DESCRIPTION: Fix schema leak on CREATE INDEX statement
When a CREATE INDEX is cached between execution we might leak the schema name onto the cached statement of an earlier execution preventing the right index to be created.
Even though the cache is cleared when the search_path changes we can trigger this behaviour by having the schema already on the search path before a colliding table is created in a schema earlier on the `search_path`. When calling an unqualified create index via a function (used to trigger the caching behaviour) we see that the index is created on the wrong table after the schema leaked onto the statement.
By copying the complete `PlannedStmt` and `utilityStmt` during our planning phase for distributed ddls we make sure we are not leaking the schema name onto a cached data structure.
Caveat; COPY statements already have a lot of parsestree copying ongoing without directly putting it back on the `pstmt`. We should verify that copies modify the statement and potentially copy the complete `pstmt` there already.
/*
* local_executor.c
*
* The scope of the local execution is locally executing the queries on the
* shards. In other words, local execution does not deal with any local tables
* that are not shards on the node that the query is being executed. In that sense,
* the local executor is only triggered if the node has both the metadata and the
* shards (e.g., only Citus MX worker nodes).
*
* The goal of the local execution is to skip the unnecessary network round-trip
* happening on the node itself. Instead, identify the locally executable tasks and
* simply call PostgreSQL's planner and executor.
*
* The local executor is an extension of the adaptive executor. So, the executor uses
* adaptive executor's custom scan nodes.
*
* One thing to note that Citus MX is only supported with replication factor = 1, so
* keep that in mind while continuing the comments below.
*
* On the high level, there are 3 slightly different ways of utilizing local execution:
*
* (1) Execution of local single shard queries of a distributed table
*
* This is the simplest case. The executor kicks at the start of the adaptive
* executor, and since the query is only a single task the execution finishes
* without going to the network at all.
*
* Even if there is a transaction block (or recursively planned CTEs), as long
* as the queries hit the shards on the same, the local execution will kick in.
*
* (2) Execution of local single queries and remote multi-shard queries
*
* The rule is simple. If a transaction block starts with a local query execution,
* all the other queries in the same transaction block that touch any local shard
* have to use the local execution. Although this sounds restrictive, we prefer to
* implement in this way, otherwise we'd end-up with as complex scenarious as we
* have in the connection managements due to foreign keys.
*
* See the following example:
* BEGIN;
* -- assume that the query is executed locally
* SELECT count(*) FROM test WHERE key = 1;
*
* -- at this point, all the shards that reside on the
* -- node is executed locally one-by-one. After those finishes
* -- the remaining tasks are handled by adaptive executor
* SELECT count(*) FROM test;
*
*
* (3) Modifications of reference tables
*
* Modifications to reference tables have to be executed on all nodes. So, after the
* local execution, the adaptive executor keeps continuing the execution on the other
* nodes.
*
* Note that for read-only queries, after the local execution, there is no need to
* kick in adaptive executor.
*
* There are also few limitations/trade-offs that is worth mentioning. First, the
* local execution on multiple shards might be slow because the execution has to
* happen one task at a time (e.g., no parallelism). Second, if a transaction
* block/CTE starts with a multi-shard command, we do not use local query execution
* since local execution is sequential. Basically, we do not want to lose parallelism
* across local tasks by switching to local execution. Third, the local execution
* currently only supports queries. In other words, any utility commands like TRUNCATE,
* fails if the command is executed after a local execution inside a transaction block.
* Forth, the local execution cannot be mixed with the executors other than adaptive,
* namely task-tracker, real-time and router executors. Finally, related with the
* previous item, COPY command cannot be mixed with local execution in a transaction.
* The implication of that any part of INSERT..SELECT via coordinator cannot happen
* via the local execution.
*/
* Add creating a citus cluster script
Creating a citus cluster is automated.
Before running this script:
- Citus should be installed and its control file should be added to postgres. (make install)
- Postgres should be installed.
* Initialize upgrade test table and fill
* Finalize the layout of upgrade tests
Postgres upgrade function is added.
The newly added UDFs(citus_prepare_pg_upgrade, citus_finish_pg_upgrade) are used to
perform upgrade.
* Refactor upgrade test and add config file
* Add schedules for upgrade testing
* Use pg_regress for upgrade tests
pg_regress is used for creating a simple distributed table in
upgrade tests. After upgrading another schedule is used to verify
that the distributed table exists. Router and realtime queries are
used for verifying.
* Run upgrade tests as a postgres user in a temp dir
postgres user is used for psql to be consistent at running tests.
A temp dir is created and the temp dir's permissions are changed so
that postgres user can access it. All psql commands are now run with
postgres user.
"Select * from t" query is changed as "Select * from t order by a"
so that the result is always in the same order.
* Add docopt and arguments for the upgrade script
Docopt dependency is added to parse flags in script.
Some refactoring in variable names is done.
* Add readme for upgrade tests
* Refactor upgrade tests
Use relative data path instead of absolute assuming that this script will
always be run from 'src/test/regress'
Remove 'citus-path' flag
Use specific version for docopt instead of *
Use named args in string formatting
* Resolve a security problem
Instead of using string formatting in subprocess.call, arguments
list is used. Otherwise users could do shell injection.
Shell = True is removed from subprocess call as it is not recommended
to use this.
* Add how the test works to readme
* Refactor some variables to be consistent
* Update upgrade script based on the reviews
It was possible that postgres server would stay running even when the script
crashes, atexit library is used to ensure that we always do a teardown where we stop
the databases.
Some formatting is done in the code for better readability.
Config class is used instead of a dictonary.
A target for upgrade test is added to makefile.
Unused flags/functions/variables are removed.
* Format commands and remove unnecessary flag from readme
This is a bug that got in when we inlined the body of a function into this loop. Earlier revisions had two loops, hence a function that would be reused.
With a return instead of a continue the list of dependencies being walked is dependent on the order in which we find them in pg_depend. This became apparent during pg12 compatibility. The order of entries in pg12 was luckily different causing a random test to fail due to this return.
By changing it to a continue we only skip the entries that we don’t want to follow instead of skipping all entries that happen to be found later.
sidefix for more stable isolation tests around ensure dependency
DESCRIPTION: Refactor ensure schema exists to dependency exists
Historically we only supported schema's as table dependencies to be created on the workers before a table gets distributed. This PR puts infrastructure in place to walk pg_depend to figure out which dependencies to create on the workers. Currently only schema's are supported as objects to create before creating a table.
We also keep track of dependencies that have been created in the cluster. When we add a new node to the cluster we use this catalog to know which objects need to be created on the worker.
Side effect of knowing which objects are already distributed is that we don't have debug messages anymore when creating schema's that are already created on the workers.
master_deactivate_node is updated to decrement the replication factor
Otherwise deactivation could have create_reference_table produce a second record
UpdateColocationGroupReplicationFactor is renamed UpdateColocationGroupReplicationFactorForReferenceTables
& the implementation looks up the record based on distributioncolumntype == InvalidOid, rather than by id
Otherwise the record's replication factor fails to be maintained when there are no reference tables
DESCRIPTION: Add functions to help with postgres upgrades
Currently there is [a list of manual steps](https://docs.citusdata.com/en/v8.2/admin_guide/upgrading_citus.html?highlight=upgrade#upgrading-postgresql-version-from-10-to-11) to perform during a postgres upgrade. These steps guarantee our catalog tables are kept and counter values are maintained across upgrades.
Having more than 1 command in our docs for users to manually execute during upgrades is error prone for both the user, and our docs. There are already 2 catalog tables that have been introduced to citus that have not been added to our docs for backing up during upgrades (`pg_authinfo` and `pg_dist_poolinfo`).
As we add more functionality to citus we run into situations where there are more steps required either before or after the upgrade. At the same time, when we move catalog tables to a place where the contents will be maintained automatically during upgrades we could have less steps in our docs. This will come to a hard to maintain matrix of citus versions and steps to be performed.
Instead we could take ownership of these steps within the extension itself. This PR introduces two new functions for the user to use instead of long lists of error prone instructions to follow.
- `citus_prepare_pg_upgrade`
This function should be called by the user right before shutting down the cluster. This will ensure all citus catalog tables are backed up in a location where the information will be retained during an upgrade.
- `citus_finish_pg_upgrade`
This function should be called right after a pg_upgrade of the cluster. This will restore the catalog tables to the state before the upgrade happend.
Both functions need to be executed both on the coordinator and on all the workers, in the same fashion our current documentation instructs to do.
There are two known problems with this function in its current form, which is also a problem with our docs. We should schedule time in the future to improve on this, but having it automated now is better as we are about to add extra steps to take after upgrades.
- When you install citus in a clean cluster we do enable ssl for communication between the coordinator and the workers. If an upgrade to a clean cluster is performed we do not setup ssl on the new cluster causing the communication to fail.
- There are no automated tests added in this PR to execute an upgrade test durning every build.
Our current test infrastructure does not allow for 2 versions of postgres to exist in the same environment. We will need to invest time to create a new testing harness that could run the following scenario:
1. Create cluster
2. Run extensible scripts to execute arbitrary statements on this cluster
3. Perform an upgrade by preparing, upgrading and finishing
4. Run extensible scripts to verify all objects created by earlier scripts exists in correct form in the upgraded cluster
Given the non trivial amount of work involved for such a suite I'd like to land this before we have
automated testing.
On a side note; As the reviewer noticed, the tables created in the public namespace are not visible in `psql` with `\d`. The backup catalog tables have the same name as the tables in `pg_catalog`. Due to postgres internals `pg_catalog` is first in the search path and therefore the non-qualified name would alwasy resolve to `pg_catalog.pg_dist_*`. Internally this is called a non-visible table as it would resolve to a different table without a qualified name. Only visible tables are shown with `\d`.
Before this commit, we've recorded the relation accesses in 3 different
places
- FindPlacementListConnection -- applies all executor in tx block
- StartPlacementExecutionOnSession() -- adaptive executor only
- StartPlacementListConnection() -- router/real-time only
This is different than Citus 8.2, and could lead to query execution times
increase considerably on multi-shard commands in transaction block
that are on partitioned tables.
Benchmarks:
```
1+8 c5.4xlarge cluster
Empty distributed partitioned table with 365 partitions: https://gist.github.com/onderkalaci/1edace4ed6bd6f061c8a15594865bb51#file-partitions_365-sql
./pgbench -f /tmp/multi_shard.sql -c10 -j10 -P 1 -T 120 postgres://citus:w3r6KLJpv3mxe9E-NIUeJw@c.fy5fkjcv45vcepaogqcaskmmkee.db.citusdata.com:5432/citus?sslmode=require
cat /tmp/multi_shard.sql
BEGIN;
DELETE FROM collections_list;
DELETE FROM collections_list;
DELETE FROM collections_list;
COMMIT;
cat /tmp/single_shard.sql
BEGIN;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
COMMIT;
cat /tmp/mix.sql
BEGIN;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list;
DELETE FROM collections_list;
DELETE FROM collections_list;
COMMIT;
```
The table shows `latency average` of pgbench runs explained above, so we have a pretty solid improvement even over 8.2.2.
| Test | Citus 8.2.2 | Citus 8.3.1 | Citus 8.3.2 (this branch) | Citus 8.3.1 (FKEYs disabled via GUC) |
| ------------- | ------------- | ------------- |------------- | ------------- |
|multi_shard | 2370.083 ms |3605.040 ms |1324.094 ms |1247.255 ms |
| single_shard | 85.338 ms |120.934 ms |73.216 ms | 78.765 ms |
| mix | 2434.459 ms | 3727.080 ms |1306.456 ms | 1280.326 ms |
Also automated all manual tests around multi user isolation for internal citus udf's
automate upgrade_to_reference_table tests
add negative tests for lock_relation_if_exists
add tests for permissions on worker_cleanup_job_schema_cache
add tests for worker_fetch_partition_file
add tests for worker_merge_files_into_table
fix problem with worker_merge_files_and_run_query when run as non-super user and add tests for behaviour
With this commit, we're introducing the Adaptive Executor.
The commit message consists of two distinct sections. The first part explains
how the executor works. The second part consists of the commit messages of
the individual smaller commits that resulted in this commit. The readers
can search for the each of the smaller commit messages on
https://github.com/citusdata/citus and can learn more about the history
of the change.
/*-------------------------------------------------------------------------
*
* adaptive_executor.c
*
* The adaptive executor executes a list of tasks (queries on shards) over
* a connection pool per worker node. The results of the queries, if any,
* are written to a tuple store.
*
* The concepts in the executor are modelled in a set of structs:
*
* - DistributedExecution:
* Execution of a Task list over a set of WorkerPools.
* - WorkerPool
* Pool of WorkerSessions for the same worker which opportunistically
* executes "unassigned" tasks from a queue.
* - WorkerSession:
* Connection to a worker that is used to execute "assigned" tasks
* from a queue and may execute unasssigned tasks from the WorkerPool.
* - ShardCommandExecution:
* Execution of a Task across a list of placements.
* - TaskPlacementExecution:
* Execution of a Task on a specific placement.
* Used in the WorkerPool and WorkerSession queues.
*
* Every connection pool (WorkerPool) and every connection (WorkerSession)
* have a queue of tasks that are ready to execute (readyTaskQueue) and a
* queue/set of pending tasks that may become ready later in the execution
* (pendingTaskQueue). The tasks are wrapped in a ShardCommandExecution,
* which keeps track of the state of execution and is referenced from a
* TaskPlacementExecution, which is the data structure that is actually
* added to the queues and describes the state of the execution of a task
* on a particular worker node.
*
* When the task list is part of a bigger distributed transaction, the
* shards that are accessed or modified by the task may have already been
* accessed earlier in the transaction. We need to make sure we use the
* same connection since it may hold relevant locks or have uncommitted
* writes. In that case we "assign" the task to a connection by adding
* it to the task queue of specific connection (in
* AssignTasksToConnections). Otherwise we consider the task unassigned
* and add it to the task queue of a worker pool, which means that it
* can be executed over any connection in the pool.
*
* A task may be executed on multiple placements in case of a reference
* table or a replicated distributed table. Depending on the type of
* task, it may not be ready to be executed on a worker node immediately.
* For instance, INSERTs on a reference table are executed serially across
* placements to avoid deadlocks when concurrent INSERTs take conflicting
* locks. At the beginning, only the "first" placement is ready to execute
* and therefore added to the readyTaskQueue in the pool or connection.
* The remaining placements are added to the pendingTaskQueue. Once
* execution on the first placement is done the second placement moves
* from pendingTaskQueue to readyTaskQueue. The same approach is used to
* fail over read-only tasks to another placement.
*
* Once all the tasks are added to a queue, the main loop in
* RunDistributedExecution repeatedly does the following:
*
* For each pool:
* - ManageWorkPool evaluates whether to open additional connections
* based on the number unassigned tasks that are ready to execute
* and the targetPoolSize of the execution.
*
* Poll all connections:
* - We use a WaitEventSet that contains all (non-failed) connections
* and is rebuilt whenever the set of active connections or any of
* their wait flags change.
*
* We almost always check for WL_SOCKET_READABLE because a session
* can emit notices at any time during execution, but it will only
* wake up WaitEventSetWait when there are actual bytes to read.
*
* We check for WL_SOCKET_WRITEABLE just after sending bytes in case
* there is not enough space in the TCP buffer. Since a socket is
* almost always writable we also use WL_SOCKET_WRITEABLE as a
* mechanism to wake up WaitEventSetWait for non-I/O events, e.g.
* when a task moves from pending to ready.
*
* For each connection that is ready:
* - ConnectionStateMachine handles connection establishment and failure
* as well as command execution via TransactionStateMachine.
*
* When a connection is ready to execute a new task, it first checks its
* own readyTaskQueue and otherwise takes a task from the worker pool's
* readyTaskQueue (on a first-come-first-serve basis).
*
* In cases where the tasks finish quickly (e.g. <1ms), a single
* connection will often be sufficient to finish all tasks. It is
* therefore not necessary that all connections are established
* successfully or open a transaction (which may be blocked by an
* intermediate pgbouncer in transaction pooling mode). It is therefore
* essential that we take a task from the queue only after opening a
* transaction block.
