Add citus_schema_move() that can be used to move tenant tables within a distributed
schema to another node. The function has two variations as simple wrappers around
citus_move_shard_placement() and citus_move_shard_placement_with_nodeid() respectively.
They pick a shard that belongs to the given tenant schema and resolve the source node
that contain the shards under given tenant schema. Hence their signatures are quite
similar to underlying functions:
```sql
-- citus_schema_move(), using target node name and node port
CREATE OR REPLACE FUNCTION pg_catalog.citus_schema_move(
schema_id regnamespace,
target_node_name text,
target_node_port integer,
shard_transfer_mode citus.shard_transfer_mode default 'auto')
RETURNS void
LANGUAGE C STRICT
AS 'MODULE_PATHNAME', $$citus_schema_move$$;
-- citus_schema_move(), using target node id
CREATE OR REPLACE FUNCTION pg_catalog.citus_schema_move(
schema_id regnamespace,
target_node_id integer,
shard_transfer_mode citus.shard_transfer_mode default 'auto')
RETURNS void
LANGUAGE C STRICT
AS 'MODULE_PATHNAME', $$citus_schema_move_with_nodeid$$;
```
DESCRIPTION: Presenting citus_pause_node UDF enabling pausing by
node_id.
citus_pause_node takes a node_id parameter and fetches all the shards in
that node and puts AccessExclusiveLock on all the shards inside that
node. With this lock, insert is disabled, until citus_pause_node
transaction is closed.
---------
Co-authored-by: Hanefi Onaldi <Hanefi.Onaldi@microsoft.com>
PG16 compatibility - part 7
Check out part 1 42d956888d
part 2 0d503dd5ac
part 3 907d72e60d
part 4 7c6b4ce103
part 5 6056cb2c29
part 6 b36c431abb
part 7 ee3153fe50
This commit is in the series of PG16 compatibility commits. PG16 introduced a new entry
varnnullingrels to Var, which represents our partkey in pg_dist_partition.
This commit does the necessary changes in Citus to support this.
Relevant PG commit:
2489d76c49
2489d76c4906f4461a364ca8ad7e0751ead8aa0d
More PG16 compatibility commits are coming soon ...
PG16 compatibility - Part 2
Part 1 provided successful compilation against pg16beta2.
42d956888d
This PR provides ruleutils changes with pg16beta2 and successful CREATE EXTENSION command.
Note that more changes are needed in order to have successful regression tests.
More commits are coming soon ...
For any_value changes, I referred to this commit
8ef94dc1f5
where we did something similar for PG14 support.
DESCRIPTION: Change default rebalance strategy to by_disk_size
When introducing rebalancing by disk size we didn't make it the default
initially. The main reason was, because we expected some problems with
it. We have indeed had some problems/bugs with it over the years, and
have fixed all of them. By now we're quite confident in its stability,
and that it pretty much always gives better results than by_shard_count.
So this PR makes by_disk_size the new default. We don't change the
default when some other strategy than by_shard_count is the current
default. This is in case someone defined their own rebalance strategy
and marked this as the default themselves.
Note: It explicitly does nothing during a downgrade, because there's no
way of knowing if the rebalance strategy before the upgrade was
by_disk_size or by_shard_count. And even in previous versions
by_disk_size is considered superior for quite some time.
This is to implement custom cast of table partition column
type from / to `timestamptz` in time partition management UDFs, as
proposed in ticket #6454
The general idea is for a time partition column with type other than
`date`, `timestamp`, or `timestamptz`, users can provide custom
bidirectional cast between the column type and `timestamptz`, the UDFs
then will be able to create and drop time partitions for such tables.
Fixes#6454
---------
Signed-off-by: Xin Li <xin@swirldslabs.com>
Co-authored-by: Marco Slot <marco.slot@microsoft.com>
Co-authored-by: Ahmet Gedemenli <afgedemenli@gmail.com>
DESCRIPTION: Adds citus_schemas view
The citus_schemas view will be created in public schema if it exists, if
not the view will be created in pg_catalog.
