreous and might cause a segfault.
For partitioned tables, PostgreSQL opens partition and its partitions
in BeginCopyFrom and it expects its caller to close those relations.
However, we do not have quick access to opened relations and performing
special operations for partitioned tables isn't necessary in coordinator
node. Therefore before calling BeginCopyFrom, we change relkind of those
partitioned tables to RELKIND_RELATION. This prevents PostgreSQL to open
its partitions as well.
With this PR, Citus starts to support all possible ways to create
distributed partitioned tables. These are;
- Distributing already created partitioning hierarchy
- CREATE TABLE ... PARTITION OF a distributed_table
- ALTER TABLE distributed_table ATTACH PARTITION non_distributed_table
- ALTER TABLE distributed_table ATTACH PARTITION distributed_table
We also support DETACHing partitions from partitioned tables and propogating
TRUNCATE and DDL commands to distributed partitioned tables.
This PR also refactors some parts of distributed table creation logic.
This commit is preperation for introducing distributed partitioned
table support. We want to clean and refactor some code in distributed
table creation logic so that we can handle partitioned tables in more
robust way.
- master_add_node enforces that there is only one primary per group
- there's also a trigger on pg_dist_node to prevent multiple primaries
per group
- functions in metadata cache only return primary nodes
- Rename ActiveWorkerNodeList -> ActivePrimaryNodeList
- Rename WorkerGetLive{Node->Group}Count()
- Refactor WorkerGetRandomCandidateNode
- master_remove_node only complains about active shard placements if the
node being removed is a primary.
- master_remove_node only deletes all reference table placements in the
group if the node being removed is the primary.
- Rename {Node->NodeGroup}HasShardPlacements, this reflects the behavior it
already had.
- Rename DeleteAllReferenceTablePlacementsFrom{Node->NodeGroup}. This also
reflects the behavior it already had, but the new signature forces the
caller to pass in a groupId
- Rename {WorkerGetLiveGroup->ActivePrimaryNode}Count
Adds support for PostgreSQL 10 by copying in the requisite ruleutils
and updating all API usages to conform with changes in PostgreSQL 10.
Most changes are fairly minor but they are numerous. One particular
obstacle was the change in \d behavior in PostgreSQL 10's psql; I had
to add SQL implementations (views, mostly) to mimic the pre-10 output.
Add a second implementation of INSERT INTO distributed_table SELECT ... that is used if
the query cannot be pushed down. The basic idea is to execute the SELECT query separately
and pass the results into the distributed table using a CopyDestReceiver, which is also
used for COPY and create_distributed_table. When planning the SELECT, we go through
planner hooks again, which means the SELECT can also be a distributed query.
EXPLAIN is supported, but EXPLAIN ANALYZE is not because preventing double execution was
a lot more complicated in this case.
So far citus used postgres' predicate proofing logic for shard
pruning, except for INSERT and COPY which were already optimized for
speed. That turns out to be too slow:
* Shard pruning for SELECTs is currently O(#shards), because
PruneShardList calls predicate_refuted_by() for every
shard. Obviously using an O(N) type algorithm for general pruning
isn't good.
* predicate_refuted_by() is quite expensive on its own right. That's
primarily because it's optimized for doing a single refutation
proof, rather than performing the same proof over and over.
* predicate_refuted_by() does not keep persistent state (see 2.) for
function calls, which means that a lot of syscache lookups will be
performed. That's particularly bad if the partitioning key is a
composite key, because without a persistent FunctionCallInfo
record_cmp() has to repeatedly look-up the type definition of the
composite key. That's quite expensive.
Thus replace this with custom-code that works in two phases:
1) Search restrictions for constraints that can be pruned upon
2) Use those restrictions to search for matching shards in the most
efficient manner available:
a) Binary search / Hash Lookup in case of hash partitioned tables
b) Binary search for equal clauses in case of range or append
tables without overlapping shards.
c) Binary search for inequality clauses, searching for both lower
and upper boundaries, again in case of range or append
tables without overlapping shards.
d) exhaustive search testing each ShardInterval
My measurements suggest that we are considerably, often orders of
magnitude, faster than the previous solution, even if we have to fall
back to exhaustive pruning.
All callers fetch a cache entry and extract/compute arguments for the
eventual FindShardInterval call, so it makes more sense to refactor
into that function itself; this solves the use-after-free bug, too.
With this change we add an option to add a node without replicating all reference
tables to that node. If a node is added with this option, we mark the node as
inactive and no queries will sent to that node.