*
* When a command on a worker finishes or the connection is lost, we call
* PlacementExecutionDone, which then updates the state of the task
* based on whether we need to run it on other placements. When a
* connection fails or all connections to a worker fail, we also call
* PlacementExecutionDone for all queued tasks to try the next placement
* and, if necessary, mark shard placements as inactive. If a task fails
* to execute on all placements, the execution fails and the distributed
* transaction rolls back.
*
* For multi-row INSERTs, tasks are executed sequentially by
* SequentialRunDistributedExecution instead of in parallel, which allows
* a high degree of concurrency without high risk of deadlocks.
* Conversely, multi-row UPDATE/DELETE/DDL commands take aggressive locks
* which forbids concurrency, but allows parallelism without high risk
* of deadlocks. Note that this is unrelated to SEQUENTIAL_CONNECTION,
* which indicates that we should use at most one connection per node, but
* can run tasks in parallel across nodes. This is used when there are
* writes to a reference table that has foreign keys from a distributed
* table.
*
* Execution finishes when all tasks are done, the query errors out, or
* the user cancels the query.
*
*-------------------------------------------------------------------------
*/
All the commits involved here:
* Initial unified executor prototype
* Latest changes
* Fix rebase conflicts to master branch
* Add missing variable for assertion
* Ensure that master_modify_multiple_shards() returns the affectedTupleCount
* Adjust intermediate result sizes
The real-time executor uses COPY command to get the results
from the worker nodes. Unified executor avoids that which
results in less data transfer. Simply adjust the tests to lower
sizes.
* Force one connection per placement (or co-located placements) when requested
The existing executors (real-time and router) always open 1 connection per
placement when parallel execution is requested.
That might be useful under certain circumstances:
(a) User wants to utilize as much as CPUs on the workers per
distributed query
(b) User has a transaction block which involves COPY command
Also, lots of regression tests rely on this execution semantics.
So, we'd enable few of the tests with this change as well.
* For parameters to be resolved before using them
For the details, see PostgreSQL's copyParamList()
* Unified executor sorts the returning output
* Ensure that unified executor doesn't ignore sequential execution of DDLJob's
Certain DDL commands, mainly creating foreign keys to reference tables,
should be executed sequentially. Otherwise, we'd end up with a self
distributed deadlock.
To overcome this situaiton, we set a flag `DDLJob->executeSequentially`
and execute it sequentially. Note that we have to do this because
the command might not be called within a transaction block, and
we cannot call `SetLocalMultiShardModifyModeToSequential()`.
This fixes at least two test: multi_insert_select_on_conflit.sql and
multi_foreign_key.sql
Also, I wouldn't mind scattering local `targetPoolSize` variables within
the code. The reason is that we'll soon have a GUC (or a global
variable based on a GUC) that'd set the pool size. In that case, we'd
simply replace `targetPoolSize` with the global variables.
* Fix 2PC conditions for DDL tasks
* Improve closing connections that are not fully established in unified execution
* Support foreign keys to reference tables in unified executor
The idea for supporting foreign keys to reference tables is simple:
Keep track of the relation accesses within a transaction block.
- If a parallel access happens on a distributed table which
has a foreign key to a reference table, one cannot modify
the reference table in the same transaction. Otherwise,
we're very likely to end-up with a self-distributed deadlock.
- If an access to a reference table happens, and then a parallel
access to a distributed table (which has a fkey to the reference
table) happens, we switch to sequential mode.
Unified executor misses the function calls that marks the relation
accesses during the execution. Thus, simply add the necessary calls
and let the logic kick in.
* Make sure to close the failed connections after the execution
* Improve comments
* Fix savepoints in unified executor.
* Rebuild the WaitEventSet only when necessary
* Unclaim connections on all errors.
* Improve failure handling for unified executor
- Implement the notion of errorOnAnyFailure. This is similar to
Critical Connections that the connection managament APIs provide
- If the nodes inside a modifying transaction expand, activate 2PC
- Fix few bugs related to wait event sets
- Mark placement INACTIVE during the execution as much as possible
as opposed to we do in the COMMIT handler
- Fix few bugs related to scheduling next placement executions
- Improve decision on when to use 2PC
Improve the logic to start a transaction block for distributed transactions
- Make sure that only reference table modifications are always
executed with distributed transactions
- Make sure that stored procedures and functions are executed
with distributed transactions
* Move waitEventSet to DistributedExecution
This could also be local to RunDistributedExecution(), but in that case
we had to mark it as "volatile" to avoid PG_TRY()/PG_CATCH() issues, and
cast it to non-volatile when doing WaitEventSetFree(). We thought that
would make code a bit harder to read than making this non-local, so we
move it here. See comments for PG_TRY() in postgres/src/include/elog.h
and "man 3 siglongjmp" for more context.
* Fix multi_insert_select test outputs
Two things:
1) One complex transaction block is now supported. Simply update
the test output
2) Due to dynamic nature of the unified executor, the orders of
the errors coming from the shards might change (e.g., all of
the queries on the shards would fail, but which one appears
on the error message?). To fix that, we simply added it to
our shardId normalization tool which happens just before diff.
* Fix subeury_and_cte test
The error message is updated from:
failed to execute task
To:
more than one row returned by a subquery or an expression
which is a lot clearer to the user.
* Fix intermediate_results test outputs
Simply update the error message from:
could not receive query results
to
result "squares" does not exist
which makes a lot more sense.
* Fix multi_function_in_join test
The error messages update from:
Failed to execute task XXX
To:
function f(..) does not exist
* Fix multi_query_directory_cleanup test
The unified executor does not create any intermediate files.
* Fix with_transactions test
A test case that just started to work fine
* Fix multi_router_planner test outputs
The error message is update from:
Could not receive query results
To:
Relation does not exists
which is a lot more clearer for the users
* Fix multi_router_planner_fast_path test
The error message is update from:
Could not receive query results
To:
Relation does not exists
which is a lot more clearer for the users
* Fix isolation_copy_placement_vs_modification by disabling select_opens_transaction_block
* Fix ordering in isolation_multi_shard_modify_vs_all
* Add executor locks to unified executor
* Make sure to allocate enought WaitEvents
The previous code was missing the waitEvents for the latch and
postmaster death.
* Fix rebase conflicts for master rebase
* Make sure that TRUNCATE relies on unified executor
* Implement true sequential execution for multi-row INSERTS
Execute the individual tasks executed one by one. Note that this is different than
MultiShardConnectionType == SEQUENTIAL_CONNECTION case (e.g., sequential execution
mode). In that case, running the tasks across the nodes in parallel is acceptable
and implemented in that way.
However, the executions that are qualified here would perform poorly if the
tasks across the workers are executed in parallel. We currently qualify only
one class of distributed queries here, multi-row INSERTs. If we do not enforce
true sequential execution, concurrent multi-row upserts could easily form
a distributed deadlock when the upserts touch the same rows.
* Remove SESSION_LIFESPAN flag in unified_executor
* Apply failure test updates
We've changed the failure behaviour a bit, and also the error messages
that show up to the user. This PR covers majority of the updates.
* Unified executor honors citus.node_connection_timeout
With this commit, unified executor errors out if even
a single connection cannot be established within
citus.node_connection_timeout.
And, as a side effect this fixes failure_connection_establishment
test.
* Properly increment/decrement pool size variables
Before this commit, the idle and active connection
counts were not properly calculated.
* insert_select_executor goes through unified executor.
* Add missing file for task tracker
* Modify ExecuteTaskListExtended()'s signature
* Sort output of INSERT ... SELECT ... RETURNING
* Take partition locks correctly in unified executor
* Alternative implementation for force_max_query_parallelization
* Fix compile warnings in unified executor
* Fix style issues
* Decrement idleConnectionCount when idle connection is lost
* Always rebuild the wait event sets
In the previous implementation, on waitFlag changes, we were only
modifying the wait events. However, we've realized that it might
be an over optimization since (a) we couldn't see any performance
benefits (b) we see some errors on failures and because of (a)
we prefer to disable it now.
* Make sure to allocate enough sized waitEventSet
With multi-row INSERTs, we might have more sessions than
task*workerCount after few calls of RunDistributedExecution()
because the previous sessions would also be alive.
Instead, re-allocate events when the connectino set changes.
* Implement SELECT FOR UPDATE on reference tables
On master branch, we do two extra things on SELECT FOR UPDATE
queries on reference tables:
- Acquire executor locks
- Execute the query on all replicas
With this commit, we're implementing the same logic on the
new executor.
* SELECT FOR UPDATE opens transaction block even if SelectOpensTransactionBlock disabled
Otherwise, users would be very confused and their logic is very likely
to break.
* Fix build error
* Fix the newConnectionCount calculation in ManageWorkerPool
* Fix rebase conflicts
* Fix minor test output differences
* Fix citus indent
* Remove duplicate sorts that is added with rebase
* Create distributed table via executor
* Fix wait flags in CheckConnectionReady
* failure_savepoints output for unified executor.
* failure_vacuum output (pg 10) for unified executor.
* Fix WaitEventSetWait timeout in unified executor
* Stabilize failure_truncate test output
* Add an ORDER BY to multi_upsert
* Fix regression test outputs after rebase to master
* Add executor.c comment
* Rename executor.c to adaptive_executor.c
* Do not schedule tasks if the failed placement is not ready to execute
Before the commit, we were blindly scheduling the next placement executions
even if the failed placement is not on the ready queue. Now, we're ensuring
that if failed placement execution is on a failed pool or session where the
execution is on the pendingQueue, we do not schedule the next task. Because
the other placement execution should be already running.
* Implement a proper custom scan node for adaptive executor
- Switch between the executors, add GUC to set the pool size
- Add non-adaptive regression test suites
- Enable CIRCLE CI for non-adaptive tests
- Adjust test output files
* Add slow start interval to the executor
* Expose max_cached_connection_per_worker to user
* Do not start slow when there are cached connections
* Consider ExecutorSlowStartInterval in NextEventTimeout
* Fix memory issues with ReceiveResults().
* Disable executor via TaskExecutorType
* Make sure to execute the tests with the other executor
* Use task_executor_type to enable-disable adaptive executor
* Remove useless code
* Adjust the regression tests
* Add slow start regression test
* Rebase to master
* Fix test failures in adaptive executor.
* Rebase to master - 2
* Improve comments & debug messages
* Set force_max_query_parallelization in isolation_citus_dist_activity
* Force max parallelization for creating shards when asked to use exclusive connection.
* Adjust the default pool size
* Expand description of max_adaptive_executor_pool_size GUC
* Update warnings in FinishRemoteTransactionCommit()
* Improve session clean up at the end of execution
Explicitly list all the states that the execution might end,
otherwise warn.
* Remove MULTI_CONNECTION_WAIT_RETRY which is not used at all
* Add more ORDER BYs to multi_mx_partitioning
- All the schema creations on the workers will now be via superuser connections
- If a shard is being repaired or a shard is replicated, we will create the
schema only in the relevant worker; and in all the other cases where a schema
creation is needed, we will block operations until we ensure the schema exists
in all the workers
GRANT queries are propagated on Enterprise. If a user attempts to
create a user and run a GRANT query before creating it on workers, we
fail. This issue does not happen in community as the user needs to run
the GRANTs on the workers manually.
When `master_update_node` is called to update a node's location it waits for appropriate locks to become available. This is useful during normal operation as new operations will be blocked till after the metadata update while running operations have time to finish.
When `master_update_node` is called after a node failure it is less useful to wait for running operations to finish as they can't. The lock being held indicates an operation that once attempted to commit will fail as the machine already failed. Now the downside is the failover is postponed till the termination point of the operation. This has been observed by users to take a significant amount of time causing the rest of the system to be observed unavailable.
With this patch it is possible in such situations to invoke `master_update_node` with 2 optional arguments:
- `force` (bool defaults to `false`): When called with true the update of the metadata will be forced to proceed by terminating conflicting backends. A cancel is not enough as the backend might be in idle time (eg. an interactive session, or going back and forth between an appliaction), therefore a more intrusive solution of termination is used here.
- `lock_cooldown` (int defaults to `10000`): This is the time in milliseconds before conflicting backends are terminated. This is to allow the backends to finish cleanly before terminating them. This allows the user to set an upperbound to the expected time to complete the metadata update, eg. performing the failover.
The functionality is implemented by spawning a background worker that has the task of helping a certain backend in acquiring its locks. The backend is either terminated on successful execution of the metadata update, or once the memory context of the expression gets reset, eg. on a cancel of the statement.
Adds support for propagation of SET LOCAL commands to all workers
involved in a query. For now, SET SESSION (i.e. plain SET) is not
supported whatsoever, though this code is intended as somewhat of a
base for implementing such support in the future.
As SET LOCAL modifications are scoped to the body of a BEGIN/END xact
block, queries wishing to use SET LOCAL propagation must be within such
a block. In addition, subsequent modifications after e.g. any SAVEPOINT
or ROLLBACK statements will correspondingly push or pop variable mod-
ifications onto an internal stack such that the behavior of changed
values across the cluster will be identical to such behavior on e.g.
single-node PostgreSQL (or equivalently, what values are visible to
the end user by running SHOW on such variables on the coordinator).
If nodes enter the set of participants at some point after SET LOCAL
modifications (or SAVEPOINT, ROLLBACK, etc.) have occurred, the SET
variable state is eagerly propagated to them upon their entrance (this
is identical to, and indeed just augments, the existing logic for the
propagation of the SAVEPOINT "stack").
A new GUC (citus.propagate_set_commands) has been added to control this
behavior. Though the code suggests the valid settings are 'none', 'local',
'session', and 'all', only 'none' (the default) and 'local' are presently
implemented: attempting to use other values will result in an error.
If replication factor eqauls to 2 and there are two worker nodes,
even if two modifications hit different shards, Citus doesn't use
2PC. The reason is that it doesn't fit into the definition of
"expanding participating worker nodes".
Thus, we're simply fixing the test to fit in the comment
on top of it.
The feature is only intended for getting consistent outputs for the regression tests.
RETURNING does not have any ordering gurantees and with unified executor, the ordering
of query executions on the shards are also becoming unpredictable. Thus, we're enforcing
ordering when a GUC is set.
We implicitly add an `ORDER BY` something equivalent of
`
RETURNING expr1, expr2, .. ,exprN
ORDER BY expr1, expr2, .. ,exprN
`
As described in the code comments as well, this is probably not the most
performant approach we could implement. However, since we're only
targeting regression tests, I don't see any issues with that. If we
decide to expand this to a feature to users, we should revisit the
implementation and improve the performance.
We used to rely on PG function flatten_join_alias_vars
to resolve actual columns referenced in target entry list.
The function goes deep and finds the actual relation. This logic
usually works fine. However, when joins are given an alias, inner
relation names are not visible to target entry entry. Thus relation
resolving should stop when we the target entry column refers an
rte of an aliased join.
We stopped using PG function and provided our own flatten function.
The rule for infinite recursion is the following:
- If the query contains a subquery which is recursively planned, and
no other subqueries can be recursively planned due to correlation
(e.g., LATERAL joins), the planner keeps recursing again and again.
One interesting thing here is that even if a subquery contains only intermediate
result(s), we re-recursively plan that. In the end, the logic in the code does the following:
- Try recursive planning any of the subqueries in the query tree
- If any subquery is recursively planned, call the planner again
where the subquery is replaced with the intermediate result.
- Try recursively planning any of the queries
- If any subquery is recursively planned, call the planner again
where the subquery (in this case it is already intermediate result)
is replaced with the intermediate result.
- Try recursively planning any of the queries
- If any subquery is recursively planned, call the planner again
where the subquery (in this case it is already intermediate result)
is replaced with the intermediate result.
- Try recursively planning any of the queries
- If any subquery is recursively planned, call the planner again
where the subquery (in this case it is already intermediate result)
is replaced with the intermediate result.
......
