At configuration reload, we free all "global" (i.e. GUC-set) connection
parameters, but these may still have live references in the connection
parameters hash. By marking the entries as invalid, we can ensure they
will not be used after free.
Having DATA-segment string literals made blindly freeing the keywords/
values difficult, so I've switched to allocating all in the provided
context; because of this (and with the knowledge of the end point of
the global parameters), we can safely pfree non-global parameters when
we come across an invalid connection parameter entry.
Before this commit, shardPlacements were identified with shardId, nodeName
and nodeport. Instead of using nodeName and nodePort, we now use nodeId
since it apparently has performance benefits in several places in the
code.
Make sure that intermediate results use a connection that is
not associated with any placement. That is useful in two ways:
- More complex queries can be executed with CTEs
- Safely use the same connections when there is a foreign key
to reference table from a distributed table, which needs to
use the same connection for modifications since the reference
table might cascade to the distributed table.
To support more flexible (i.e. not at compile-time) specification of
libpq connection parameters, this change adds a new GUC, node_conninfo,
which must be a space-separated string of key-value pairs suitable for
parsing by libpq's connection establishment methods.
To avoid rebuilding and parsing these values at connection time, this
change also adds a cache in front of the configuration params to permit
immediate use of any previously-calculated parameters.
- changes in ruleutils_11.c is reflected
- vacuum statement api change is handled. We now allow
multi-table vacuum commands.
- some other function header changes are reflected
- api conflicts between PG11 and earlier versions
are handled by adding shims in version_compat.h
- various regression tests are fixed due output and
functionality in PG1
- no change is made to support new features in PG11
they need to be handled by new commit
Without this change we crash on Windows with COPYing into a table with
62 shards, and we ERROR when COPYing into a table with >62 shards:
ERROR: WaitForMutipleObjects() failed: error code 87
This commit checks the connection status right after any IO happens
on the socket.
This is necessary since before this commit we didn't pass any information
to the higher level functions whether we're done with the connection
(e.g., no IO required anymore) or an errors happened during the IO.
VLAs aren't supported by Visual Studio.
- Remove all existing instances of VLAs.
- Add a flag, -Werror=vla, which makes gcc refuse to compile if we add
VLAs in the future.
We shouldn't return in middle of a PG_TRY() block because if we do, we won't reset PG_exception_stack, and later when a re-throw tries to jump to the jump-point which was active in this PG_TRY() block, it seg-faults.
We used to return in middle of PG_TRY() block in WaitForConnections() where we checked for cancellations. Whenever cancellations were caught here, Citus crashed. And example was reported by @onderkalaci at #1903.
Postgres provides OS agnosting formatting macros for
formatting 64 bit numbers. Replaced %ld %lu with
INT64_FORMAT and UINT64_FORMAT respectively.
Also found some incorrect usages of formatting
flags and fixed them.
We sent multiple commands to worker when starting a transaction.
Previously we only checked the result of the first command that
is transaction 'BEGIN' which always succeeds. Any failure on
following commands were not checked.
With this commit, we make sure all command results are checked.
If there is any error we report the first error found.
When a NULL connection is provided to PQerrorMessage(), the
returned error message is a static text. Modifying that static
text, which doesn't necessarly be in a writeable memory, is
dangreous and might cause a segfault.
This commit adds distributed transaction id infrastructure in
the scope of distributed deadlock detection.
In general, the distributed transaction id consists of a tuple
in the form of: `(databaseId, initiatorNodeIdentifier, transactionId,
timestamp)`.
Briefly, we add a shared memory block on each node, which holds some
information per backend (i.e., an array `BackendData backends[MaxBackends]`).
Later, on each coordinated transaction, Citus sends
`SELECT assign_distributed_transaction_id()` right after `BEGIN`.
For that backend on the worker, the distributed transaction id is set to
the values assigned via the function call.
The aim of the above is to correlate the transactions on the coordinator
to the transactions on the worker nodes.
Comes with a few changes:
- Change the signature of some functions to accept groupid
- InsertShardPlacementRow
- DeleteShardPlacementRow
- UpdateShardPlacementState
- NodeHasActiveShardPlacements returns true if the group the node is a
part of has any active shard placements
- TupleToShardPlacement now returns ShardPlacements which have NULL
nodeName and nodePort.