We also added two new UDFs;
- master_activate_node(host, port):
- marks node as active and replicates all reference tables to that node
- master_add_inactive_node(host, port):
- only adds node to pg_dist_node
This change ignores `citus.replication_model` setting and uses the
statement based replication in
- Tables distributed via the old `master_create_distributed_table` function
- Append and range partitioned tables, even if created via
`create_distributed_table` function
This seems like the easiest solution to #1191, without changing the existing
behavior and harming existing users with custom scripts.
This change also prevents RF>1 on streaming replicated tables on `master_create_worker_shards`
Prior to this change, `master_create_worker_shards` command was not checking
the replication model of the target table, thus allowing RF>1 with streaming
replicated tables. With this change, `master_create_worker_shards` errors
out on the case.
- Break CheckShardPlacements into multiple functions (The most important
is MarkFailedShardPlacements), so that we can get rid of the global
CoordinatedTransactionUses2PC.
- Call MarkFailedShardPlacements in the router executor, so we mark
shards as invalid and stop using them while inside transaction blocks.
This adds a replication_model GUC which is used as the replication
model for any new distributed table that is not a reference table.
With this change, tables with replication factor 1 are no longer
implicitly MX tables.
The GUC is similarly respected during empty shard creation for e.g.
existing append-partitioned tables. If the model is set to streaming
while replication factor is greater than one, table and shard creation
routines will error until this invalid combination is corrected.
Changing this parameter requires superuser permissions.
This enables proper transactional behaviour for copy and relaxes some
restrictions like combining COPY with single-row modifications. It
also provides the basis for relaxing restrictions further, and for
optionally allowing connection caching.
With this change we introduce new UDF, upgrade_to_reference_table, which can be used to
upgrade existing broadcast tables reference tables. For upgrading, we require that given
table contains only one shard.
We have one replication of reference table for each node. Therefore all problems with
replication factor > 1 also applies to reference table. As a solution we will not allow
foreign keys on reference tables. It is not possible to define foreign key from, to or
between reference tables.
With this commit, we implemented some basic features of reference tables.
To start with, a reference table is
* a distributed table whithout a distribution column defined on it
* the distributed table is single sharded
* and the shard is replicated to all nodes
Reference tables follows the same code-path with a single sharded
tables. Thus, broadcast JOINs are applicable to reference tables.
But, since the table is replicated to all nodes, table fetching is
not required any more.
Reference tables support the uniqueness constraints for any column.
Reference tables can be used in INSERT INTO .. SELECT queries with
the following rules:
* If a reference table is in the SELECT part of the query, it is
safe join with another reference table and/or hash partitioned
tables.
* If a reference table is in the INSERT part of the query, all
other participating tables should be reference tables.
Reference tables follow the regular co-location structure. Since
all reference tables are single sharded and replicated to all nodes,
they are always co-located with each other.
Queries involving only reference tables always follows router planner
and executor.
Reference tables can have composite typed columns and there is no need
to create/define the necessary support functions.
All modification queries, master_* UDFs, EXPLAIN, DDLs, TRUNCATE,
sequences, transactions, COPY, schema support works on reference
tables as expected. Plus, all the pre-requisites associated with
distribution columns are dismissed.
With this PR, we add foreign key support to ALTER TABLE commands. For now,
we only support foreign constraint creation via ALTER TABLE query, if it
is only subcommand in ALTER TABLE subcommand list.
We also only allow foreign key creation if replication factor is 1.
At the moment, we do not support foreign constraints if replication factor is greater
than 1. However foreign constraints can be used in cloud with high availability option.
Therefore we do not want to create an impression such that foreign constraints with
high availability is not supported at all. We call users to action with this error
message.
Added a new UDF, mark_tables_colocated(), to colocate tables with the same
configuration (shard count, shard replication count and distribution column type).
With this change, we now push down foreign key constraints created during CREATE TABLE
statements. We also start to send foreign constraints during shard move along with
other DDL statements
create_reference_table() creates a hash distributed table with shard count
equals to 1 and replication factor equals to shard_replication_factor
configuration value.
This change adds the required infrastructure about metadata snapshot from MX
codebase into Citus, mainly metadata_sync.c file and master_metadata_snapshot UDF.
So far placements were assigned an Oid, but that was just used to track
insertion order. It also did so incompletely, as it was not preserved
across changes of the shard state. The behaviour around oid wraparound
was also not entirely as intended.
The newly introduced, explicitly assigned, IDs are preserved across
shard-state changes.