Following scenario resulted in distributed deadlock before this commit:
CREATE TABLE partitioning_test(id int, time date) PARTITION BY RANGE (time);
CREATE TABLE partitioning_test_2009 (LIKE partitioning_test);
CREATE TABLE partitioning_test_reference(id int PRIMARY KEY, subid int);
SELECT create_distributed_table('partitioning_test_2009', 'id'),
create_distributed_table('partitioning_test', 'id'),
create_reference_table('partitioning_test_reference');
ALTER TABLE partitioning_test ADD CONSTRAINT partitioning_reference_fkey FOREIGN KEY (id) REFERENCES partitioning_test_reference(id) ON DELETE CASCADE;
ALTER TABLE partitioning_test_2009 ADD CONSTRAINT partitioning_reference_fkey_2009 FOREIGN KEY (id) REFERENCES partitioning_test_reference(id) ON DELETE CASCADE;
ALTER TABLE partitioning_test ATTACH PARTITION partitioning_test_2009 FOR VALUES FROM ('2009-01-01') TO ('2010-01-01');
Since flattening query may flatten outer joins' columns into coalesce expr that is
in the USING part, and that was not expected before this commit, these queries were
erroring out. It is fixed by this commit with considering coalesce expression as well.
Before this commit, round-robin task assignment policy was relying
on the taskId. Thus, even inside a transaction, the tasks were
assigned to different nodes. This was especially problematic
while reading from reference tables within transaction blocks.
Because, we had to expand the distributed transaction to many
nodes that are not necessarily already in the distributed transaction.
In this context, we define "Fast Path Planning for SELECT" as trivial
queries where Citus can skip relying on the standard_planner() and
handle all the planning.
For router planner, standard_planner() is mostly important to generate
the necessary restriction information. Later, the restriction information
generated by the standard_planner is used to decide whether all the shards
that a distributed query touches reside on a single worker node. However,
standard_planner() does a lot of extra things such as cost estimation and
execution path generations which are completely unnecessary in the context
of distributed planning.
There are certain types of queries where Citus could skip relying on
standard_planner() to generate the restriction information. For queries
in the following format, Citus does not need any information that the
standard_planner() generates:
SELECT ... FROM single_table WHERE distribution_key = X; or
DELETE FROM single_table WHERE distribution_key = X; or
UPDATE single_table SET value_1 = value_2 + 1 WHERE distribution_key = X;
Note that the queries might not be as simple as the above such that
GROUP BY, WINDOW FUNCIONS, ORDER BY or HAVING etc. are all acceptable. The
only rule is that the query is on a single distributed (or reference) table
and there is a "distribution_key = X;" in the WHERE clause. With that, we
could use to decide the shard that a distributed query touches reside on
a worker node.
Failure&Cancellation tests for initial start_metadata_sync() calls
to worker and DDL queries that send metadata syncing messages to an MX node
Also adds message type definitions for messages that are exchanged
during metadata syncing
-
We used to error out if there is a reference table
in the query participating a union. This has caused
pushdownable queries to be evaluated in coordinator.
Now we let reference tables inside union queries as long
as there is a distributed table in from clause.
Existing join checks (reference table on the outer part)
sufficient enought that we do not need check the join relation
of reference tables.
Previously we allowed task assignment policy to have affect on router queries
with only intermediate results. However, that is erroneous since the code-path
that assigns placements relies on shardIds and placements, which doesn't exists
for intermediate results.
With this commit, we do not apply task assignment policies when a router query
hits only intermediate results.
We disable bunch of planning options on the workers. This might be
risky if any concurrent test relies on EXPLAIN OUTPUT as well. Still,
we want to keep this test, so we should try to not parallelize this
test with such test.
Before this commit, Citus supported INSERT...SELECT queries with
ON CONFLICT or RETURNING clauses only for pushdownable ones, since
queries supported via coordinator were utilizing COPY infrastructure
of PG to send selected tuples to the target worker nodes.
After this PR, INSERT...SELECT queries with ON CONFLICT or RETURNING
clauses will be performed in two phases via coordinator. In the first
phase selected tuples will be saved to the intermediate table which
is colocated with target table of the INSERT...SELECT query. Note that,
a utility function to save results to the colocated intermediate result
also implemented as a part of this commit. In the second phase, INSERT..
SELECT query is directly run on the worker node using the intermediate
table as the source table.
Description: Support round-robin `task_assignment_policy` for queries to reference tables.
This PR allows users to query multiple placements of shards in a round robin fashion. When `citus.task_assignment_policy` is set to `'round-robin'` the planner will use a round robin scheduling feature when multiple shard placements are available.
The primary use-case is spreading the load of reference table queries to all the nodes in the cluster instead of hammering only the first placement of the reference table. Since reference tables share the same path for selecting the shards with single shard queries that have multiple placements (`citus.shard_replication_factor > 1`) this setting also allows users to spread the query load on these shards.
For modifying queries we do not apply a round-robin strategy. This would be negated by an extra reordering step in the executor for such queries where a `first-replica` strategy is enforced.
In recent postgres builds you cannot set client_min_messages to
values higher then ERROR, if will silently set it to ERROR if so.
During some tests we would set it to fatal to hide random values
(eg. pid's of processes) from the test output. This patch will use
different tactics for hiding these values.
After Fast ALTER TABLE ADD COLUMN with a non-NULL default in PG11, physical heaps might not contain all attributes after a ALTER TABLE ADD COLUMN happens. heap_getattr() returns NULL when the physical tuple doesn't contain an attribute. So we should use heap_deform_tuple() in these cases, which fills in the missing attributes.
Our catalog tables evolve over time, and an upgrade might involve some ALTER TABLE ADD COLUMN commands.
Note that we don't need to worry about postgres catalog tables and we can use heap_getattr() for them, because they only change between major versions.
This also fixes#2453.
Assign the distributed transaction id before trying to acquire the
executor advisory locks. This is useful to show this backend in citus
lock graphs (e.g., dump_global_wait_edges() and citus_lock_waits).
I'm pretty sure a lot of this test functionality may be covered in some
of our existing regression tests, but I've included them to ensure we
put all failure-based tests under our new testing method for that kind
of test.
Didn't include lower replication factor, as (for a single-shard mod.),
it's indistinguishable from modifying a reference table. So these all
test modifications which hit a single, replicated shard.
Fairly straightforward; verified that modifications fail atomically if
a worker is down or fails mid-transaction (i.e. all workers need to ack
modifications to reference tables in order to persist changes).
Including several examples from #1926. I couldn't understand why the
recover_prepared_transactions "should be an error", and EXPLAIN has
changed since the original bug (so that it runs EXPLAINs in txns, I
think for EXPLAIN ANALYZE to not have side effects); other than that,
most of the reported bugs now error out rather than crash or return
an empty result set.
VACUUM runs outside of a transaction, so the failure modes for it are
somewhat straightforward, though ANALYZE runs in a 1pc transaction and
multi-table VACUUM can fail between statements (PG 11 and higher).
Tests various failure points during a multi-shard modification within
a transaction with multiple statements. Verifies three cases:
* Reference tables (single shard, many placements)
* Normal table with replication factor two
* Multi-shard table with no replication
In the replication-factor case, we expect shard health to be affected
in some transactions; most others fail the transaction entirely and
all we need verify is that no effects of the transaction are visible.
Had trouble testing the final PREPARE/COMMIT/ROLLBACK phase of the 2pc,
in particular because the error message produced includes the PID of
the backend, which is unpredictable.
Drop schema command fails in mx mode if there
is a partitioned table with active partitions.
This is due to fact that sql drop trigger receives
all the dropped objects including partitions. When
we call drop table on parent partition, it also drops
the partitions on the mx node. This causes the drop
table command on partitions to fail on mx node because
they are already dropped when the partition parent was
dropped.
With this work we did not require the table to exist on
worker_drop_distributed_table.
PG now allows foreign keys on partitioned tables.
Each foreign key constraint on partitioned table
is propagated down to partitions.
We used to create all constraints on shards when we are creating
a new shard, or when just simply moving a shard from one worker
to another. We also used the same logic when creating a copy of
coordinator table in mx node.
With this change we create the constraint on worker node only if
it is not an inherited constraint.
We used to set the execution mode in the truncate trigger. However,
when multiple tables are truncated with a single command, we could
set the execution mode very late. Instead, now set the execution mode
on the utility hook.
By setting the CPU tuple cost so high, we were triggering JIT. Instead,
we should use parallel_tuple_cost.
See: rhaas.blogspot.com/2018/06/using-forceparallelmode-correctly.html
With this commit, we all partitioned distributed tables with
replication factor > 1. However, we also have many restrictions.
In summary, we disallow all kinds of modifications (including DDLs)
on the partition tables. Instead, the user is allowed to run the
modifications over the parent table.
The necessity for such a restriction have two aspects:
- We need to acquire shard resource locks appropriately
- We need to handle marking partitions INVALID in case
of any failures. Note that, in theory, the parent table
should also become INVALID, which is too aggressive.
Reason for the failure is that PG11 introduced a new relation kind
RELKIND_PARTITIONED_INDEX to be used for partitioned indices.
We expanded our check to cover that case.
This commit uses *_walker instead of *_mutator for performance reasons.
Given that we're only updating a functionId in the tree, the approach
seems fine.
PG11 introduced PROCEDURE concept similar to FUNCTION
Procedure's allow committing/rolling back behavior.
This commmit adds regression tests for procedure calls.
With this commit, we implement two views that are very similar
to pg_stat_activity, but showing queries that are involved in
distributed queries:
- citus_dist_stat_activity: Shows all the distributed queries
- citus_worker_stat_activity: Shows all the queries on the shards
that are initiated by distributed queries.
Both views have the same columns in the outputs. In very basic terms, both of the views
are meant to provide some useful insights about the distributed
transactions within the cluster. As the names reveal, both views are similar to pg_stat_activity.
Also note that these views can be pretty useful on Citus MX clusters.
Note that when the views are queried from the worker nodes, they'd not show the distributed
transactions that are initiated from the coordinator node. The reason is that the worker
nodes do not know the host/port of the coordinator. Thus, it is advisable to query the
views from the coordinator.
If we bucket the columns that the views returns, we'd end up with the following:
- Hostnames and ports:
- query_hostname, query_hostport: The node that the query is running
- master_query_host_name, master_query_host_port: The node in the cluster
initiated the query.
Note that for citus_dist_stat_activity view, the query_hostname-query_hostport
is always the same with master_query_host_name-master_query_host_port. The
distinction is mostly relevant for citus_worker_stat_activity. For example,
on Citus MX, a users starts a transaction on Node-A, which starts worker
transactions on Node-B and Node-C. In that case, the query hostnames would be
Node-B and Node-C whereas the master_query_host_name would Node-A.
- Distributed transaction related things:
This is mostly the process_id, distributed transactionId and distributed transaction
number.
- pg_stat_activity columns:
These two views get all the columns from pg_stat_activity. We're basically joining
pg_stat_activity with get_all_active_transactions on process_id.
This test's output changes depending on which worker is
picked for explain (e.g., worker port in the output changes).
Given that the test is only aiming to ensure that CTEs inside
CTEs work fine in DML queries, it should be fine to get rid of
the EXPLAIN. The output is verified to be correct as well.
This commit fixes a bug where a concurrent DROP TABLE deadlocks
with SELECT (or DML) when the SELECT is executed from the workers.
The problem was that Citus used to remove the metadata before
droping the table on the workers. That creates a time window
where the SELECT starts running on some of the nodes and DROP
table on some of the other nodes.
This commit enables support for TRUNCATE on both
distributed table and reference tables.
The basic idea is to acquire lock on the relation by sending
the TRUNCATE command to all metedata worker nodes. We only
skip sending the TRUNCATE command to the node that actually
executus the command to prevent a self-distributed-deadlock.
Make sure that the coordinator sends the commands when the search
path synchronised with the coordinator's search_path. This is only
important when Citus sends the commands that are directly relayed
to the worker nodes. For example, the deparsed DLL commands or
queries always adds schema qualifications to the queries. So, they
do not require this change.
This commit by default enables hiding shard names on MX workers
by simple replacing `pg_table_is_visible()` calls with
`citus_table_is_visible()` calls on the MX worker nodes. The latter
function filters out tables that are known to be shards.
The main motivation of this change is a better UX. The functionality
can be opted out via a GUC.
We also added two views, namely citus_shards_on_worker and
citus_shard_indexes_on_worker such that users can query
them to see the shards and their corresponding indexes.
We also added debug messages such that the filtered tables can
be interactively seen by setting the level to DEBUG1.
- mitmdump now listens on port 9060
- Add some logging to fluent.py, making issues like this easier to debug in the future
- Fail the tests if something is already running on the port mitmProxy tries to use
- check-failure now works with VPATH builds
This commit adds an extensive failure testing, which covers quite
a bit of things and their combinations:
- 1PC vs 2PC
- Replication factor 1 and Replication factor 2
- Network failures and query cancellations
- Sequential vs Parallel query execution mode
- Lots of detail is in src/test/regress/mitmscripts/README
- Create a new target, make check-failure, which runs tests
- Tells travis how to install everything and run the tests
We can now support more complex count distinct operations by
pulling necessary columns to coordinator and evalutating the
aggreage at coordinator.
It supports broad range of expression with the restriction that
the expression must contain a column.
When a hash distributed table have a foreign key to a reference
table, there are few restrictions we have to apply in order to
prevent distributed deadlocks or reading wrong results.
The necessity to apply the restrictions arise from cascading
nature of foreign keys. When a foreign key on a reference table
cascades to a distributed table, a single operation over a single
connection can acquire locks on multiple shards of the distributed
table. Thus, any parallel operation on that distributed table, in the
same transaction should not open parallel connections to the shards.
Otherwise, we'd either end-up with a self-distributed deadlock or
read wrong results.
As briefly described above, the restrictions that we apply is done
by tracking the distributed/reference relation accesses inside
transaction blocks, and act accordingly when necessary.
The two main rules are as follows:
- Whenever a parallel distributed relation access conflicts
with a consecutive reference relation access, Citus errors
out
- Whenever a reference relation access is followed by a
conflicting parallel relation access, the execution mode
is switched to sequential mode.
There are also some other notes to mention:
- If the user does SET LOCAL citus.multi_shard_modify_mode
TO 'sequential';, all the queries should simply work with
using one connection per worker and sequentially executing
the commands. That's obviously a slower approach than Citus'
usual parallel execution. However, we've at least have a way
to run all commands successfully.
- If an unrelated parallel query executed on any distributed
table, we cannot switch to sequential mode. Because, the essense
of sequential mode is using one connection per worker. However,
in the presence of a parallel connection, the connection manager
picks those connections to execute the commands. That contradicts
with our purpose, thus we error out.
- COPY to a distributed table cannot be executed in sequential mode.
Thus, if we switch to sequential mode and COPY is executed, the
operation fails and there is currently no way of implementing that.
Note that, when the local table is not empty and create_distributed_table
is used, citus uses COPY internally. Thus, in those cases,
create_distributed_table() will also fail.
- There is a GUC called citus.enforce_foreign_key_restrictions
to disable all the checks. We added that GUC since the restrictions
we apply is sometimes a bit more restrictive than its necessary.
The user might want to relax those. Similarly, if you don't have
CASCADEing reference tables, you might consider disabling all the
checks.
-[x] drop constraint
-[x] drop column
-[x] alter column type
-[x] truncate
are sequentialized if there is a foreign constraint from
a distributed table to a reference table on the affected relations
by the above commands.
Make sure that intermediate results use a connection that is
not associated with any placement. That is useful in two ways:
- More complex queries can be executed with CTEs
- Safely use the same connections when there is a foreign key
to reference table from a distributed table, which needs to
use the same connection for modifications since the reference
table might cascade to the distributed table.
This table will be used by Citus Enterprise to populate authentication-
related fields in outbound connections; Citus Community lacks support
for this functionality.
We're relying on multi_shard_modify_mode GUC for real-time SELECTs.
The name of the GUC is unfortunate, but, adding one more GUC
(or renaming the GUC) would make the UX even worse. Given that this
mode is mostly important for transaction blocks that involve modification
/DDL queries along with real-time SELECTs, we can live with the confusion.