- Populate (nodeName, nodePort) when creating ShardPlacements
- Disallow removing a node if it contains any shard placements
- DeleteAllReferenceTablePlacementsFromNode matches based on group. This
doesn't change behavior for now (while there is only one node per
group), but means in the future callers should be careful about
calling it on a secondary node, it'll delete placements on the primary.
- Create concept of a GroupShardPlacement, which represents an actual
tuple in pg_dist_placement and is distinct from a ShardPlacement,
which has been resolved to a specific node. In the future
ShardPlacement should be renamed to NodeShardPlacement.
- Create some triggers which allow existing code to continue to insert
into and update pg_dist_shard_placement as if it still existed.
That's important because the currently running statement on a worker
might continue to hold locks and consume resources, even after the
connection is closed. Unfortunately postgres will only notice closed
connections when reading from / writing to the network. That might
only happen much later.
Now that there's no blocking libpq callers left, default to using
non-blocking mode in connection_management.c. This has two
advantages:
1) Blockiness doesn't have to frequently be reset, simplifying code
2) Prevents accidental use of blocking libpq functions, since they'll
frequently return 'need IO'
Adds support for PostgreSQL 10 by copying in the requisite ruleutils
and updating all API usages to conform with changes in PostgreSQL 10.
Most changes are fairly minor but they are numerous. One particular
obstacle was the change in \d behavior in PostgreSQL 10's psql; I had
to add SQL implementations (views, mostly) to mimic the pre-10 output.
With this commit, we started to send explain queries within a savepoint. After
running explain query, we rollback to savepoint. This saves us from side effects
of EXPLAIN ANALYZE on DML queries.
Previously we'd segfault in PQisnonblocking() which, contrary to other
libpq calls, doesn't handle a NULL PQconn (because there'd be no
appropriate return value for that).
cr: @jasonmp85
- Break CheckShardPlacements into multiple functions (The most important
is MarkFailedShardPlacements), so that we can get rid of the global
CoordinatedTransactionUses2PC.
- Call MarkFailedShardPlacements in the router executor, so we mark
shards as invalid and stop using them while inside transaction blocks.
Before this change, when a transaction failed, we update related placements shard states
to FILE_INACTIVE during XACT_EVENT_PRE_COMMIT. However that means if another code block
changed shard state to something else (e.g. FILE_TO_DELETE) before XACT_EVENT_PRE_COMMIT
we overwrite that. To prevent that problem, in case of failure we started to change
shard state, only if its current shard state is FILE_FINALIZED.
A small refactor which pulls some code out of `RecoverWorkerTransactions`
and into `remote_commands.c`. This code block currently only occurs in
`RecoverWorkerTransactions` but will be useful to other functions
shortly.
Unfortunately we couldn't call it `ExecuteRemoteCommand`, that name was
already taken.
Because of foreign keys and similar concerns there should only be a
single modifying/DDL connection for a set of colocated placements to a
node. To enforce placement_connection.c now has an additional
hash-table keeping track of the connections to a set of colocated
placements. In addition to enforcing per placement restrictions on
connections, there's now very similar restrictions for sets of
colocated placements.
CloseNodeConnections() is supposed to close connections to a given node.
However, before this commit it lacks to actually call PQFinish() on the
connections. Using CloseConnection() handles closing and all other necessary
actions.
Currently there are several places in citus that map placements to
connections and that manage placement health. Centralize this
knowledge. Because of the centralized knowledge about which
connection has previously been used for which shard/placement, this
also provides the basis for relaxing restrictions around combining
various forms of DDL/DML.
Connections for a placement can now be acquired using
GetPlacementConnection(). If the connection is used for DML or DDL the
FOR_DDL/DML flags should be used respectively. If an individual
remote transaction fails (but the transaction on the master succeeds)
and FOR_DDL/DML have been specified, the placement is marked as
invalid, unless that'd mark all placements for a shard as invalid.
This includes basic infrastructure for logging of commands sent to
remote/worker nodes. Note that this has no effect as of yet, since no
callers are converted to the new infrastructure.
Connections are tracked and released by integrating into postgres'
transaction handling. That allows to to use connections without having
to resort to having to disable interrupts or using PG_TRY/CATCH blocks
to avoid leaking connections.
This is intended to eventually replace multi_client_executor.c and
connection_cache.c, and to provide the basis of a centralized
transaction management.
The newly introduced transaction hook should, in the future, be the only
one in citus, to allow for proper ordering between operations. For now
this central handler is responsible for releasing connections and
resetting XactModificationLevel after a transaction.