With this fix, we traverse the graph with DFS which was originally
intended. Note that, before the fix, we traverse the graph with BFS
which might lead to killing some unrelated backend that is not
involved in the distributed deadlock.
With this PR we add isolation tests for
COPY to reference table vs. other operations
COPY to partitioned table vs. other operations
Multi row INSERTs vs other operations
INSERT/SELECT vs. other operations
UPSERT vs. other operations
DELETE vs. other operations
TRUNCATE vs. other operations
DROP vs. other operations
DDL vs. other operations
other operations consist of basic SQL operations (like SELECT,
INSERT, DELETE, UPSERT, COPY TRUNCATE, CREATE INDEX) as well
as some Citus functionalities (like master_modify_multiple_shards,
master_apply_delete_command, citus_total_relation_size etc.)
We try to run our isolation tests paralles as much as possible. In
some of those isolation tests we used same table name which causes
problem while running them in paralles. This commit changes table
names in those tests to ensure tests can run in parallel.
In this commit, we add ability to convert global wait edges
into adjacency list with the following format:
[transactionId] = [transactionNode->waitsFor {list of waiting transaction nodes}]
This change adds a general purpose infrastructure to log and monitor
process about long running progresses. It uses
`pg_stat_get_progress_info` infrastructure, introduced with PostgreSQL
9.6 and used for tracking `VACUUM` commands.
This patch only handles the creation of a memory space in dynamic shared
memory, putting its info in `pg_stat_get_progress_info`, fetching the
progress monitors on demand and finalizing the progress tracking.
This commit adds distributed transaction id infrastructure in
the scope of distributed deadlock detection.
In general, the distributed transaction id consists of a tuple
in the form of: `(databaseId, initiatorNodeIdentifier, transactionId,
timestamp)`.
Briefly, we add a shared memory block on each node, which holds some
information per backend (i.e., an array `BackendData backends[MaxBackends]`).
Later, on each coordinated transaction, Citus sends
`SELECT assign_distributed_transaction_id()` right after `BEGIN`.
For that backend on the worker, the distributed transaction id is set to
the values assigned via the function call.
The aim of the above is to correlate the transactions on the coordinator
to the transactions on the worker nodes.
* Accept invalidation messages before accessing the metadata cache
This commit is crucial to prevent stale metadata reads from the
cache. Without this commit, some of the operations may use stale
metadata which could end up with various bugs such as crashes,
inconsistent/lost data etc.
As an example, consider that a COPY operation is blocked on shard
metadata lock. Another concurrent session updates the metadata and
invalidates the cache. However, since Citus doesn't accept invalidations,
COPY continues with the stale metadata once it acquires the lock.
With this commit, we make sure that invalidation messages are accepted
just before accessing the metadata cache and preventing any operation to
use stale metadata.
* Add isolation tests for placement changes and conccurrent operations
- add node with reference table vs COPY/insert/update/DDL
- repair shard vs COPY/insert/update/DDL
- repair shard vs repair shard
- There was a crash when the table a shardid belonged to changed during
a session. Instead of crashing (a failed assert) we now throw an error
- Update the isolation test which was crashing to no longer exercise
that code path
- Add a regression test to check that the error is thrown