After this commit DDL commands honour `citus.multi_shard_modify_mode`.
We preferred using the code-path that executes single task router
queries (e.g., ExecuteSingleModifyTask()) in order not to invent
a new executor that is only applicable for DDL commands that require
sequential execution.
Previously we checked if an operator is in pg_catalog, and if it wasn't we prefixed it with namespace in worker queries. This can have a huge impact on performance of physical planner when using custom data types.
This happened regardless of current search_path config, because Citus overrides the search path in get_query_def_extended(). When we do so, the check for existence of the operator in current search path in generate_operator_name() fails for any operators outside pg_catalog. This means that nothing gets cached, and in the following calls we will again recheck the system tables for existence of the operators, which took an additional 40-50ms for some of the usecases we were seeing.
In this change we skip the pg_catalog check, and always prefix the operator with its namespace.
* Change worker_hash_partition_table() such that the
divergence between Citus planner's hashing and
worker_hash_partition_table() becomes the same.
* Rename single partitioning to single range partitioning.
* Add single hash repartitioning. Basically, logical planner
treats single hash and range partitioning almost equally.
Physical planner, on the other hand, treats single hash and
dual hash repartitioning almost equally (except for JoinPruning).
* Add a new GUC to enable this feature
utilityStmt sometimes (such as when it's inside of a plpgsql function)
comes from a cached plan, which is kept in a child of the
CacheMemoryContext. When we naively call copyObject we're copying it into
a statement-local context, which corrupts the cached plan when it's
thrown away.
- changes in ruleutils_11.c is reflected
- vacuum statement api change is handled. We now allow
multi-table vacuum commands.
- some other function header changes are reflected
- api conflicts between PG11 and earlier versions
are handled by adding shims in version_compat.h
- various regression tests are fixed due output and
functionality in PG1
- no change is made to support new features in PG11
they need to be handled by new commit
PostgreSQL might remove some of the subqueries when they do not
contribute to the query result at all. Citus should not try to
access such subqueries during planning.
This PR adds support for multiple AND expressions in Having
for pushdown planner. We simply make a call to make_ands_explicit
from MultiLogicalPlanOptimize for the having qual in
workerExtendedOpNode.
After this commit large_table_shard_count wont be used to
check whether broadcast join, which is renamed as reference
join, can be applied. Reference join can only be applied over
reference tables.
We recently added partitionin support to Citus MX. We should not execute
DROP table commands from MX workers but at the moment we try to execute
such commands for partitioned tables. This PR fixes that problem by
adding check.
Previously, we prevented creation of partitioned tables on Citus MX.
We decided to not focus on this feature until there is a need. Since
now there are requests for this feature, we are implementing support
for partitioned tables on Citus MX.
After this change all the logic related to shard data fetch logic
will be removed. Planner won't plan any ShardFetchTask anymore.
Shard fetch related steps in real time executor and task-tracker
executor have been removed.
- Force all platforms to use the same collation
- Force all platforms to use the same locale
- Use /dev/null or NUL, depending on platform
- Use /tmp or %TEMP%, dpeending on platform
Pushing down limit and order by into workers may produce
wrong output when distinct on() clause has expressions,
aggregates, or window functions.
This checking allows pushing down of limits only if
distinct clause is a superset of group by clause. i.e. it contains all clauses in group by.
This commit checks the connection status right after any IO happens
on the socket.
This is necessary since before this commit we didn't pass any information
to the higher level functions whether we're done with the connection
(e.g., no IO required anymore) or an errors happened during the IO.
This is the first of series of window function work.
We can now support window functions that can be pushed down to workers.
Window function must have distribution column in the partition clause
to be pushed down.
We push down order by to worker query when limit is specified
(with some other additional checks). If the query has an expression
on an aggregate or avg aggregate by itself, and there is an order
by on this particular target we may send wrong order by to worker
query with potential to affect query result.
The fix creates a auxilary target entry in the worker query and
uses that target entry for sorting.
Before this PR, we were trusting on the columns of group by about
guaranteeing the uniqueness of the results. However, this assumption
is correct only if the columns in the group by is subset of columns
in the distinct clause. It can be wrong if we have part of group by
columns and some aggregation columns in the distinct clause. With
this PR, we add distinct plan on top of aggregate plan when necessary.
With #1804 (and related PRs), Citus gained the ability to
plan subqueries that are not safe to pushdown.
There are two high-level requirements for pushing down subqueries:
* Individual subqueries that require a merge step (i.e., GROUP BY
on non-distribution key, or LIMIT in the subquery etc). We've
handled such subqueries via #1876.
* Combination of subqueries that are not joined on distribution keys.
This commit aims to recursively plan some of such subqueries to make
the whole query safe to pushdown.
The main logic behind non colocated subquery joins is that we pick
an anchor range table entry and check for distribution key equality
of any other subqueries in the given query. If for a given subquery,
we cannot find distribution key equality with the anchor rte, we
recursively plan that subquery.
We also used a hacky solution for picking relations as the anchor range
table entries. The hack is that we wrap them into a subquery. This is only
necessary since some of the attribute equivalance checks are based on
queries rather than range table entries.
With this fix, we traverse the graph with DFS which was originally
intended. Note that, before the fix, we traverse the graph with BFS
which might lead to killing some unrelated backend that is not
involved in the distributed deadlock.
PostgreSQL implements support for several relation kinds in a single
statement, such as in the AlterTableStmt case, which supports both tables
and indexes and more (see ATExecSetRelOptions in PostgreSQL source code file
src/backend/commands/tablecmds.c for an example of that).
As a consequence, this patch implements support for setting and resetting
storage parameters on both relation kinds.
Citus sometimes have regressions around non-default schema support, meaning
not public and not in the search_path, per @marcocitus. This patch changes
some regression tests to use a non-default schema in order to cover more
cases.
The implementation was already mostly in place, but the code was protected
by a principled check against the operation. Turns out there's a nasty
concurrency bug though with long identifier names, much as in #1664.
To prevent deadlocks from happening, we could either review the DDL
transaction management in shards and placements, or we can simply reject
names with (NAMEDATALEN - 1) chars or more — that's because of the
PostgreSQL array types being created with a one-char prefix: '_'.
clause is not supported
This change allows unsupported clauses to go through query pushdown
planner instead of erroring out as we already do for non-outer joins.
We used to error out if the join clause includes filters like
t1.a < t2.a even if other filter like t1.key = t2.key exists.
Recently we lifted that restriction in subquery planning by
not lifting that restriction and focusing on equivalance classes
provided by postgres.
This checkin forwards previously erroring out real-time queries
due to join clauses to subquery planner and let it handle the
join even if the query does not have a subquery.
We are now pushing down queries that do not have any
subqueries in it. Error message looked misleading, changed to a more descriptive one.
We were creating intermediate query result's target
names from subquery target list. Now we also check
if cte re-defines its column name aliases, and create
intermediate result query accordingly.
This commit introduces a new GUC to limit the intermediate
result size which we handle when we use read_intermediate_result
function for CTEs and complex subqueries.
With this commit, Citus recursively plans subqueries that
are not safe to pushdown, in other words, requires a merge
step.
The algorithm is simple: Recursively traverse the query from bottom
up (i.e., bottom meaning the leaf queries). On each level, check
whether the query is safe to pushdown (or a single repartition
subquery). If the answer is yes, do not touch that subquery. If the
answer is no, plan the subquery seperately (i.e., create a subPlan
for it) and replace the subquery with a call to
`read_intermediate_results(planId, subPlanId)`. During the the
execution, run the subPlans first, and make them avaliable to the
next query executions.
Some of the queries hat this change allows us:
* Subqueries with LIMIT
* Subqueries with GROUP BY/DISTINCT on non-partition keys
* Subqueries involving re-partition joins, router queries
* Mixed usage of subqueries and CTEs (i.e., use CTEs in
subqueries as well). Nested subqueries as long as we
support the subquery inside the nested subquery.
* Subqueries with local tables (i.e., those subqueries
has the limitation that they have to be leaf subqueries)
* VIEWs on the distributed tables just works (i.e., the
limitations mentioned below still applies to views)
Some of the queries that is still NOT supported:
* Corrolated subqueries that are not safe to pushdown
* Window function on non-partition keys
* Recursively planned subqueries or CTEs on the outer
side of an outer join
* Only recursively planned subqueries and CTEs in the FROM
(i.e., not any distributed tables in the FROM) and subqueries
in WHERE clause
* Subquery joins that are not on the partition columns (i.e., each
subquery is individually joined on partition keys but not the upper
level subquery.)
* Any limitation that logical planner applies such as aggregate
distincts (except for count) when GROUP BY is on non-partition key,
or array_agg with ORDER BY
Subquery pushdown planning is based on relation restriction
equivalnce. This brings us the opportuneatly to allow any
other joins as long as there is an already equi join between
the distributed tables.
We already allow that for joins with reference tables and
this commit allows that for joins among distributed tables.
With this commit, we allow pushing down subqueries with only
reference tables where GROUP BY or DISTINCT clause or Window
functions include only columns from reference tables.
While attaching a partition to a distributed table in schema, we mistakenly
used unqualified name to find partitioned table's oid. This caused problems
while using partitioned tables with schemas. We are fixing this issue in
this PR.
It's possible to build INSERT SELECT queries which include implicit
casts, currently we attempt to support these by adding explicit casts to
the SELECT query, but this sometimes crashes because we don't update all
nodes with the new types. (SortClauses, for instance)
This commit removes those explicit casts and passes an unmodified SELECT
query to the COPY executor (how we implement INSERT SELECT under the
scenes). In lieu of those cases, COPY has been given some extra logic to
inspect queries, notice that the types don't line up with the table it's
supposed to be inserting into, and "manually" casting every tuple before
sending them to workers.
This commit makes a change in relay_event_utility.c to check if the
Alter Table command adds a constraint using index. If this is the
case, it appends the shard id to the index name.
By this commit, citus minds the replica identity of the table when
we distribute the table. So the shards of the distributed table
have the same replica identity with the local table.
Expands count distinct coverage by allowing more cases. We used to support
count distinct only if we can push down distinct aggregate to worker query
i.e. the count distinct clause was on the partition column of the table,
or there was a grouping on the partition column.
Now we can support
- non-partition columns, with or without grouping on partition column
- partition, and non partition column in the same query
- having clause
- single table subqueries
- insert into select queries
- join queries where count distinct is on partition, or non-partition column
- filters on count distinct clauses (extends existing support)
We first try to push down aggregate to worker query (original case), if we
can't then we modify worker query to return distinct columns to coordinator
node. We do that by adding distinct column targets to group by clauses. Then
we perform count distinct operation on the coordinator node.
This work should reduce the cases where HLL is used as it can address anything
that HLL can. However, if we start having performance issues due to very large
number rows, then we can recommend hll use.
This commit provides the support for window functions in subquery and insert
into select queries. Note that our support for window functions is still limited
because it must have a partition by clause on the distribution key. This commit
makes changes in the files insert_select_planner and multi_logical_planner. The
required tests are also added with files multi_subquery_window_functions.out
and multi_insert_select_window.out.
We sent multiple commands to worker when starting a transaction.
Previously we only checked the result of the first command that
is transaction 'BEGIN' which always succeeds. Any failure on
following commands were not checked.
With this commit, we make sure all command results are checked.
If there is any error we report the first error found.
Basically we just care whether the running version is before or after
PostgreSQL 10, so testing the major version against 9 and printing a
boolean is sufficient.
Citus can handle INSERT INTO ... SELECT queries if the query inserts
into local table by reading data from distributed table. The opposite
way is not correct. With this commit we warn the user if the latter
option is used.
When a NULL connection is provided to PQerrorMessage(), the
returned error message is a static text. Modifying that static
text, which doesn't necessarly be in a writeable memory, is
dangreous and might cause a segfault.
With this commit, we relax the restrictions put on the reference
tables with subquery pushdown.
We did three notable improvements:
1) Relax equi-join restrictions
Previously, we always expected that the non-reference tables are
equi joined with reference tables on the partition key of the
non-reference table.
With this commit, we allow any column of non-reference tables
joined using non-equi joins as well.
2) Relax OUTER JOIN restrictions
Previously Citus errored out if any reference table exists at
any point of the outer part of an outer join. For instance,
See the below sketch where (h) denotes a hash distributed relation,
(r) denotes a reference table, (L) denotes LEFT JOIN and
(I) denotes INNER JOIN.
(L)
/ \
(I) h
/ \
r h
Before this commit Citus would error out since a reference table
appears on the left most part of an left join. However, that was
too restrictive so that we only error out if the reference table
is directly below and in the outer part of an outer join.
3) Bug fixes
We've done some minor bugfixes in the existing implementation.
With this PR we add isolation tests for
COPY to reference table vs. other operations
COPY to partitioned table vs. other operations
Multi row INSERTs vs other operations
INSERT/SELECT vs. other operations
UPSERT vs. other operations
DELETE vs. other operations
TRUNCATE vs. other operations
DROP vs. other operations
DDL vs. other operations
other operations consist of basic SQL operations (like SELECT,
INSERT, DELETE, UPSERT, COPY TRUNCATE, CREATE INDEX) as well
as some Citus functionalities (like master_modify_multiple_shards,
master_apply_delete_command, citus_total_relation_size etc.)
This is necessary for multi-row INSERTs for the same reasons we use it
in e.g. UPSERTs: if the range table list has more than one entry, then
PostgreSQL's deparse logic requires that vars be prefixed by the name
of their corresponding range table entry. This of course doesn't affect
single-row INSERTs, but since multi-row INSERTs have a VALUE RTE, they
were affected.
The piece of ruleutils which builds range table names wasn't modified
to handle shard extension; instead UPSERT/INSERT INTO ... SELECT added
an alias to the RTE. When present, this alias is favored. Doing the
same in the multi-row INSERT case fixes RETURNING for such commands.
This change adds support for SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT.
When transaction connections are not established yet, savepoints are kept in a stack and sent to the worker when the connection is later established. After establishing connections, savepoint commands are sent as they arrive.
This change fixes#1493 .
Now that we already have the necessary infrastructure for detecting
distributed deadlocks. Thus, we don't need enable_deadlock_prevention
which is purely intended for preventing some forms of distributed
deadlocks.
This commit adds all the necessary pieces to do the distributed
deadlock detection.
Each distributed transaction is already assigned with distributed
transaction ids introduced with
3369f3486f. The dependency among the
distributed transactions are gathered with
80ea233ec1.
With this commit, we implement a DFS (depth first seach) on the
dependency graph and search for cycles. Finding a cycle reveals
a distributed deadlock.
Once we find the deadlock, we examine the path that the cycle exists
and cancel the youngest distributed transaction.
Note that, we're not yet enabling the deadlock detection by default
with this commit.
This GUC has two settings, 'always' and 'never'. When it's set to
'never' all behavior stays exactly as it was prior to this commit. When
it's set to 'always' only SELECT queries are allowed to run, and only
secondary nodes are used when processing those queries.
Add some helper functions:
- WorkerNodeIsSecondary(), checks the noderole of the worker node
- WorkerNodeIsReadable(), returns whether we're currently allowed to
read from this node
- ActiveReadableNodeList(), some functions (namely, the ones on the
SELECT path) don't require working with Primary Nodes. They should call
this function instead of ActivePrimaryNodeList(), because the latter
will error out in contexts where we're not allowed to write to nodes.
- ActiveReadableNodeCount(), like the above, replaces
ActivePrimaryNodeCount().
- EnsureModificationsCanRun(), error out if we're not currently allowed
to run queries which modify data. (Either we're in read-only mode or
use_secondary_nodes is set)
Some parts of the code were switched over to use readable nodes instead
of primary nodes:
- Deadlock detection
- DistributedTableSize,
- the router, real-time, and task tracker executors
- ShardPlacement resolution
This change declares two new functions:
`master_update_table_statistics` updates the statistics of shards belong
to the given table as well as its colocated tables.
`get_colocated_shard_array` returns the ids of colocated shards of a
given shard.
