Support for ARRAY[] expressions is limited to having a consistent shape,
eg ARRAY[(int,text),(int,text)] as opposed to ARRAY[(int,text),(float,text)] or ARRAY[(int,text),(int,text,float)]
Initialization of queryWindowClause and queryOrderByLimit "memset" underflow these variables.
It's possible due to the invalid usage sizeof this part of the program cause buffer overflow and function return data corruption in future changes.
Phase 1 seeks to implement minimal infrastructure, so does not include:
- dynamic generation of support aggregates to handle multiple arguments
- configuration methods to direct aggregation strategy,
or mark an aggregate's serialize/deserialize as safe to operate across nodes
Aggregates can be distributed when:
- they have a single argument
- they have a combinefunc
- their transition type is not a pseudotype
Postgres doesn't require you to add all columns that are in the target list to
the GROUP BY when you group by a unique column (or columns). It even actively
removes these group by clauses when you do.
This is normally fine, but for repartition joins it is not. The reason for this
is that the temporary tables don't have these primary key columns. So when the
worker executes the query it will complain that it is missing columns in the
group by.
This PR fixes that by adding an ANY_VALUE aggregate around each variable in
the target list that does is not contained in the group by or in an aggregate.
This is done only for repartition joins.
The ANY_VALUE aggregate chooses the value from an undefined row in the
group.
Areas for further optimization:
- Don't save subquery results to a local file on the coordinator when the subquery is not in the having clause
- Push the the HAVING with subquery to the workers if there's a group by on the distribution column
- Don't push down the results to the workers when we don't push down the HAVING clause, only the coordinator needs it
Fixes#520Fixes#756Closes#2047
We can now support more complex count distinct operations by
pulling necessary columns to coordinator and evalutating the
aggreage at coordinator.
It supports broad range of expression with the restriction that
the expression must contain a column.
This commit doesn't change any of the logic at all.
Instead, the goal is to:
* Get rid of any code duplication
* Incremental changes to the optimizer made it slightly hard
to follow the code, improve that and make it easier to
implement new features
* Simplify the code by moving each part of query processing (e.g.,
DISTINCT, LIMIT etc) into its own function
* Make the interaction between each part of the query more
obvious (e.g., How DISTINCT affects LIMIT etc)
Before this commit, we had code duplication in the
WorkerExtendedOpNode(). The duplication was
noticeable and any change is prone to bugs.
The PR consists of 4 commits. Each commit incrementally
fixes the problem by moving certain parts of the duplicated
code into smaller, better-documented functions.
Before this commit, we had a divergence among
the creation of master/worker extended op nodes.
This commit moves the related parts into a single place
and allows the creation of master/extended op nodes to
share a common data structure.
This PR adds support for multiple AND expressions in Having
for pushdown planner. We simply make a call to make_ands_explicit
from MultiLogicalPlanOptimize for the having qual in
workerExtendedOpNode.
Pushing down limit and order by into workers may produce
wrong output when distinct on() clause has expressions,
aggregates, or window functions.
This checking allows pushing down of limits only if
distinct clause is a superset of group by clause. i.e. it contains all clauses in group by.
This is the first of series of window function work.
We can now support window functions that can be pushed down to workers.
Window function must have distribution column in the partition clause
to be pushed down.
We push down order by to worker query when limit is specified
(with some other additional checks). If the query has an expression
on an aggregate or avg aggregate by itself, and there is an order
by on this particular target we may send wrong order by to worker
query with potential to affect query result.
The fix creates a auxilary target entry in the worker query and
uses that target entry for sorting.
We were allowing count distict queries even if they were
not directly on columns if the query is grouped on
distribution column.
When performing these checks we were skipping subqueries
because they also perform this check in a more concise manner.
We relied on oid SUBQUERY_RELATION_ID (10000) to decide if
a given RTE relation id denotes a subquery, however, we also
use SUBQUERY_PUSHDOWN_RELATION_ID (10001) for some subqueries.
We skip both type of subqueries with this change.
Expands count distinct coverage by allowing more cases. We used to support
count distinct only if we can push down distinct aggregate to worker query
i.e. the count distinct clause was on the partition column of the table,
or there was a grouping on the partition column.
Now we can support
- non-partition columns, with or without grouping on partition column
- partition, and non partition column in the same query
- having clause
- single table subqueries
- insert into select queries
- join queries where count distinct is on partition, or non-partition column
- filters on count distinct clauses (extends existing support)
We first try to push down aggregate to worker query (original case), if we
can't then we modify worker query to return distinct columns to coordinator
node. We do that by adding distinct column targets to group by clauses. Then
we perform count distinct operation on the coordinator node.
This work should reduce the cases where HLL is used as it can address anything
that HLL can. However, if we start having performance issues due to very large
number rows, then we can recommend hll use.