The prime goal of this change is not to improve ordering of task
assignment policies, but to make it easier to reference shards. The
newly introduced UpdateShardPlacementState() makes use of that, and so
will the in-progress connection and transaction management changes.
Fixescitusdata/citus#714
On `InsertShardRow`, we previously called `CommandCounterIncrement()` before
`CitusInvalidateRelcacheByRelid(relationId);`. This might prevent to skip
invalidation of the distributed table in the next access within the same session.
UNIQUE or PRIMARY KEY constraints. Also, properly propagate valid
EXCLUDE constraints to worker shard tables.
If an EXCLUDE constraint includes the distribution column,
the operator must be an equality operator.
Tests in regression suite for exclusion constraints that include
the partition column, omit it, and include it but with non-equality
operator. Regression tests also verify that valid exclusion constraints
are propagated to the shard tables. And the tests work in different
timezones now.
Fixescitusdata/citus#748 and citusdata/citus#778.
Three changes here to get to true multi-statement, multi-relation DDL
transactions (same functionality pre-5.2, with benefits of atomicity):
1. Changed the multi-shard utility hook to always run (consistency
with router executor hook, removes ad-hoc "installed" boolean)
2. Change the global connection list in multi_shard_transaction to
instead be a hash; update related functions to operate on global
hash instead of local hash/global list
3. Remove check within DDL code to prevent subsequent DDL commands;
place unset/reset guard around call to ConnectToNode to permit
connecting to additional nodes after DDL transaction has begun
In addition, code has been added to raise an error if a ROLLBACK TO
SAVEPOINT is attempted (similar to router executor), and comprehensive
tests execute all multi-DDL scenarios (full success, user ROLLBACK, any
actual errors (say, duplicate index), partial failure (duplicate index
on one node but not others), partial COMMIT (one node fails), and 2PC
partial PREPARE (one node fails)). Interleavings with other commands
(DML, \copy) are similarly all covered.
To permit use with ZomboDB (https://github.com/zombodb/zombodb), two
changes were necessary:
1. Permit use of `tableoid` system column in queries
2. Extend relation names appearing in index expressions
The first is accomplished by simply changing the deparse logic to allow
system columns in queries destined for distributed tables. The latter
was slightly more complex, given that DDL extension currently occurs on
workers. But since indexes cannot reference tables other than the one
being indexed, it is safe to look for any relation reference ending in
a '*' character and extend their penultimate segments with a shard id.
This change also adds an error to prevent users from distributing any
relations using the WITH (OIDS) feature, which is unsupported.
Before this change, we do not check whether given table which already contains any data
in master_create_distributed_table command. If that table contains any data, making it
it distributed, makes that data hidden to user. With this change, we now gave error to
user if the table contains data.
Recent changes to DDL and transaction logic resulted in a "regression"
from the viewpoint of users. Previously, DDL commands were allowed in
multi-command transaction blocks, though they were not processed in any
actual transactional manner. We improved the atomicity of our DDL code,
but added a restriction that DDL commands themselves must not occur in
any BEGIN/END transaction block.
To give users back the original functionality (and improved atomicity)
we now keep track of whether a multi-command transaction has modified
data (DML) or schema (DDL). Interleaving the two modification types in
a single transaction is disallowed.
This first step simply permits a single DDL command in such a block,
admittedly an incomplete solution, but one which will permit us to add
full multi-DDL command support in a subsequent commit.
Fixes#513
This change modifies the DDL Propagation logic so that DDL queries
are propagated via 2-Phase Commit protocol. This way, failures during
the execution of distributed DDL commands will not leave the table in
an intermediate state and the pending prepared transactions can be
commited manually.
DDL commands are not allowed inside other transaction blocks or functions.
DDL commands are performed with 2PC regardless of the value of
`citus.multi_shard_commit_protocol` parameter.
The workflow of the successful case is this:
1. Open individual connections to all shard placements and send `BEGIN`
2. Send `SELECT worker_apply_shard_ddl_command(<shardId>, <DDL Command>)`
to all connections, one by one, in a serial manner.
3. Send `PREPARE TRANSCATION <transaction_id>` to all connections.
4. Sedn `COMMIT` to all connections.
Failure cases:
- If a worker problem occurs before sending of all DDL commands is finished, then
all changes are rolled back.
- If a worker problem occurs after all DDL commands are sent but not after
`PREPARE TRANSACTION` commands are finished, then all changes are rolled back.
However, if a worker node is failed, then the prepared transactions in that worker
should be rolled back manually.