This is a pretty substantial refactoring of the existing modify path
within the router executor and planner. In particular, we now hunt for
all VALUES range table entries in INSERT statements and group the rows
contained therein by shard identifier. These rows are stashed away for
later in "ModifyRoute" elements. During deparse, the appropriate RTE
is extracted from the Query and its values list is replaced by these
rows before any SQL is generated.
In this way, we can create multiple Tasks, but only one per shard, to
piecemeal execute a multi-row INSERT. The execution of jobs containing
such tasks now exclusively go through the "multi-router executor" which
was previously used for e.g. INSERT INTO ... SELECT.
By piggybacking onto that executor, we participate in ongoing trans-
actions, get rollback-ability, etc. In short order, the only remaining
use of the "single modify" router executor will be for bare single-
row INSERT statements (i.e. those not in a transaction).
This change appropriately handles deferred pruning as well as master-
evaluated functions.
With this PR, Citus starts to support all possible ways to create
distributed partitioned tables. These are;
- Distributing already created partitioning hierarchy
- CREATE TABLE ... PARTITION OF a distributed_table
- ALTER TABLE distributed_table ATTACH PARTITION non_distributed_table
- ALTER TABLE distributed_table ATTACH PARTITION distributed_table
We also support DETACHing partitions from partitioned tables and propogating
TRUNCATE and DDL commands to distributed partitioned tables.
This PR also refactors some parts of distributed table creation logic.
- master_activate_node and master_disable_node correctly toggle
isActive, without crashing
- master_add_node rejects duplicate nodes, even if they're in different
clusters
- master_remove_node allows removing nodes in different clusters
We try to run our isolation tests paralles as much as possible. In
some of those isolation tests we used same table name which causes
problem while running them in paralles. This commit changes table
names in those tests to ensure tests can run in parallel.
This commit is preperation for introducing distributed partitioned
table support. We want to clean and refactor some code in distributed
table creation logic so that we can handle partitioned tables in more
robust way.
In this commit, we add ability to convert global wait edges
into adjacency list with the following format:
[transactionId] = [transactionNode->waitsFor {list of waiting transaction nodes}]
This change adds a general purpose infrastructure to log and monitor
process about long running progresses. It uses
`pg_stat_get_progress_info` infrastructure, introduced with PostgreSQL
9.6 and used for tracking `VACUUM` commands.
This patch only handles the creation of a memory space in dynamic shared
memory, putting its info in `pg_stat_get_progress_info`, fetching the
progress monitors on demand and finalizing the progress tracking.
- Never release locks
- AddNodeMetadata takes ShareRowExclusiveLock so it'll conflict with the
trigger which prevents multiple primary nodes.
- ActivateNode and SetNodeState used to take AccessShareLock, but they
modify the table so they should take RowExclusiveLock.
- DeleteNodeRow and InsertNodeRow used to take AccessExclusiveLock but
only need RowExclusiveLock.
- master_add_node enforces that there is only one primary per group
- there's also a trigger on pg_dist_node to prevent multiple primaries
per group
- functions in metadata cache only return primary nodes
- Rename ActiveWorkerNodeList -> ActivePrimaryNodeList
- Rename WorkerGetLive{Node->Group}Count()
- Refactor WorkerGetRandomCandidateNode
- master_remove_node only complains about active shard placements if the
node being removed is a primary.
- master_remove_node only deletes all reference table placements in the
group if the node being removed is the primary.
- Rename {Node->NodeGroup}HasShardPlacements, this reflects the behavior it
already had.
- Rename DeleteAllReferenceTablePlacementsFrom{Node->NodeGroup}. This also
reflects the behavior it already had, but the new signature forces the
caller to pass in a groupId
- Rename {WorkerGetLiveGroup->ActivePrimaryNode}Count
This commit adds distributed transaction id infrastructure in
the scope of distributed deadlock detection.
In general, the distributed transaction id consists of a tuple
in the form of: `(databaseId, initiatorNodeIdentifier, transactionId,
timestamp)`.
Briefly, we add a shared memory block on each node, which holds some
information per backend (i.e., an array `BackendData backends[MaxBackends]`).
Later, on each coordinated transaction, Citus sends
`SELECT assign_distributed_transaction_id()` right after `BEGIN`.
For that backend on the worker, the distributed transaction id is set to
the values assigned via the function call.
The aim of the above is to correlate the transactions on the coordinator
to the transactions on the worker nodes.
Comes with a few changes:
- Change the signature of some functions to accept groupid
- InsertShardPlacementRow
- DeleteShardPlacementRow
- UpdateShardPlacementState
- NodeHasActiveShardPlacements returns true if the group the node is a
part of has any active shard placements
- TupleToShardPlacement now returns ShardPlacements which have NULL
nodeName and nodePort.
- Populate (nodeName, nodePort) when creating ShardPlacements
- Disallow removing a node if it contains any shard placements
- DeleteAllReferenceTablePlacementsFromNode matches based on group. This
doesn't change behavior for now (while there is only one node per
group), but means in the future callers should be careful about
calling it on a secondary node, it'll delete placements on the primary.
- Create concept of a GroupShardPlacement, which represents an actual
tuple in pg_dist_placement and is distinct from a ShardPlacement,
which has been resolved to a specific node. In the future
ShardPlacement should be renamed to NodeShardPlacement.
- Create some triggers which allow existing code to continue to insert
into and update pg_dist_shard_placement as if it still existed.
These functions are holdovers from pg_shard and were created for unit
testing c-level functions (like InsertShardPlacementRow) which our
regression tests already test quite effectively. Removing because it
makes refactoring the signatures of those c-level functions
unnecessarily difficult.
- create_healthy_local_shard_placement_row
- update_shard_placement_row_state
- delete_shard_placement_row
This commit is intended to be a base for supporting declarative partitioning
on distributed tables. Here we add the following utility functions and their
unit tests:
* Very basic functions including differnentiating partitioned tables and
partitions, listing the partitions
* Generating the PARTITION BY (expr) and adding this to the DDL events
of partitioned tables
* Ability to generate text representations of the ranges for partitions
* Ability to generate the `ALTER TABLE parent_table ATTACH PARTITION
partition_table FOR VALUES value_range`
* Ability to apply add shard ids to the above command using
`worker_apply_inter_shard_ddl_command()`
* Ability to generate `ALTER TABLE parent_table DETACH PARTITION`
Adds support for PostgreSQL 10 by copying in the requisite ruleutils
and updating all API usages to conform with changes in PostgreSQL 10.
Most changes are fairly minor but they are numerous. One particular
obstacle was the change in \d behavior in PostgreSQL 10's psql; I had
to add SQL implementations (views, mostly) to mimic the pre-10 output.
Add a second implementation of INSERT INTO distributed_table SELECT ... that is used if
the query cannot be pushed down. The basic idea is to execute the SELECT query separately
and pass the results into the distributed table using a CopyDestReceiver, which is also
used for COPY and create_distributed_table. When planning the SELECT, we go through
planner hooks again, which means the SELECT can also be a distributed query.
EXPLAIN is supported, but EXPLAIN ANALYZE is not because preventing double execution was
a lot more complicated in this case.
- Use native postgres function for composite key btree functions
- Move explain tests to multi_explain.sql (get rid of .out _0.out files)
- Get rid of input/output files for multi_subquery.sql by moving table creations
- Update some comments
* Accept invalidation messages before accessing the metadata cache
This commit is crucial to prevent stale metadata reads from the
cache. Without this commit, some of the operations may use stale
metadata which could end up with various bugs such as crashes,
inconsistent/lost data etc.
As an example, consider that a COPY operation is blocked on shard
metadata lock. Another concurrent session updates the metadata and
invalidates the cache. However, since Citus doesn't accept invalidations,
COPY continues with the stale metadata once it acquires the lock.
With this commit, we make sure that invalidation messages are accepted
just before accessing the metadata cache and preventing any operation to
use stale metadata.
* Add isolation tests for placement changes and conccurrent operations
- add node with reference table vs COPY/insert/update/DDL
- repair shard vs COPY/insert/update/DDL
- repair shard vs repair shard
Distributed query planning for subquery pushdown is done on the original
query. This prevents the usage of external parameters on the execution.
To overcome this, we manually replace the parameters on the original
query.
* Support for subqueries in WHERE clause
This commit enables subqueries in WHERE clause to be pushed down
by the subquery pushdown logic.
The support covers:
- Correlated subqueries with IN, NOT IN, EXISTS, NOT EXISTS,
operator expressions such as (>, <, =, ALL, ANY etc.)
- Non-correlated subqueries with (partition_key) IN (SELECT partition_key ..)
(partition_key) =ANY (SELECT partition_key ...)
Note that this commit heavily utilizes the attribute equivalence logic introduced
in the 1cb6a34ba8. In general, this commit mostly
adjusts the logical planner not to error out on the subqueries in WHERE clause.
* Improve error checks for subquery pushdown and INSERT ... SELECT
Since we allow subqueries in WHERE clause with the previous commit,
we should apply the same limitations to those subqueries.
With this commit, we do not iterate on each subquery one by one.
Instead, we extract all the subqueries and apply the checks directly
on those subqueries. The aim of this change is to (i) Simplify the
code (ii) Make it close to the checks on INSERT .. SELECT code base.
* Extend checks for unresolved paramaters to include SubLinks
With the presence of subqueries in where clause (i.e., SubPlans on the
query) the existing way for checking unresolved parameters fail. The
reason is that the parameters for SubPlans are kept on the parent plan not
on the query itself (see primnodes.h for the details).
With this commit, instead of checking SubPlans on the modified plans
we start to use originalQuery, where SubLinks represent the subqueries
in where clause. The unresolved parameters can be found on the SubLinks.
* Apply code-review feedback
* Remove unnecessary copying of shard interval list
This commit removes unnecessary copying of shard interval list. Note
that there are no copyObject function implemented for shard intervals.
- There was a crash when the table a shardid belonged to changed during
a session. Instead of crashing (a failed assert) we now throw an error
- Update the isolation test which was crashing to no longer exercise
that code path
- Add a regression test to check that the error is thrown
* Enabling physical planner for subquery pushdown changes
This commit applies the logic that exists in INSERT .. SELECT
planning to the subquery pushdown changes.
The main algorithm is followed as :
- pick an anchor relation (i.e., target relation)
- per each target shard interval
- add the target shard interval's shard range
as a restriction to the relations (if all relations
joined on the partition keys)
- Check whether the query is router plannable per
target shard interval.
- If router plannable, create a task
* Add union support within the JOINS
This commit adds support for UNION/UNION ALL subqueries that are
in the following form:
.... (Q1 UNION Q2 UNION ...) as union_query JOIN (QN) ...
In other words, we currently do NOT support the queries that are
in the following form where union query is not JOINed with
other relations/subqueries :
.... (Q1 UNION Q2 UNION ...) as union_query ....
* Subquery pushdown planner uses original query
With this commit, we change the input to the logical planner for
subquery pushdown. Before this commit, the planner was relying
on the query tree that is transformed by the postgresql planner.
After this commit, the planner uses the original query. The main
motivation behind this change is the simplify deparsing of
subqueries.
* Enable top level subquery join queries
This work enables
- Top level subquery joins
- Joins between subqueries and relations
- Joins involving more than 2 range table entries
A new regression test file is added to reflect enabled test cases
* Add top level union support
This commit adds support for UNION/UNION ALL subqueries that are
in the following form:
.... (Q1 UNION Q2 UNION ...) as union_query ....
In other words, Citus supports allow top level
unions being wrapped into aggregations queries
and/or simple projection queries that only selects
some fields from the lower level queries.
* Disallow subqueries without a relation in the range table list for subquery pushdown
This commit disallows subqueries without relation in the range table
list. This commit is only applied for subquery pushdown. In other words,
we do not add this limitation for single table re-partition subqueries.
The reasoning behind this limitation is that if we allow pushing down
such queries, the result would include (shardCount * expectedResults)
where in a non distributed world the result would be (expectedResult)
only.
* Disallow subqueries without a relation in the range table list for INSERT .. SELECT
This commit disallows subqueries without relation in the range table
list. This commit is only applied for INSERT.. SELECT queries.
The reasoning behind this limitation is that if we allow pushing down
such queries, the result would include (shardCount * expectedResults)
where in a non distributed world the result would be (expectedResult)
only.
* Change behaviour of subquery pushdown flag (#1315)
This commit changes the behaviour of the citus.subquery_pushdown flag.
Before this commit, the flag is used to enable subquery pushdown logic. But,
with this commit, that behaviour is enabled by default. In other words, the
flag is now useless. We prefer to keep the flag since we don't want to break
the backward compatibility. Also, we may consider using that flag for other
purposes in the next commits.
* Require subquery_pushdown when limit is used in subquery
Using limit in subqueries may cause returning incorrect
results. Therefore we allow limits in subqueries only
if user explicitly set subquery_pushdown flag.
* Evaluate expressions on the LIMIT clause (#1333)
Subquery pushdown uses orignal query, the LIMIT and OFFSET clauses
are not evaluated. However, logical optimizer expects these expressions
are already evaluated by the standard planner. This commit manually
evaluates the functions on the logical planner for subquery pushdown.
* Better format subquery regression tests (#1340)
* Style fix for subquery pushdown regression tests
With this commit we intented a more consistent style for the
regression tests we've added in the
- multi_subquery_union.sql
- multi_subquery_complex_queries.sql
- multi_subquery_behavioral_analytics.sql
* Enable the tests that are temporarily commented
This commit enables some of the regression tests that were commented
out until all the development is done.
* Fix merge conflicts (#1347)
- Update regression tests to meet the changes in the regression
test output.
- Replace Ifs with Asserts given that the check is already done
- Update shard pruning outputs
* Add view regression tests for increased subquery coverage (#1348)
- joins between views and tables
- joins between views
- union/union all queries involving views
- views with limit
- explain queries with view
* Improve btree operators for the subquery tests
This commit adds the missing comprasion for subquery composite key
btree comparator.
So far citus used postgres' predicate proofing logic for shard
pruning, except for INSERT and COPY which were already optimized for
speed. That turns out to be too slow:
* Shard pruning for SELECTs is currently O(#shards), because
PruneShardList calls predicate_refuted_by() for every
shard. Obviously using an O(N) type algorithm for general pruning
isn't good.
* predicate_refuted_by() is quite expensive on its own right. That's
primarily because it's optimized for doing a single refutation
proof, rather than performing the same proof over and over.
* predicate_refuted_by() does not keep persistent state (see 2.) for
function calls, which means that a lot of syscache lookups will be
performed. That's particularly bad if the partitioning key is a
composite key, because without a persistent FunctionCallInfo
record_cmp() has to repeatedly look-up the type definition of the
composite key. That's quite expensive.
Thus replace this with custom-code that works in two phases:
1) Search restrictions for constraints that can be pruned upon
2) Use those restrictions to search for matching shards in the most
efficient manner available:
a) Binary search / Hash Lookup in case of hash partitioned tables
b) Binary search for equal clauses in case of range or append
tables without overlapping shards.
c) Binary search for inequality clauses, searching for both lower
and upper boundaries, again in case of range or append
tables without overlapping shards.
d) exhaustive search testing each ShardInterval
My measurements suggest that we are considerably, often orders of
magnitude, faster than the previous solution, even if we have to fall
back to exhaustive pruning.
That's useful when comparing values a hash-partitioned table is
filtered by. The existing shardIntervalCompareFunction is about
comparing hashed values, not unhashed ones.
The added btree opclass function is so we can get a comparator
back. This should be changed much more widely, but is not necessary so
far.
With this commit, we started to send explain queries within a savepoint. After
running explain query, we rollback to savepoint. This saves us from side effects
of EXPLAIN ANALYZE on DML queries.
Soon shard pruning will be optimized not to generally work linearly
anymore. Thus we can't print the pruned shard intervals as currently
done anymore.
The current printing of shard ids also prevents us from running tests
in parallel, as otherwise shard ids aren't linearly numbered.