With this commit, we relax the restrictions put on the reference
tables with subquery pushdown.
We did three notable improvements:
1) Relax equi-join restrictions
Previously, we always expected that the non-reference tables are
equi joined with reference tables on the partition key of the
non-reference table.
With this commit, we allow any column of non-reference tables
joined using non-equi joins as well.
2) Relax OUTER JOIN restrictions
Previously Citus errored out if any reference table exists at
any point of the outer part of an outer join. For instance,
See the below sketch where (h) denotes a hash distributed relation,
(r) denotes a reference table, (L) denotes LEFT JOIN and
(I) denotes INNER JOIN.
(L)
/ \
(I) h
/ \
r h
Before this commit Citus would error out since a reference table
appears on the left most part of an left join. However, that was
too restrictive so that we only error out if the reference table
is directly below and in the outer part of an outer join.
3) Bug fixes
We've done some minor bugfixes in the existing implementation.
Adds support for PostgreSQL 10 by copying in the requisite ruleutils
and updating all API usages to conform with changes in PostgreSQL 10.
Most changes are fairly minor but they are numerous. One particular
obstacle was the change in \d behavior in PostgreSQL 10's psql; I had
to add SQL implementations (views, mostly) to mimic the pre-10 output.
* Support for subqueries in WHERE clause
This commit enables subqueries in WHERE clause to be pushed down
by the subquery pushdown logic.
The support covers:
- Correlated subqueries with IN, NOT IN, EXISTS, NOT EXISTS,
operator expressions such as (>, <, =, ALL, ANY etc.)
- Non-correlated subqueries with (partition_key) IN (SELECT partition_key ..)
(partition_key) =ANY (SELECT partition_key ...)
Note that this commit heavily utilizes the attribute equivalence logic introduced
in the 1cb6a34ba8. In general, this commit mostly
adjusts the logical planner not to error out on the subqueries in WHERE clause.
* Improve error checks for subquery pushdown and INSERT ... SELECT
Since we allow subqueries in WHERE clause with the previous commit,
we should apply the same limitations to those subqueries.
With this commit, we do not iterate on each subquery one by one.
Instead, we extract all the subqueries and apply the checks directly
on those subqueries. The aim of this change is to (i) Simplify the
code (ii) Make it close to the checks on INSERT .. SELECT code base.
* Extend checks for unresolved paramaters to include SubLinks
With the presence of subqueries in where clause (i.e., SubPlans on the
query) the existing way for checking unresolved parameters fail. The
reason is that the parameters for SubPlans are kept on the parent plan not
on the query itself (see primnodes.h for the details).
With this commit, instead of checking SubPlans on the modified plans
we start to use originalQuery, where SubLinks represent the subqueries
in where clause. The unresolved parameters can be found on the SubLinks.
* Apply code-review feedback
* Remove unnecessary copying of shard interval list
This commit removes unnecessary copying of shard interval list. Note
that there are no copyObject function implemented for shard intervals.
* Enabling physical planner for subquery pushdown changes
This commit applies the logic that exists in INSERT .. SELECT
planning to the subquery pushdown changes.
The main algorithm is followed as :
- pick an anchor relation (i.e., target relation)
- per each target shard interval
- add the target shard interval's shard range
as a restriction to the relations (if all relations
joined on the partition keys)
- Check whether the query is router plannable per
target shard interval.
- If router plannable, create a task
* Add union support within the JOINS
This commit adds support for UNION/UNION ALL subqueries that are
in the following form:
.... (Q1 UNION Q2 UNION ...) as union_query JOIN (QN) ...
In other words, we currently do NOT support the queries that are
in the following form where union query is not JOINed with
other relations/subqueries :
.... (Q1 UNION Q2 UNION ...) as union_query ....
* Subquery pushdown planner uses original query
With this commit, we change the input to the logical planner for
subquery pushdown. Before this commit, the planner was relying
on the query tree that is transformed by the postgresql planner.
After this commit, the planner uses the original query. The main
motivation behind this change is the simplify deparsing of
subqueries.
* Enable top level subquery join queries
This work enables
- Top level subquery joins
- Joins between subqueries and relations
- Joins involving more than 2 range table entries
A new regression test file is added to reflect enabled test cases
* Add top level union support
This commit adds support for UNION/UNION ALL subqueries that are
in the following form:
.... (Q1 UNION Q2 UNION ...) as union_query ....
In other words, Citus supports allow top level
unions being wrapped into aggregations queries
and/or simple projection queries that only selects
some fields from the lower level queries.
* Disallow subqueries without a relation in the range table list for subquery pushdown
This commit disallows subqueries without relation in the range table
list. This commit is only applied for subquery pushdown. In other words,
we do not add this limitation for single table re-partition subqueries.