Need to:
- [x] Add tests
- [x] Fix tests
citus_shard_sizes view had a shard name column we use to extract shard
id. This PR changes the column to shard id so we don't do unnecessary
string operation.
DESCRIPTION: Enabling citus_stat_tenants to support schema-based
tenants.
This pull request modifies the existing logic to enable tenant
monitoring with schema-based tenants. The changes made are as follows:
- If a query has a partitionKeyValue (which serves as a tenant
key/identifier for distributed tables), Citus annotates the query with
both the partitionKeyValue and colocationId. This allows for accurate
tracking of the query.
- If a query does not have a partitionKeyValue, but its colocationId
belongs to a distributed schema, Citus annotates the query with only the
colocationId. The tenant monitor can then easily look up the schema to
determine if it's a distributed schema and make a decision on whether to
track the query.
---------
Co-authored-by: Jelte Fennema <jelte.fennema@microsoft.com>
* Currently we do not allow any Citus tables other than Citus local
tables inside a regular schema before executing
`citus_schema_distribute`.
* `citus_schema_undistribute` expects only single shard distributed
tables inside a tenant schema.
DESCRIPTION: Adds the udf `citus_schema_distribute` to convert a regular
schema into a tenant schema.
DESCRIPTION: Adds the udf `citus_schema_undistribute` to convert a
tenant schema back to a regular schema.
---------
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
`citus_table_type` column of `citus_tables` and `citus_shards` will show
"schema" for tenants schema tables and "distributed" for single shard
tables that are not in a tenant schema.
DESCRIPTION: Adds citus.enable_schema_based_sharding GUC that allows
sharding the database based on schemas when enabled.
* Refactor the logic that automatically creates Citus managed tables
* Refactor CreateSingleShardTable() to allow specifying colocation id
instead
* Add support for schema-based-sharding via a GUC
### What this PR is about:
Add **citus.enable_schema_based_sharding GUC** to enable schema-based
sharding. Each schema created while this GUC is ON will be considered
as a tenant schema. Later on, regardless of whether the GUC is ON or
OFF, any table created in a tenant schema will be converted to a
single shard distributed table (without a shard key). All the tenant
tables that belong to a particular schema will be co-located with each
other and will have a shard count of 1.
We introduce a new metadata table --pg_dist_tenant_schema-- to do the
bookkeeping for tenant schemas:
```sql
psql> \d pg_dist_tenant_schema
Table "pg_catalog.pg_dist_tenant_schema"
┌───────────────┬─────────┬───────────┬──────────┬─────────┐
│ Column │ Type │ Collation │ Nullable │ Default │
├───────────────┼─────────┼───────────┼──────────┼─────────┤
│ schemaid │ oid │ │ not null │ │
│ colocationid │ integer │ │ not null │ │
└───────────────┴─────────┴───────────┴──────────┴─────────┘
Indexes:
"pg_dist_tenant_schema_pkey" PRIMARY KEY, btree (schemaid)
"pg_dist_tenant_schema_unique_colocationid_index" UNIQUE, btree (colocationid)
psql> table pg_dist_tenant_schema;
┌───────────┬───────────────┐
│ schemaid │ colocationid │
├───────────┼───────────────┤
│ 41963 │ 91 │
│ 41962 │ 90 │
└───────────┴───────────────┘
(2 rows)
```
Colocation id column of pg_dist_tenant_schema can never be NULL even
for the tenant schemas that don't have a tenant table yet. This is
because, we assign colocation ids to tenant schemas as soon as they
are created. That way, we can keep associating tenant schemas with
particular colocation groups even if all the tenant tables of a tenant
schema are dropped and recreated later on.
When a tenant schema is dropped, we delete the corresponding row from
pg_dist_tenant_schema. In that case, we delete the corresponding
colocation group from pg_dist_colocation as well.
### Future work for 12.0 release:
We're building schema-based sharding on top of the infrastructure that
adds support for creating distributed tables without a shard key
(https://github.com/citusdata/citus/pull/6867).