Pretty straightforward. Had some concerns about locking, but due to the
fact that all distributed operations use either some level of deparsing
or need to enumerate column names, they all block during any concurrent
column renames (due to the AccessExclusive lock).
In addition, I had some misgivings about permitting renames of the dis-
tribution column, but nothing bad comes from just allowing them.
Finally, I tried to trigger any sort of error using prepared statements
and could not trigger any errors not also exhibited by plain PostgreSQL
tables.
With this change we add an option to add a node without replicating all reference
tables to that node. If a node is added with this option, we mark the node as
inactive and no queries will sent to that node.
We also added two new UDFs;
- master_activate_node(host, port):
- marks node as active and replicates all reference tables to that node
- master_add_inactive_node(host, port):
- only adds node to pg_dist_node
Before this commit, we were erroring out for queries containing parameterized SQL functions
like 'SELECT parameterized_sql_query(value)' as we should, however we were returning wrong
results for queries like 'SELECT * FROM parameterized_sql_query(value)'. With this commit
we started to error out on such queries too.
In this PR, we aim to deduce whether each of the RTE_RELATION
is joined with at least on another RTE_RELATION on their partition keys. If each
RTE_RELATION follows the above rule, we can conclude that all RTE_RELATIONs are
joined on their partition keys.
In order to do that, we invented a new equivalence class namely:
AttributeEquivalenceClass. In very simple words, a AttributeEquivalenceClass is
identified by an unique id and consists of a list of AttributeEquivalenceMembers.
Each AttributeEquivalenceMember is designed to identify attributes uniquely within the
whole query. The necessity of this arise since varno attributes are defined within
a single level of a query. Instead, here we want to identify each RTE_RELATION uniquely
and try to find equality among each RTE_RELATION's partition key.
Whenever we find an equality clause A = B, where both A and B originates from
relation attributes (i.e., not random expressions), we create an
AttributeEquivalenceClass to record this knowledge. If we later find another
equivalence B = C, we create another AttributeEquivalenceClass. Finally, we can
apply transitity rules and generate a new AttributeEquivalenceClass which includes
A, B and C.
Note that equality among the members are identified by the varattno and rteIdentity.
Each equality among RTE_RELATION is saved using an AttributeEquivalenceClass where
each member attribute is identified by a AttributeEquivalenceMember. In the final
step, we try generate a common attribute equivalence class that holds as much as
AttributeEquivalenceMembers whose attributes are a partition keys.
With this change, we start to error out if loaded citus binaries does not match
the available major version or installed citus extension version. In this case
we force user to restart the server or run ALTER EXTENSION depending on the
situation
Thought this looked slightly nicer than the default behavior.
Changed preventTransaction to concurrent to be clearer that this code
path presently affects CONCURRENTLY code only.
Coordinator code marks index as invalid as a base, set it as valid in a
transactional layer atop that base, then proceeds with worker commands.
If a worker command has problems, the rollback results in an index with
isvalid = false. If everything succeeds, the user sees a valid index.
Before this commit, in certain cases router planner allowed pushing
down JOINs that are not on the partition keys.
With @anarazel's suggestion, we change the logic to use uninstantiated
parameter. Previously, the planner was traversing on the restriction
information and once it finds the parameter, it was replacing it with
the shard range. With this commit, instead of traversing the restrict
infos, the planner explicitly checks for the equivalence of the relation
partition key with the uninstantiated parameter. If finds an equivalence,
it adds the restrictions. In this way, we have more control over the
queries that are pushed down.
Some tests relied on worker errors though local commands were invalid.
Fixed those by ensuring preconditions were met to have command work
correctly. Otherwise most test changes are related to slight changes
in local/remote error ordering.
When running under Enterprise, some of the GRANT commands and whatnot
are propagated. Guarding that section with a call to disable DDL prop.
fixes everything.
Custom Scan is a node in the planned statement which helps external providers
to abstract data scan not just for foreign data wrappers but also for regular
relations so you can benefit your version of caching or hardware optimizations.
This sounds like only an abstraction on the data scan layer, but we can use it
as an abstraction for our distributed queries. The only thing we need to do is
to find distributable parts of the query, plan for them and replace them with
a Citus Custom Scan. Then, whenever PostgreSQL hits this custom scan node in
its Vulcano style execution, it will call our callback functions which run
distributed plan and provides tuples to the upper node as it scans a regular
relation. This means fewer code changes, fewer bugs and more supported features
for us!
First, in the distributed query planner phase, we create a Custom Scan which
wraps the distributed plan. For real-time and task-tracker executors, we add
this custom plan under the master query plan. For router executor, we directly
pass the custom plan because there is not any master query. Then, we simply let
the PostgreSQL executor run this plan. When it hits the custom scan node, we
call the related executor parts for distributed plan, fill the tuple store in
the custom scan and return results to PostgreSQL executor in Vulcano style,
a tuple per XXX_ExecScan() call.
* Modify planner to utilize Custom Scan node.
* Create different scan methods for different executors.
* Use native PostgreSQL Explain for master part of queries.
Delete operation is blocked for any table distributed by hash using master_apply_delete_command. Suggested master_modify_multiple_shards command as a hint.
During later work the transaction debug output will change (as it will
in postgres 10), which makes it hard to see actual changes in the
INSERT ... SELECT ... test. Reduce to DEBUG2 after changing a debug
message to that log level.
This change ignores `citus.replication_model` setting and uses the
statement based replication in
- Tables distributed via the old `master_create_distributed_table` function
- Append and range partitioned tables, even if created via
`create_distributed_table` function
This seems like the easiest solution to #1191, without changing the existing
behavior and harming existing users with custom scripts.
This change also prevents RF>1 on streaming replicated tables on `master_create_worker_shards`
Prior to this change, `master_create_worker_shards` command was not checking
the replication model of the target table, thus allowing RF>1 with streaming
replicated tables. With this change, `master_create_worker_shards` errors
out on the case.
PostgreSQL 9.5.6 and 9.6.2 were released today and broke several tests
by adding TABLESPACE pg_default output to some DDL commands. Fixed all
occurrences.
cr: @anarazel
This change allows users to drop sequences on MX workers. Previously, Citus didn't allow dropping
sequences on MX workers because it could cause shards to be dropped if `DROP SEQUENCE ... CASCADE`
is used. We now allow that since allowing sequence creation but not dropping hurts user experience
and also may cause problems with custom Citus solutions.
- Break CheckShardPlacements into multiple functions (The most important
is MarkFailedShardPlacements), so that we can get rid of the global
CoordinatedTransactionUses2PC.
- Call MarkFailedShardPlacements in the router executor, so we mark
shards as invalid and stop using them while inside transaction blocks.
With this change DropShards function started to use new connection API. DropShards
function is used by DROP TABLE, master_drop_all_shards and master_apply_delete_command,
therefore all of these functions now support transactional operations. In DropShards
function, if we cannot reach a node, we mark shard state of related placements as
FILE_TO_DELETE and continue to drop remaining shards; however if any error occurs after
establishing the connection, we ROLLBACK whole operation.
All router, real-time, task-tracker plannable queries should now have
full prepared statement support (and even use router when possible),
unless they don't go through the custom plan interface (which
basically just affects LANGUAGE SQL (not plpgsql) functions).
This is achieved by forcing postgres' planner to always choose a
custom plan, by assigning very low costs to plans with bound
parameters (i.e. ones were the postgres planner replanned the query
upon EXECUTE with all parameter values provided), instead of the
generic one.
This requires some trickery, because for custom plans to work the
costs for a non-custom plan have to be known, which means we can't
error out when planning the generic plan. Instead we have to return a
"faux" plan, that'd trigger an error message if executed. But due to
the custom plan logic that plan will likely (unless called by an SQL
function, or because we can't support that query for some reason) not
be executed; instead the custom plan will be chosen.
So far router planner had encapsulated different functionality in
MultiRouterPlanCreate. Modifications always go through router, selects
sometimes. Modifications always error out if the query is unsupported,
selects return NULL. Especially the error handling is a problem for
the upcoming extension of prepared statement support.
Split MultiRouterPlanCreate into CreateRouterPlan and
CreateModifyPlan, and change them to not throw errors.
Instead errors are now reported by setting the new
MultiPlan->plannigError.
Callers of router planner functionality now have to throw errors
themselves if desired, but also can skip doing so.
This is a pre-requisite for expanding prepared statement support.
While touching all those lines, improve a number of error messages by
getting them closer to the postgres error message guidelines.
This adds a replication_model GUC which is used as the replication
model for any new distributed table that is not a reference table.
With this change, tables with replication factor 1 are no longer
implicitly MX tables.
The GUC is similarly respected during empty shard creation for e.g.
existing append-partitioned tables. If the model is set to streaming
while replication factor is greater than one, table and shard creation
routines will error until this invalid combination is corrected.
Changing this parameter requires superuser permissions.
We changed error message which appears when user tries to execute outer join command and
that command requires repartitioning. Old error message mentioned about 1-to-1 shard
partitioning which may not be clear to user.
This enables proper transactional behaviour for copy and relaxes some
restrictions like combining COPY with single-row modifications. It
also provides the basis for relaxing restrictions further, and for
optionally allowing connection caching.
This change adds support for serial columns to be used with MX tables.
Prior to this change, sequences of serial columns were created in all
workers (for being able to create shards) but never used. With MX, we
need to set the sequences so that sequences in each worker create
unique values. This is done by setting the MINVALUE, MAXVALUE and
START values of the sequence.
This commit is intended to improve the error messages while planning
INSERT INTO .. SELECT queries. The main motivation for this change is
that we used to map multiple cases into a single message. With this change,
we added explicit error messages for many cases.
With this change, we start to delete placement of reference tables at given worker node
after master_remove_node UDF call. We remove placement metadata at master node but we do
not drop actual shard from the worker node. There are two reasons for that decision,
first, it is not critical to DROP the shards in the workers because Citus will ignore them
as long as node is removed from cluster and if we add that node back to cluster we will
DROP and recreate all reference tables. Second, if node is unreachable, it becomes
complicated to cover failure cases and have a transaction support.
Enables use views within distributed queries.
User can create and use a view on distributed tables/queries
as he/she would use with regular queries.
After this change router queries will have full support for views,
insert into select queries will support reading from views, not
writing into. Outer joins would have a limited support, and would
error out at certain cases such as when a view is in the inner side
of the outer join.
Although PostgreSQL supports writing into views under certain circumstances.
We disallowed that for distributed views.
In tests related to automatic reference table creation and deletion, there were some
tests whose output may change order thus creating inconsistent test results. With this
change we add ORDER BY clause to related tests to have consistent output.
CloseNodeConnections() is supposed to close connections to a given node.
However, before this commit it lacks to actually call PQFinish() on the
connections. Using CloseConnection() handles closing and all other necessary
actions.
With this change we start to error out on router planner queries where a common table
expression with data-modifying statement is present. We already do not support if
there is a data-modifying statement using result of the CTE, now we also error out
if CTE itself is data-modifying statement.
Remove the router specific transaction and shard management, and
replace it with the new placement connection API. This mostly leaves
behaviour alone, except that it is now, inside a transaction, legal to
select from a shard to which no pre-existing connection exists.
To simplify code the code handling task executions for select and
modify has been split into two - the previous coding was starting to
get confusing due to the amount of only conditionally applicable code.
Modification connections & transactions are now always established in
parallel, not just for reference tables.
With this change, we start to replicate all reference tables to the new node when new node
is added to the cluster with master_add_node command. We also update replication factor
of reference table's colocation group.
Since we will now replicate reference tables each time we add node, we need to ensure
that test space is clean in terms of reference tables before any add node operation.
For this purpose we had to change order of multi_drop_extension test which caused
change of some of the colocation ids.
With this change we introduce new UDF, upgrade_to_reference_table, which can be used to
upgrade existing broadcast tables reference tables. For upgrading, we require that given
table contains only one shard.
Renamed FindShardIntervalIndex() to ShardIndex() and added binary search
capability. It used to assume that hash partition tables are always
uniformly distributed which is not true if upcoming tenant isolation
feature is applied. This commit also reduces code duplication.
Router planner already handles cases when all shards
are pruned out. This is about missing test cases. Notice that
"column is null" and "column = null" have different shard
pruning behavior.
We have one replication of reference table for each node. Therefore all problems with
replication factor > 1 also applies to reference table. As a solution we will not allow
foreign keys on reference tables. It is not possible to define foreign key from, to or
between reference tables.
Previously, we errored out if non-user tries to SELECT query for some metadata tables. It
seems that we already GRANT SELECT access to some metadata tables but not others. With
this change, we GRANT SELECT access to all existing Citus metadata tables.
* Add get_distribution_value_shardid UDF
With this UDF users can now map given distribution value to shard id. We mostly hide
shardids from users to prevent unnecessary complexity but some power users might need
to know about which entry/value is stored in which shard for maintanence purposes.
Signature of this UDF is as follows;
bigint get_distribution_value_shardid(table_name regclass, distribution_value anyelement)
With this commit, we implemented some basic features of reference tables.
To start with, a reference table is
* a distributed table whithout a distribution column defined on it
* the distributed table is single sharded
* and the shard is replicated to all nodes
Reference tables follows the same code-path with a single sharded
tables. Thus, broadcast JOINs are applicable to reference tables.
But, since the table is replicated to all nodes, table fetching is
not required any more.
Reference tables support the uniqueness constraints for any column.
Reference tables can be used in INSERT INTO .. SELECT queries with
the following rules:
* If a reference table is in the SELECT part of the query, it is
safe join with another reference table and/or hash partitioned
tables.
* If a reference table is in the INSERT part of the query, all
other participating tables should be reference tables.
Reference tables follow the regular co-location structure. Since
all reference tables are single sharded and replicated to all nodes,
they are always co-located with each other.
Queries involving only reference tables always follows router planner
and executor.
Reference tables can have composite typed columns and there is no need
to create/define the necessary support functions.
All modification queries, master_* UDFs, EXPLAIN, DDLs, TRUNCATE,
sequences, transactions, COPY, schema support works on reference
tables as expected. Plus, all the pre-requisites associated with
distribution columns are dismissed.
We used to disable router planner and executor
when task executor is set to task-tracker.
This change enables router planning and execution
at all times regardless of task execution mode.
We are introducing a hidden flag enable_router_execution
to enable/disable router execution. Its default value is
true. User may disable router planning by setting it to false.
Adds support for VACUUM and ANALYZE commands which target a specific
distributed table. After grabbing the appropriate locks, this imple-
mentation sends VACUUM commands to each placement (using one connec-
tion per placement). These commands are sent in parallel, so users
with large tables will benefit from sharding. Except for VERBOSE, all
VACUUM and ANALYZE options are supported, including the explicit
column list used by ANALYZE.
As with many of our utility commands, the local command also runs. In
the VACUUM/ANALYZE case, the local command is executed before any re-
mote propagation. Because error handling is managed after local proc-
essing, this can result in a VACUUM completing locally but erroring
out when distributed processing commences: a minor technicality in all
cases, as there isn't really much reason to ever roll back a VACUUM (an
impossibility in any case, as VACUUM cannot run within a transaction).
Remote propagation of targeted VACUUM/ANALYZE is controlled by the
enable_ddl_propagation setting; warnings are emitted if such a command
is attempted when DDL propagation is disabled. Unqualified VACUUM or
ANALYZE is not handled, but a warning message informs the user of this.
Implementation note: this commit adds a "BARE" value to MultiShard-
CommitProtocol. When active, no BEGIN command is ever sent to remote
nodes, useful for commands such as VACUUM/ANALYZE which must not run in
a transaction block. This value is not user-facing and is reset at
transaction end.
This change adds `start_metadata_sync_to_node` UDF which copies the metadata about nodes and MX tables
from master to the specified worker, sets its local group ID and marks its hasmetadata to true to
allow it receive future DDL changes.
One less place managing remote transactions. It also makes it fairly
easy to use 2PC for certain modifications (e.g. reference tables). Just
issue a CoordinatedTransactionUse2PC(). If every placement failure
should cause the whole transaction to abort, additionally mark the
relevant transactions as critical.