The reasoning behind this limitation is that if we allow pushing down
such queries, the result would include (shardCount * expectedResults)
where in a non distributed world the result would be (expectedResult)
only.
* Disallow subqueries without a relation in the range table list for INSERT .. SELECT
This commit disallows subqueries without relation in the range table
list. This commit is only applied for INSERT.. SELECT queries.
The reasoning behind this limitation is that if we allow pushing down
such queries, the result would include (shardCount * expectedResults)
where in a non distributed world the result would be (expectedResult)
only.
* Change behaviour of subquery pushdown flag (#1315)
This commit changes the behaviour of the citus.subquery_pushdown flag.
Before this commit, the flag is used to enable subquery pushdown logic. But,
with this commit, that behaviour is enabled by default. In other words, the
flag is now useless. We prefer to keep the flag since we don't want to break
the backward compatibility. Also, we may consider using that flag for other
purposes in the next commits.
* Require subquery_pushdown when limit is used in subquery
Using limit in subqueries may cause returning incorrect
results. Therefore we allow limits in subqueries only
if user explicitly set subquery_pushdown flag.
* Evaluate expressions on the LIMIT clause (#1333)
Subquery pushdown uses orignal query, the LIMIT and OFFSET clauses
are not evaluated. However, logical optimizer expects these expressions
are already evaluated by the standard planner. This commit manually
evaluates the functions on the logical planner for subquery pushdown.
* Better format subquery regression tests (#1340)
* Style fix for subquery pushdown regression tests
With this commit we intented a more consistent style for the
regression tests we've added in the
- multi_subquery_union.sql
- multi_subquery_complex_queries.sql
- multi_subquery_behavioral_analytics.sql
* Enable the tests that are temporarily commented
This commit enables some of the regression tests that were commented
out until all the development is done.
* Fix merge conflicts (#1347)
- Update regression tests to meet the changes in the regression
test output.
- Replace Ifs with Asserts given that the check is already done
- Update shard pruning outputs
* Add view regression tests for increased subquery coverage (#1348)
- joins between views and tables
- joins between views
- union/union all queries involving views
- views with limit
- explain queries with view
* Improve btree operators for the subquery tests
This commit adds the missing comprasion for subquery composite key
btree comparator.
Enables use views within distributed queries.
User can create and use a view on distributed tables/queries
as he/she would use with regular queries.
After this change router queries will have full support for views,
insert into select queries will support reading from views, not
writing into. Outer joins would have a limited support, and would
error out at certain cases such as when a view is in the inner side
of the outer join.
Although PostgreSQL supports writing into views under certain circumstances.
We disallowed that for distributed views.
With this commit, we implemented some basic features of reference tables.
To start with, a reference table is
* a distributed table whithout a distribution column defined on it
* the distributed table is single sharded
* and the shard is replicated to all nodes
Reference tables follows the same code-path with a single sharded
tables. Thus, broadcast JOINs are applicable to reference tables.
But, since the table is replicated to all nodes, table fetching is
not required any more.
Reference tables support the uniqueness constraints for any column.
Reference tables can be used in INSERT INTO .. SELECT queries with
the following rules:
* If a reference table is in the SELECT part of the query, it is
safe join with another reference table and/or hash partitioned
tables.
* If a reference table is in the INSERT part of the query, all
other participating tables should be reference tables.
Reference tables follow the regular co-location structure. Since
all reference tables are single sharded and replicated to all nodes,
they are always co-located with each other.
Queries involving only reference tables always follows router planner
and executor.
Reference tables can have composite typed columns and there is no need
to create/define the necessary support functions.
All modification queries, master_* UDFs, EXPLAIN, DDLs, TRUNCATE,
sequences, transactions, COPY, schema support works on reference
tables as expected. Plus, all the pre-requisites associated with
distribution columns are dismissed.
This commit adds INSERT INTO ... SELECT feature for distributed tables.
We implement INSERT INTO ... SELECT by pushing down the SELECT to
each shard. To compute that we use the router planner, by adding
an "uninstantiated" constraint that the partition column be equal to a
certain value. standard_planner() distributes that constraint to all
the tables where it knows how to push the restriction safely. An example
is that the tables that are connected via equi joins.
The router planner then iterates over the target table's shards,
for each we replace the "uninstantiated" restriction, with one that
PruneShardList() handles. Do so by replacing the partitioning qual
parameter added in multi_planner() with the current shard's
actual boundary values. Also, add the current shard's boundary values to the
top level subquery to ensure that even if the partitioning qual is
not distributed to all the tables, we never run the queries on the shards
that don't match with the current shard boundaries. Finally, perform the
normal shard pruning to decide on whether to push the query to the
current shard or not.
We do not support certain SQLs on the subquery, which are described/commented
on ErrorIfInsertSelectQueryNotSupported().