However, not all the operations that can be done on distributed tables
without a shard key necessarily make sense (in the same way) in the
context of schema-based sharding. For example, we need to think about
what happens if user attempts altering schema of a tenant table. We
will tackle such scenarios in a future PR.
We will also add a new UDF --citus.schema_tenant_set() or such-- to
allow users to use an existing schema as a tenant schema, and another
one --citus.schema_tenant_unset() or such-- to stop using a schema as
a tenant schema in future PRs.
DESCRIPTION: Adds control for background task executors involving a node
### Background and motivation
Nonblocking concurrent task execution via background workers was
introduced in [#6459](https://github.com/citusdata/citus/pull/6459), and
concurrent shard moves in the background rebalancer were introduced in
[#6756](https://github.com/citusdata/citus/pull/6756) - with a hard
dependency that limits to 1 shard move per node. As we know, a shard
move consists of a shard moving from a source node to a target node. The
hard dependency was used because the background task runner didn't have
an option to limit the parallel shard moves per node.
With the motivation of controlling the number of concurrent shard
moves that involve a particular node, either as source or target, this
PR introduces a general new GUC
citus.max_background_task_executors_per_node to be used in the
background task runner infrastructure. So, why do we even want to
control and limit the concurrency? Well, it's all about resource
availability: because the moves involve the same nodes, extra
parallelism won’t make the rebalance complete faster if some resource is
already maxed out (usually cpu or disk). Or, if the cluster is being
used in a production setting, the moves might compete for resources with
production queries much more than if they had been executed
sequentially.
### How does it work?
A new column named nodes_involved is added to the catalog table that
keeps track of the scheduled background tasks,
pg_dist_background_task. It is of type integer[] - to store a list
of node ids. It is NULL by default - the column will be filled by the
rebalancer, but we may not care about the nodes involved in other uses
of the background task runner.
Table "pg_catalog.pg_dist_background_task"
Column | Type
============================================
job_id | bigint
task_id | bigint
owner | regrole
pid | integer
status | citus_task_status
command | text
retry_count | integer
not_before | timestamp with time zone
message | text
+nodes_involved | integer[]
A hashtable named ParallelTasksPerNode keeps track of the number of
parallel running background tasks per node. An entry in the hashtable is
as follows:
ParallelTasksPerNodeEntry
{
node_id // The node is used as the hash table key
counter // Number of concurrent background tasks that involve node node_id
// The counter limit is citus.max_background_task_executors_per_node
}
When the background task runner assigns a runnable task to a new
executor, it increments the counter for each of the nodes involved with
that runnable task. The limit of each counter is
citus.max_background_task_executors_per_node. If the limit is reached
for any of the nodes involved, this runnable task is skipped. And then,
later, when the running task finishes, the background task runner
decrements the counter for each of the nodes involved with the done
task. The following functions take care of these increment-decrement
steps:
IncrementParallelTaskCountForNodesInvolved(task)
DecrementParallelTaskCountForNodesInvolved(task)
citus.max_background_task_executors_per_node can be changed in the
fly. In the background rebalancer, we simply give {source_node,
target_node} as the nodesInvolved input to the
ScheduleBackgroundTask function. The rest is taken care of by the
general background task runner infrastructure explained above. Check
background_task_queue_monitor.sql and
background_rebalance_parallel.sql tests for detailed examples.
#### Note
This PR also adds a hard node dependency if a node is first being used
as a source for a move, and then later as a target. The reason this
should be a hard dependency is that the first move might make space for
the second move. So, we could run out of disk space (or at least
overload the node) if we move the second shard to it before the first
one is moved away.
Fixes https://github.com/citusdata/citus/issues/6716
DESCRIPTION: PR description that will go into the change log, up to 78
characters
---------
Co-authored-by: Hanefi Onaldi <Hanefi.Onaldi@microsoft.com>
DESCRIPTION: Adds views that monitor statistics on tenant usages
This PR adds `citus_stats_tenants` view that monitors the tenants on the
cluster.