With this PR, we add foreign key support to ALTER TABLE commands. For now,
we only support foreign constraint creation via ALTER TABLE query, if it
is only subcommand in ALTER TABLE subcommand list.
We also only allow foreign key creation if replication factor is 1.
This commit fixes a bug when the SELECT target list includes a constant
value.
Previous behaviour of target list re-ordering:
* Iterate over the INSERT target list
* If it includes a Var, find the corresponding SELECT entry
and update its resno accordingly
* If it does not include a Var (which we only considered to be
DEFAULTs), generate a new SELECT target entry
* If the processed target entry count in SELECT target list is less
than the original SELECT target list (GROUP BY elements not included in
the SELECT target entry), add them in the SELECT target list and
update the resnos accordingly.
* However, this step was leading to add the CONST SELECT target entries
twice. The reason is that when CONST target list entries appear in the
SELECT target list, the INSERT target list doesn't include a Var. Instead,
it includes CONST as it does for DEFAULTs.
New behaviour of target list re-ordering:
* Iterate over the INSERT target list
* If it includes a Var, find the corresponding SELECT entry
and update its resno accordingly
* If it does not include a Var (which we consider to be
DEFAULTs and CONSTs on the SELECT), generate a new SELECT
target entry
* If any target entry remains on the SELECT target list which are resjunk,
(GROUP BY elements not included in the SELECT target entry), keep them
in the SELECT target list by updating the resnos.
This change allows seeing the names of columns of `master_add_node`,
using `SELECT * FROM master_add_node(...)` by specifying output
columns in UDF definition.
Previously, we threw an error when we ran CREATE INDEX IF NOT EXISTS
with an already existing index. This change enables expected behavior by
checking if the statement has IF NOT EXISTS before throwing the error.
We also ensure that we don't execute the command on the workers, if an
index already exists on the master.
At the moment, we do not support foreign constraints if replication factor is greater
than 1. However foreign constraints can be used in cloud with high availability option.
Therefore we do not want to create an impression such that foreign constraints with
high availability is not supported at all. We call users to action with this error
message.
In ErrorIfShardPlacementsNotColocated(), while checking if shards are colocated,
error out if matching shard intervals have different number of shard placements.
Added a new UDF, mark_tables_colocated(), to colocate tables with the same
configuration (shard count, shard replication count and distribution column type).
Fixcitusdata/citus#886
The way postgres' explain hook is designed means that our hook is never
called during EXPLAIN EXECUTE. So, we special-case EXPLAIN EXECUTE by
catching it in the utility hook. We then replace the EXECUTE with the
original query and pass it back to Citus.
Previously, when a repair is requested on a shard, we also repair all co-located shards
of given shard, which may cause repairing already healthy shards. With this change, we
only repair given shard.
This forces prepared statements to be re-planned after changes of the
placement metadata. There's some locking issues remaining, but that's a
a separate task.
Also add regression tests verifying that invalidations take effect on
prepared statements.
This commit adds INSERT INTO ... SELECT feature for distributed tables.
We implement INSERT INTO ... SELECT by pushing down the SELECT to
each shard. To compute that we use the router planner, by adding
an "uninstantiated" constraint that the partition column be equal to a
certain value. standard_planner() distributes that constraint to all
the tables where it knows how to push the restriction safely. An example
is that the tables that are connected via equi joins.
The router planner then iterates over the target table's shards,
for each we replace the "uninstantiated" restriction, with one that
PruneShardList() handles. Do so by replacing the partitioning qual
parameter added in multi_planner() with the current shard's
actual boundary values. Also, add the current shard's boundary values to the
top level subquery to ensure that even if the partitioning qual is
not distributed to all the tables, we never run the queries on the shards
that don't match with the current shard boundaries. Finally, perform the
normal shard pruning to decide on whether to push the query to the
current shard or not.
We do not support certain SQLs on the subquery, which are described/commented
on ErrorIfInsertSelectQueryNotSupported().
We also added some locking on the router executor. When an INSERT/SELECT command
runs on a distributed table with replication factor >1, we need to ensure that
it sees the same result on each placement of a shard. So we added the ability
such that router executor takes exclusive locks on shards from which the SELECT
in an INSERT/SELECT reads in order to prevent concurrent changes. This is not a
very optimal solution, but it's simple and correct. The
citus.all_modifications_commutative can be used to avoid aggressive locking.
An INSERT/SELECT whose filters are known to exclude any ongoing writes can be
marked as commutative. See RequiresConsistentSnapshot() for the details.
We also moved the decison of whether the multiPlan should be executed on
the router executor or not to the planning phase. This allowed us to
integrate multi task router executor tasks to the router executor smoothly.
The necessity for this functionality comes from the fact that ruleutils.c is not supposed to be
used on "rewritten" queries (i.e. ones that have been passed through QueryRewrite()).
Query rewriting is the process in which views and such are expanded,
and, INSERT/UPDATE targetlists are reordered to match the physical order,
defaults etc. For the details of reordeing, see transformInsertRow().
We'd been relying on a single SET search_path command in an earlier
script, but a subsequent script RESET search_path, causing any further
bare functions to be created in the first schema on the search path.
However, starting with an older extension version and executing ALTER
scripts one at a time DOES avoid putting any functions in the public
namespace, so I wrote an upgrade script resilient to that, especially
because PostgreSQL 9.5 will error out if a function is already in the
schema it's being moved to.
With this change, we now push down foreign key constraints created during CREATE TABLE
statements. We also start to send foreign constraints during shard move along with
other DDL statements
create_reference_table() creates a hash distributed table with shard count
equals to 1 and replication factor equals to shard_replication_factor
configuration value.
Adds support for PostgreSQL 9.6 by copying in the requisite ruleutils
file and refactoring the out/readfuncs code to flexibly support the
old-style copy/pasted out/readfuncs (prior to 9.6) or use extensible
node APIs (in 9.6 and higher).
Most version-specific code within this change is only needed to set new
fields in the AggRef nodes we build for aggregations. Version-specific
test output files were added in certain cases, though in most they were
not necessary. Each such file begins by e.g. printing the major version
in order to clarify its purpose.
The comment atop citus_nodes.h details how to add support for new nodes
for when that becomes necessary.
This change adds the pg_dist_local_group metadata table, which indicates
the group id of the current node. It is expected that this table contains
one and only one row, which only contains the group id of the node as an
integer.
With this change, master_copy_shard_placement and master_move_shard_placement functions
start to copy/move given shard along with its co-located shards.
This commit completes having support in Citus by adding having support for
real-time and task-tracker executors. Multiple tests are added to regression
tests to cover new supported queries with having support.
This change adds the required infrastructure about metadata snapshot from MX
codebase into Citus, mainly metadata_sync.c file and master_metadata_snapshot UDF.
Two sets of tests are fixed by this change:
* multi_agg_approximate_distinct
* those in multi_task_tracker_extra_schedule
The first broke when we renamed stage to load in many files and was
never being run because the HyperLogLog extension wasn't easily
available in Debian. Now it's in our repo, so we install it and run
the test. I removed the distinct HLL target in favor of just always
running it and providing an output variant to handle when the extension
is absent. Basically, if PostgreSQL thinks HLL is available, the test
installs it and runs normally, otherwise the absent variant is used.
The second broke when I removed a test variant, erroneously believing
it to be related to an older Citus version. I've added a line in that
test to clarify why the variant is necessary (a practice we should
widely adopt).
So far placements were assigned an Oid, but that was just used to track
insertion order. It also did so incompletely, as it was not preserved
across changes of the shard state. The behaviour around oid wraparound
was also not entirely as intended.
The newly introduced, explicitly assigned, IDs are preserved across
shard-state changes.
The prime goal of this change is not to improve ordering of task
assignment policies, but to make it easier to reference shards. The
newly introduced UpdateShardPlacementState() makes use of that, and so
will the in-progress connection and transaction management changes.
Related to #786
This change adds the `pg_dist_node` table that contains the information
about the workers in the cluster, replacing the previously used
`pg_worker_list.conf` file (or the one specified with `citus.worker_list_file`).
Upon update, `pg_worker_list.conf` file is read and `pg_dist_node` table is
populated with the file's content. After that, `pg_worker_list.conf` file
is renamed to `pg_worker_list.conf.obsolete`
For adding and removing nodes, the change also includes two new UDFs:
`master_add_node` and `master_remove_node`, which require superuser
permissions.
'citus.worker_list_file' guc is kept for update purposes but not used after the
update is finished.
related to a table that might be distributed, allowing any name
that is within regular PostgreSQL length limits to be extended
with a shard ID for use in shards on workers. Handles multi-byte
character boundaries in identifiers when making prefixes for
shard-extended names. Includes tests.
Uses hash_any from PostgreSQL's access/hashfunc.c.
Removes AppendShardIdToStringInfo() as it's used only once
and arguably is best replaced there with a call to AppendShardIdToName().
Adds UDF shard_name(object_name, shard_id) to expose the shard-extended
name logic to other PL/PGSQL, UDFs and scripts.
Bumps version to 6.0-2 to allow for UDF to be created in migration script.
Fixescitusdata/citus#781 and citusdata/citus#179.
is now a `::regtype` using the qualified name of the column type,
not the column type OID which may differ between master/worker nodes.
Test coverage of a hash reparitition using a UDT as the join column.
Note that the UDFs `worker_hash_partition_table` and `worker_range_partition_table`
are unchanged, and rightly expect an OID for the column type; but the
planner code building the commands now allows for `::regtype` casting
to do its magic.
Fixescitusdata/citus#111.
This commit enables to create different worker and master temporary folders.
This change is important for citus-mx on task-tracker execution. In simple words,
on citus-mx, the worker could actually be reponsible for the master tasks as well.
Prior to this change, both master and worker logic on task-tracker executor was
accessing and using the same files for different purposes which was dangerous on
certain cases (i.e., when task_tracker_delay is low).
Before this change, count on a distributed returned NULL if all shards
were pruned away, because on the master we replace with count(..) call
with a sum(..) call to sum the counts from the shards. However, sum
returns NULL when there are no rows, whereas count is expected to return
0.
An interaction between ReraiseRemoteError and DML transaction support
causes segfaults:
* ReraiseRemoteError calls PurgeConnection, freeing a connection...
* That connection is still in the xactParticipantHash
At transaction end, the memory in the freed connection might happen to
pass the "is this connection OK?" check, causing us to try to send an
ABORT over that connection. By removing it from the transaction hash
before calling ReraiseRemoteError, we avoid this possibility.
UNIQUE or PRIMARY KEY constraints. Also, properly propagate valid
EXCLUDE constraints to worker shard tables.
If an EXCLUDE constraint includes the distribution column,
the operator must be an equality operator.
Tests in regression suite for exclusion constraints that include
the partition column, omit it, and include it but with non-equality
operator. Regression tests also verify that valid exclusion constraints
are propagated to the shard tables. And the tests work in different
timezones now.
Fixescitusdata/citus#748 and citusdata/citus#778.
pg_toast_* oids are constantly changing, and this causes regression tests to
fail time to time. With this commit, we remove all of the pg_toast_* references
from regression test outputs.
Three changes here to get to true multi-statement, multi-relation DDL
transactions (same functionality pre-5.2, with benefits of atomicity):
1. Changed the multi-shard utility hook to always run (consistency
with router executor hook, removes ad-hoc "installed" boolean)
2. Change the global connection list in multi_shard_transaction to
instead be a hash; update related functions to operate on global
hash instead of local hash/global list
3. Remove check within DDL code to prevent subsequent DDL commands;
place unset/reset guard around call to ConnectToNode to permit
connecting to additional nodes after DDL transaction has begun
In addition, code has been added to raise an error if a ROLLBACK TO
SAVEPOINT is attempted (similar to router executor), and comprehensive
tests execute all multi-DDL scenarios (full success, user ROLLBACK, any
actual errors (say, duplicate index), partial failure (duplicate index
on one node but not others), partial COMMIT (one node fails), and 2PC
partial PREPARE (one node fails)). Interleavings with other commands
(DML, \copy) are similarly all covered.
To permit use with ZomboDB (https://github.com/zombodb/zombodb), two
changes were necessary:
1. Permit use of `tableoid` system column in queries
2. Extend relation names appearing in index expressions
The first is accomplished by simply changing the deparse logic to allow
system columns in queries destined for distributed tables. The latter
was slightly more complex, given that DDL extension currently occurs on
workers. But since indexes cannot reference tables other than the one
being indexed, it is safe to look for any relation reference ending in
a '*' character and extend their penultimate segments with a shard id.
This change also adds an error to prevent users from distributing any
relations using the WITH (OIDS) feature, which is unsupported.
Before this change, we do not check whether given table which already contains any data
in master_create_distributed_table command. If that table contains any data, making it
it distributed, makes that data hidden to user. With this change, we now gave error to
user if the table contains data.
Recent changes to DDL and transaction logic resulted in a "regression"
from the viewpoint of users. Previously, DDL commands were allowed in
multi-command transaction blocks, though they were not processed in any
actual transactional manner. We improved the atomicity of our DDL code,
but added a restriction that DDL commands themselves must not occur in
any BEGIN/END transaction block.
To give users back the original functionality (and improved atomicity)
we now keep track of whether a multi-command transaction has modified
data (DML) or schema (DDL). Interleaving the two modification types in
a single transaction is disallowed.
This first step simply permits a single DDL command in such a block,
admittedly an incomplete solution, but one which will permit us to add
full multi-DDL command support in a subsequent commit.
"Staging table" will be the only valid use of 'stage' from now on, we
will now say "load" when talking about data ingestion. If creation of
shards is its own step, we'll just say "shard creation".
Fixes#547
This change removes all references to \stage in the regression tests
and puts \COPY instead. Doing so changed shard counts, min/max
values on some test tables (lineitem, orders, etc.).
A recent change to the image used in Travis causes some problems for
the code we use here to ensure the local replica is first. Since this
code is essentially dead in a post-stage world anyhow, we're OK with
ripping out the tests to placate Travis.
PostgreSQL 9.5.4 stopped calling planner for materialized view create
command when NO DATA option is provided.
This causes our test to behave differently between pre-9.5.4 and 9.5.4.
Fixes#679
This change sets the default commit protocol for distributed DDL
commands to '1pc'. If the user issues a distributed DDL command with
this default setting, then once in a session, a NOTICE message is
shown about using '2pc' being extra safe.
This adds support for SERIAL/BIGSERIAL column types. Because we now can
evaluate functions on the master (during execution), adding this is a
matter of ensuring the table creation step works properly.
To accomplish this, I've added some logic to detect sequences owned by
a table (i.e. those related to its columns). Simply creating a sequence
and using it in a default value is insufficient; users who do so must
ensure the sequence is owned by the column using it.
Fortunately, this is exactly what SERIAL and BIGSERIAL do, which is the
use case we're targeting with this feature. While testing this, I found
that worker_apply_shard_ddl_command actually adds shard identifiers to
sequence names, though I found no places that use or test this path. I
removed that code so that sequence names are not mutated and will match
those used by a SERIAL default value expression.
Our use of the new-to-9.5 CREATE SEQUENCE IF NOT EXISTS syntax means we
are dropping support for 9.4 (which is being done regardless, but makes
this change simpler). I've removed 9.4 from the Travis build matrix.
Some edge cases are possible in ALTER SEQUENCE, COPY FROM (on workers),
and CREATE SEQUENCE OWNED BY. I've added errors for each so that users
understand when and why certain operations are prohibited.
We remove schema name parameter from worker_fetch_foreign_file and
worker_fetch_regular_table functions. We now send schema name
concatanated with table name.
Fixes#676
We added old versions (i.e. without schema name) of worker_apply_shard_ddl_command,
worker_fetch_foreign_file and worker_fetch_regular_table back. During function call
of one of these functions, we set schema name as public schema and call the newer
version of the functions.
We can now support richer set of queries in router planner.
This allow us to support CTEs, joins, window function, subqueries
if they are known to be executed at a single worker with a single
task (all tables are filtered down to a single shard and a single
worker contains all table shards referenced in the query).