We also added some locking on the router executor. When an INSERT/SELECT command
runs on a distributed table with replication factor >1, we need to ensure that
it sees the same result on each placement of a shard. So we added the ability
such that router executor takes exclusive locks on shards from which the SELECT
in an INSERT/SELECT reads in order to prevent concurrent changes. This is not a
very optimal solution, but it's simple and correct. The
citus.all_modifications_commutative can be used to avoid aggressive locking.
An INSERT/SELECT whose filters are known to exclude any ongoing writes can be
marked as commutative. See RequiresConsistentSnapshot() for the details.
We also moved the decison of whether the multiPlan should be executed on
the router executor or not to the planning phase. This allowed us to
integrate multi task router executor tasks to the router executor smoothly.
Adds support for PostgreSQL 9.6 by copying in the requisite ruleutils
file and refactoring the out/readfuncs code to flexibly support the
old-style copy/pasted out/readfuncs (prior to 9.6) or use extensible
node APIs (in 9.6 and higher).
Most version-specific code within this change is only needed to set new
fields in the AggRef nodes we build for aggregations. Version-specific
test output files were added in certain cases, though in most they were
not necessary. Each such file begins by e.g. printing the major version
in order to clarify its purpose.
The comment atop citus_nodes.h details how to add support for new nodes
for when that becomes necessary.
This commit completes having support in Citus by adding having support for
real-time and task-tracker executors. Multiple tests are added to regression
tests to cover new supported queries with having support.
Before this change, count on a distributed returned NULL if all shards
were pruned away, because on the master we replace with count(..) call
with a sum(..) call to sum the counts from the shards. However, sum
returns NULL when there are no rows, whereas count is expected to return
0.
In subquery pushdown, we allow outer joins if the join condition is on the
partition columns. WhereClauseList() used to return all join conditions including
outer joins. However, this has been changed with a commit related to outer join
support on regular queries. With this commit, we refactored ExtractFromExpressionWalker()
to return two lists of qualifiers. The first list is for inner join and filter
clauses and the second list is for outer join clauses. Therefore, we can also
use outer join clauses to check subquery pushdown prerequisites.
Fixes#555
Before this change, we were resolving HLL function and type Oid without qualified name.
Now we find the schema name where HLL objects are stored and generate qualified names for
each objects.
Similar fix is also applied for cstore_table_size function call.
Fixes#394
This change adds LIMIT/OFFSET support for non router-plannable
distributed queries.
In cases that we can push the LIMIT down, we add the OFFSET value to
that LIMIT in the worker queries. When a query with LIMIT x OFFSET y is issued,
the query is propagated to the workers as LIMIT (x+y) OFFSET 0, and on the
master table, the original LIMIT and OFFSET values are used. With this change,
we can use OFFSET wherever we can use LIMIT.
now copies all column references in count distinct aggreagete
to worker target list and group by. Master target list is
also updated to reflect changes in attribute order.
Fixes 569
Single table repartition subqueries now support count(distinct column)
and count(distinct (case when ...)) expressions. Repartition query
extracts column used in aggregate expression and adds them to target
list and group by list, master query stays the same (count (distinct ...))
but attribute numbers inside the aggregate expression is modified to
reflect changes in repartition query.
This commit adds a fast shard pruning path for INSERTs on
hash-partitioned tables. The rationale behind this change is
that if there exists a sorted shard interval array, a single
index lookup on the array allows us to find the corresponding
shard interval. As mentioned above, we need a sorted
(wrt shardminvalue) shard interval array. Thus, this commit
updates shardIntervalArray to sortedShardIntervalArray in the
metadata cache. Then uses the low-level API that is defined in
multi_copy to handle the fast shard pruning.
The performance impact of this change is more apparent as more
shards exist for a distributed table. Previous implementation
was relying on linear search through the shard intervals. However,
this commit relies on constant lookup time on shard interval
array. Thus, the shard pruning becomes less dependent on the
shard count.
With #426, some new warning messages started to arise, because of
cross assignment of Node and Expr pointers. This change fixes the
warnings with type casts.
Fixes#379
Varchar VAR struct is wrapped in RELABELTYPE struct inside PostgreSQL code and
IsPartitionColumnRecursive function considers only VAR types so returning false
for varchar.
This change adds strip_implicit_coercions() call to the columnExpression in
IsPartitionColumnRecursive function so that we get rid of implicit coercions like
RELABELTYPE are stripped to VAR.
Fixes#375
Prior to this change, shard pruning couldn't be done if:
- Table is hash-distributed
- Partition column of is VARCHAR
- Query to be pruned is a subquery
There were two problems:
- A bug in left-side/right-side checks for the partition column
- We were not considering relabeled types (VARCHAR was relabeled as TEXT)