- If a worker problem occurs during `COMMIT PREPARED` statements are being sent,
then the prepared transactions on the failed workers should be commited manually.
- If master fails before the first 'PREPARE TRANSACTION' is sent, then nothing is
changed on workers.
- If master fails during `PREPARE TRANSACTION` commands are being sent, then the
prepared transactions on workers should be rolled back manually.
- If master fails during `COMMIT PREPARED` or `ROLLBACK PREPARED` commands are being
sent, then the remaining prepared transactions on the workers should be handled manually.
This change also helps with #480, since failed DDL changes no longer mark
failed placements as inactive.
Fixes#463
OID of user-defined types may be different in master and worker nodes. This causes errors
while sending data between nodes with binary nodes. Because binary copy format adds OID
of the element if it is in an array. The code adding OID is in PostgreSQL code, therefore
we cannot change it. Instead we decided to use text format if we try to send array of
user-defined type.
Fixes#550, fixes#545
If table name contains special characters, it needs to be escaped. However in some cases,
we escape table name before appending shardId, which causes syntax error in the queries
sent to worker nodes. With this change we now append shardId before escaping table names.
Fixes#10
This change creates a new UDF: master_modify_multiple_shards
Parameters:
modify_query: A simple DELETE or UPDATE query as a string.
The UDF is similar to the existing master_apply_delete_command UDF.
Basically, given the modify query, it prunes the shard list, re-constructs
the query for each shard and sends the query to the placements.
Depending on the value of citus.multi_shard_commit_protocol, the commit
can be done in one-phase or two-phase manner.
Limitations:
* It cannot be called inside a transaction block
* It only be called with simple operator expressions (like Single Shard Modify)
Sample Usage:
```
SELECT master_modify_multiple_shards(
'DELETE FROM customer_delete_protocol WHERE c_custkey > 500 AND c_custkey < 500');
```
Now, we can copy to an append-partitioned distributed relation from
any worker node by providing master options such as;
COPY relation_name FROM file_path WITH (delimiter '|', master_host 'localhost', master_port 5432);
where master_port is optional and default is 5432.
This change renames the distributed transaction manager parameter from
citus.copy_transaction_manager to citus.multi_shard_commit_protocol.
Distributed transaction manager has been used only by the COPY on hash
partitioned tables but it can be used by upcoming features so, we needed
to rename so that its name do not contain a reference to COPY.
The change also includes renames like transaction_manager_options to
commit_protocol_options and TRANSACTION_MANAGER_1PC to COMMIT_PROTOCOL_1PC.
With this change, declaration of MultiShardCommitProtocol (was
CopyTransactionManager) is moved from multi_copy.c to multi_transaction.c.
Previously several commands, amongst them commands like
master_create_distributed_table(), were allowed for everyone. That's not
good: Even though citus currently requires superuser permissions, we
shouldn't allow non-superusers to perform actions as sensitive as making
a table distributed.
There's no checks on the worker_* functions, as these usually just punt
the action to underlying postgres functionality, which then perform the
necessary checks.
So far we've always used libpq defaults when connecting to workers; bar
special environment variables being set that'll always be the user that
started the server. That's not desirable because it prevents using
users with fewer privileges.
Thus change the various APIs creating connections to workers to always
use usernames. That means:
1) MultiClientConnect() needs to, optionally, accept a username
2) GetOrEstablishConnection(), including the underlying cache, need to
use the current user as part of the connection cache key. That way
connections for separate users are distinct, and we always use one
with the correct authorization.
3) The task tracker needs to keep track of the username associated with
a task, so it can use it when establishing connections outside the
originating session.
This commit adds a fast shard pruning path for INSERTs on
hash-partitioned tables. The rationale behind this change is
that if there exists a sorted shard interval array, a single
index lookup on the array allows us to find the corresponding
shard interval. As mentioned above, we need a sorted
(wrt shardminvalue) shard interval array. Thus, this commit
updates shardIntervalArray to sortedShardIntervalArray in the
metadata cache. Then uses the low-level API that is defined in
multi_copy to handle the fast shard pruning.
The performance impact of this change is more apparent as more
shards exist for a distributed table. Previous implementation
was relying on linear search through the shard intervals. However,
this commit relies on constant lookup time on shard interval
array. Thus, the shard pruning becomes less dependent on the
shard count.
All citusdb references in
- extension, binary names
- file headers
- all configuration name prefixes
- error/warning messages
- some functions names
- regression tests
are changed to be citus.