Fixes : #501
Fixes#132
We hook into ALTER ... SET SCHEMA and warn out if user tries to change schema of a
distributed table.
We also hook into ALTER TABLE ALL IN TABLE SPACE statements and warn out if citus has
been loaded.
Allows the use of modification commands (INSERT/UPDATE/DELETE) within
transaction blocks (delimited by BEGIN and ROLLBACK/COMMIT), so long as
all modifications hit a subset of nodes involved in the first such com-
mand in the transaction. This does not circumvent the requirement that
each individual modification command must still target a single shard.
For instance, after sending BEGIN, a user might INSERT some rows to a
shard replicated on two nodes. Subsequent modifications can hit other
shards, so long as they are on one or both of these nodes.
SAVEPOINTs are supported, though if the user actually attempts to send
a ROLLBACK command that specifies a SAVEPOINT they will receive an
ERROR at the end of the topmost transaction.
Placements are only marked inactive if at least one replica succeeds
in a transaction where others fail. Non-atomic behavior is possible if
the shard targeted by the initial modification within a transaction has
a higher replication factor than another shard within the same block
and a node with the latter shard has a failure during the COMMIT phase.
Other methods of denoting transaction blocks (multi-statement commands
sent all at once and functions written in e.g. PL/pgSQL or other such
languages) are not presently supported; their treatment remains the
same as before.
Fixes#555
Before this change, we were resolving HLL function and type Oid without qualified name.
Now we find the schema name where HLL objects are stored and generate qualified names for
each objects.
Similar fix is also applied for cstore_table_size function call.
Fixes#565Fixes#626
To add schema support to citus, we need to schema-prefix all table names, object names etc.
in the queries sent to worker nodes. However; query deparsing is not available for most of
DDL commands, therefore it is not easy to generate worker query in the master node.
As a solution we are sending schema names along with shard id and query to run to worker
nodes with worker_apply_shard_ddl_command.
To not break \STAGE command we pass public schema as paramater while calling
worker_apply_shard_ddl_command from there. This will not cause problem if user uses \STAGE
in different schema because passes schema name is used only if there is no schema name is
given in the query.
Fixes#215Fixes#267Fixes#502Fixes#556Fixes#557Fixes#560Fixes#568Fixes#623Fixes#624
With this change we schema-prefix table names, operator names and composite types.
Fixes#513
This change modifies the DDL Propagation logic so that DDL queries
are propagated via 2-Phase Commit protocol. This way, failures during
the execution of distributed DDL commands will not leave the table in
an intermediate state and the pending prepared transactions can be
commited manually.
DDL commands are not allowed inside other transaction blocks or functions.
DDL commands are performed with 2PC regardless of the value of
`citus.multi_shard_commit_protocol` parameter.
The workflow of the successful case is this:
1. Open individual connections to all shard placements and send `BEGIN`
2. Send `SELECT worker_apply_shard_ddl_command(<shardId>, <DDL Command>)`
to all connections, one by one, in a serial manner.
3. Send `PREPARE TRANSCATION <transaction_id>` to all connections.
4. Sedn `COMMIT` to all connections.
Failure cases:
- If a worker problem occurs before sending of all DDL commands is finished, then
all changes are rolled back.
- If a worker problem occurs after all DDL commands are sent but not after
`PREPARE TRANSACTION` commands are finished, then all changes are rolled back.
However, if a worker node is failed, then the prepared transactions in that worker
should be rolled back manually.
- If a worker problem occurs during `COMMIT PREPARED` statements are being sent,
then the prepared transactions on the failed workers should be commited manually.
- If master fails before the first 'PREPARE TRANSACTION' is sent, then nothing is
changed on workers.
- If master fails during `PREPARE TRANSACTION` commands are being sent, then the
prepared transactions on workers should be rolled back manually.
- If master fails during `COMMIT PREPARED` or `ROLLBACK PREPARED` commands are being
sent, then the remaining prepared transactions on the workers should be handled manually.
This change also helps with #480, since failed DDL changes no longer mark
failed placements as inactive.
Fixes#394
This change adds LIMIT/OFFSET support for non router-plannable
distributed queries.
In cases that we can push the LIMIT down, we add the OFFSET value to
that LIMIT in the worker queries. When a query with LIMIT x OFFSET y is issued,
the query is propagated to the workers as LIMIT (x+y) OFFSET 0, and on the
master table, the original LIMIT and OFFSET values are used. With this change,
we can use OFFSET wherever we can use LIMIT.
- Enables using VOLATILE functions (like nextval()) in INSERT queries
- Enables using STABLE functions (like now()) targetLists and joinTrees
UPDATE and INSERT can now contain non-immutable functions. INSERT can contain any kind of
expression, while UPDATE can contain any STABLE function, so long as a Var is not passed
into the STABLE function, even indirectly. UPDATE TagetEntry's can now also include Vars.
There's an exception, CASE/COALESCE statements may not contain mutable functions.
Functions calls in master_modify_multiple_shards are also evaluated.
It turns out some tests exercised this behavior, but removing it should
have no ill effects. Besides, both copy and INSERT disallow NULLs in a
table's partition column.
Fixes a bug where anti-joins on hash-partitioned distributed tables
would incorrectly prune shards early, result in incorrect results (test
included).
Fixes#78
With this change, it is possible to append a table in any schema to shard. The function
master_append_table_to_shard now supports schema names.
-Added 2 more schedules for task-tracker and multi-binary
instead of running multi_schedule 3 times
-set task-tracker-delay for each long running schedule
This checkin removes variant files we needed
due to differences in outputs of pg94 and pg95 runs.
However, variant file for test multi_upsert stays
since this file tests for a feature that does not
exist in pg94, and outputs are drastically different.
Fixes#496
Previously we do not check whether table is foreign or not while creating empty
shards, and set storage type to 't'(Standard table) or 'c'(Columnar table). Now
if the table is foreign table(but not CStore foreign table) we set storage
type to 'f'(Foreign table). If it is CStore foreign table, we set its storage
type to 'c', i.e. columnar table have priority over foreign table.
Please note that 'c' is only used for CStore tables not for other possible
columnar stores at the moment. Possible improvement could be checking for other
columnar stores, though I am not sure if there is a way to check it for all
other columnar stores.
Since we now short-circuit on certain remote errors, we want to ensure
we preserve the old behavior of not modifying any placement states if
a non-short-circuiting error occurs on all placements.
There's not a ton of documentation about what CONTEXT lines should look
like, but this seems like the most dominant pattern. Similarly, users
should expect lowercase, non-period strings.
Fixes#271
This change sets ShardIds and JobIds for each test case. Before this change,
when a new test that somehow increments Job or Shard IDs is added, then
the tests after the new test should be updated.
ShardID and JobID sequences are set at the beginning of each file with the
following commands:
```
ALTER SEQUENCE pg_catalog.pg_dist_shardid_seq RESTART 290000;
ALTER SEQUENCE pg_catalog.pg_dist_jobid_seq RESTART 290000;
```
ShardIds and JobIds are multiples of 10000. Exceptions are:
- multi_large_shardid: shardid and jobid sequences are set to much larger values
- multi_fdw_large_shardid: same as above
- multi_join_pruning: Causes a race condition with multi_hash_pruning since
they are run in parallel.
Fixes#302
Since our previous syntax did not allow creating hash partitioned tables,
some of the previous tests manually changed partition method to hash to
be able to test it. With this change we remove unnecessary workaround and
create hash distributed tables instead. Also in some tests metadata was
created manually. With this change we also fixed this issue.
Single table repartition subqueries now support count(distinct column)
and count(distinct (case when ...)) expressions. Repartition query
extracts column used in aggregate expression and adds them to target
list and group by list, master query stays the same (count (distinct ...))
but attribute numbers inside the aggregate expression is modified to
reflect changes in repartition query.
Fixes#10
This change creates a new UDF: master_modify_multiple_shards
Parameters:
modify_query: A simple DELETE or UPDATE query as a string.
The UDF is similar to the existing master_apply_delete_command UDF.
Basically, given the modify query, it prunes the shard list, re-constructs
the query for each shard and sends the query to the placements.
Depending on the value of citus.multi_shard_commit_protocol, the commit
can be done in one-phase or two-phase manner.
Limitations:
* It cannot be called inside a transaction block
* It only be called with simple operator expressions (like Single Shard Modify)
Sample Usage:
```
SELECT master_modify_multiple_shards(
'DELETE FROM customer_delete_protocol WHERE c_custkey > 500 AND c_custkey < 500');
```
This commit fixes failures happen during check-full. The change does make
clean seperation of executor types in certain places to keep the outputs
stable.
Now, we can copy to an append-partitioned distributed relation from
any worker node by providing master options such as;
COPY relation_name FROM file_path WITH (delimiter '|', master_host 'localhost', master_port 5432);
where master_port is optional and default is 5432.
Allow references to columns in UPDATE statements
Queries like "UPDATE tbl SET column = column + 1" are now allowed, so long as you don't use any IMMUTABLE functions.
Some small parts of citus currently require superuser privileges; which
is obviously not desirable for production scenarios. Run these small
parts under superuser privileges (we use the extension owner) to avoid
that.
This does not yet coordinate grants between master and workers. Thus it
allows to create shards, load data, and run queries as a non-superuser,
but it is not easily possible to allow differentiated accesses to
several users.
Citus' extension version now has a -$schemaversion appendix. When the
schema is changed, a new schema version has to be added; changes to the
same schema version several commits inside a single pull request are ok.
Schema migration scripts between each schema version have to be
added. To ensure upgrade scripts work correctly a new regression test
ensures that all steps work.
The extension scripts to-be-used for CREATE EXTENSION (i.e. not
extension updates) are generated by concatenating citus.sql and the
relevant migration scripts.
This commit adds a fast shard pruning path for INSERTs on
hash-partitioned tables. The rationale behind this change is
that if there exists a sorted shard interval array, a single
index lookup on the array allows us to find the corresponding
shard interval. As mentioned above, we need a sorted
(wrt shardminvalue) shard interval array. Thus, this commit
updates shardIntervalArray to sortedShardIntervalArray in the
metadata cache. Then uses the low-level API that is defined in
multi_copy to handle the fast shard pruning.
The performance impact of this change is more apparent as more
shards exist for a distributed table. Previous implementation
was relying on linear search through the shard intervals. However,
this commit relies on constant lookup time on shard interval
array. Thus, the shard pruning becomes less dependent on the
shard count.
When we notice that pg_dist_partition is being invalidated we assume
that the citus extension is being dropped and drop state such as
extensionLoaded and the cached oids of all the metadata tables.
This frees the user from needing to reconnect after running DROP
EXTENSION, so we also no longer send a warning message.
- non-router plannable queries can be executed
by router executor if they satisfy the criteria
- router executor is removed from configuration,
now task executor can not be set to router
- removed some tests that error out for router executor
This change fixes the problem with joins with VARCHAR columns. Prior to
this change, when we tried to do large table joins on varchar columns, we got
an error of the form:
ERROR: cannot perform local joins that involve expressions
DETAIL: local joins can be performed between columns only.
This is because we have a check in CheckJoinBetweenColumns() which requires the
join clause to have only 'Var' nodes (i.e. columns). Postgres adds a relabel t
ype cast to cast the varchar to text; hence the type of the node is not T_Var
and the join fails.
The fix involves calling strip_implicit_coercions() to the left and right
arguments so that RELABELTYPE is stripped to VAR.
Fixes#76.
Previously (if you're creating the index with the same name on different
tables) we successfully ran the command on the workers before failing it
on the master and leaving no record of the index.
Now we check whether the index exists on the master before sending
commands to the workers.
--
Also make the error better when user attampts to create an index without
a name. Previously those statements returned:
brian=# create index on c (b);
WARNING: could not receive query results from localhost:9700
DETAIL: Client error: cannot extend name for null index name
ERROR: could not execute DDL command on worker node shards
They now return
brian=# create index on c (b);
ERROR: creating index without a name on a distributed table is
currently unsupported
Prior to this change, performing a SELECT query without a target
list caused backend to crash.
Sample Query: SELECT FROM github_events; (without any * before FROM)
PostgreSQL:
```
--
(39599 rows)
```
Citus:
```
server closed the connection unexpectedly
This probably means the server terminated abnormally
before or while processing the request.
The connection to the server was lost. Attempting reset: Failed.
!>
```
The problem was an unnecessary Assert on column list in
SetRangeTblExtraData(citus_nodefuncs.c)
This change removes the whitelisting check on the WHERE clauses. Note that, before
this change, citus was already allowing all types of nodes with the following
format (i.e., wrap with a boolean test):
* SELECT col FROM table WHERE (ANY EXPRESSION) is TRUE;
Thus, this change is mostly useful for allowing the expressions in the WHERE clause
directly and avoiding "unsupport clause type" errors.
Prior to this change, it was not possible to use UDFs in repartitioned
subqueries. The reason is that we were setting the search path explicitly
and omiting public schema from that path.
This change adds the public schema to the explicitly set search path.
Fixes issue #258
Prior to this change, Citus gives a deceptive NOTICE message when a query
including ANY or ALL on a non-partition column is issued on a hash
partitioned table.
Let the github_events table be hash-distributed on repo_id column. Then,
issuing this query:
SELECT count(*) FROM github_events WHERE event_id = ANY ('{1,2,3}')
Gives this message:
NOTICE: cannot use shard pruning with ANY (array expression)
HINT: Consider rewriting the expression with OR clauses.
Note that since event_id is not the partition column, shard pruning would
not be applied in any case. However, the NOTICE message would be valid
and be given if the ANY clause would have been applied on repo_id column.
Reviewer: Murat Tuncer
The previous form of the test, utilizing DEBUG2, included too much
output dependent on the specifc system and version. Reformulate it to
explicitly connect to workers and show the schema there, when necessary.
The only remaining difference in some of the remaining alternate
regression test files was due to an older minor version release
change. Remove those as well.
There already exist tests that locally embed knowledge about port
numbers, and there's more tests requiring that. Instead of copying
\set's to several tests, make these port number variables available to
all tests.
The default staging policy is now round-robin, though tests were still
configured to use local-first. Testing with the shipping default seems
like the best option, correctness-wise, and since local-first has some
issues with OSes where connecting from localhost doesn't always resolve
to 'localhost', just going with the default is a win-win.
After this change, shards and associated metadata are automatically
dropped when running DROP TABLE on a distributed table, which fixes#230.
It also adds schema support for master_apply_delete_command, which
fixes#73.
Dropping the shards happens in the master_drop_all_shards UDF, which is
called from the SQL_DROP trigger. Inside the trigger, the table is no
longer visible and calling master_apply_delete_command directly wouldn't
work and oid <-> name mappings are not available. The
master_drop_all_shards function therefore takes the relation id, schema
name, and table name as parameters, which can be obtained from
pg_event_trigger_dropped_objects() in the SQL_DROP trigger. If the user
calls master_drop_all_shards while the table still exists, the schema
name and table name are ignored.
Author: Marco Slot
Reviewed-By: Andres Freund
All citusdb references in
- extension, binary names
- file headers
- all configuration name prefixes
- error/warning messages
- some functions names
- regression tests
are changed to be citus.
This entirely removes any restriction on the type of partitioning
during DML planning and execution. Though there aren't actually any
technical limitations preventing DML commands against append- (or even
range-) partitioned tables, we had initially forbidden this, as any
future stage operation could cause shards to overlap, banning all
subsequent DML operations to partition values contained within more
than one shards. This ended up mostly restricting us, so we're now
removing that restriction.
When two data types have the same binary representation, PostgreSQL may
add an implicit coercion between them by wrapping a node in a relabel
type. This wrapper signals that the wrapped value is completely binary
compatible with the designated "final type" of the relabel node. As an
example, the varchar type is often relabeled to text, since functions
provided for use with text (comparisons, hashes, etc.) are completely
compatible with varchar as well.
The hash-partitioned codepath contains functions that verify queries
actually contain an equality constraint on the partition column, but
those functions expect such constraints to be comparison operations
between a Var and Const. The RelabelType wrapper node causes these
functions to always return false, which bypasses shard pruning.