`citus_stats_tenants` shows the node id, colocation id, tenant
attribute, read count in this period and last period, and query count in
this period and last period of the tenant.
Tenant attribute currently is the tenant's distribution column value,
later when schema based sharding is introduced, this meaning might
change.
A period is a time bucket the queries are counted by. Read and query
counts for this period can increase until the current period ends. After
that those counts are moved to last period's counts, which cannot
change. The period length can be set using 'citus.stats_tenants_period'.
`SELECT` queries are counted as _read_ queries, `INSERT`, `UPDATE` and
`DELETE` queries are counted as _write_ queries. So in the view read
counts are `SELECT` counts and query counts are `SELECT`, `INSERT`,
`UPDATE` and `DELETE` count.
The data is stored in shared memory, in a struct named
`MultiTenantMonitor`.
`citus_stats_tenants` shows the data from local tenants.
`citus_stats_tenants` show up to `citus.stats_tenant_limit` number of
tenants.
The tenants are scored based on the number of queries they run and the
recency of those queries. Every query ran increases the score of tenant
by `ONE_QUERY_SCORE`, and after every period ends the scores are halved.
Halving is done lazily.
To retain information a longer the monitor keeps up to 3 times
`citus.stats_tenant_limit` tenants. When the tenant count hits `3 *
citus.stats_tenant_limit`, last `citus.stats_tenant_limit` tenants are
removed. To see all stored tenants you can use
`citus_stats_tenants(return_all_tenants := true)`
- [x] Create collector view that gets data from all nodes. #6761
- [x] Add monitoring log #6762
- [x] Create enable/disable GUC #6769
- [x] Parse the annotation string correctly #6796
- [x] Add local queries and prepared statements #6797
- [x] Rename to citus_stat_statements #6821
- [x] Run pgbench
- [x] Fix role permissions #6812
---------
Co-authored-by: Gokhan Gulbiz <ggulbiz@gmail.com>
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
This pull request proposes a change to the logic used for propagating
identity columns to worker nodes in citus. Instead of creating a
dependent sequence for each identity column and changing its default
value to `nextval(seq)/worker_nextval(seq)`, this update will pass the
identity columns as-is to the worker nodes.
Please note that there are a few limitations to this change.
1. Only bigint identity columns will be allowed in distributed tables to
ensure compatibility with the DDL from any node functionality. Our
current distributed sequence implementation only allows insert
statements from all nodes for bigint sequences.
2. `alter_distributed_table` and `undistribute_table` operations will
not be allowed for tables with identity columns. This is because we do
not have a proper way of keeping sequence states consistent across the
cluster.
DESCRIPTION: Prevents using identity columns on data types other than
`bigint` on distributed tables
DESCRIPTION: Prevents using `alter_distributed_table` and
`undistribute_table` UDFs when a table has identity columns
DESCRIPTION: Fixes a bug that prevents enforcing identity column
restrictions on worker nodes
Depends on #6740Fixes#6694
Description:
Implementing CDC changes using Logical Replication to avoid
re-publishing events multiple times by setting up replication origin
session, which will add "DoNotReplicateId" to every WAL entry.
- shard splits
- shard moves
- create distributed table
- undistribute table
- alter distributed tables (for some cases)
- reference table operations
The citus decoder which will be decoding WAL events for CDC clients,
ignores any WAL entry with replication origin that is not zero.
It also maps the shard names to distributed table names.
If there is a problem with an ongoing rebalance, we did not show details
on background tasks that are stuck in runnable state. Similar to how we
show details for errored tasks, we now show details on tasks that are
being retried.
Earlier we showed the following output when a task was stuck:
```
┌────────────────────────────┐
│ { ↵│
│ "tasks": [ ↵│
│ ], ↵│
│ "task_state_counts": {↵│
│ "done": 13, ↵│
│ "blocked": 2, ↵│
│ "runnable": 1 ↵│
│ } ↵│
│ } │
└────────────────────────────┘
```
Now we show details like the following:
```
+-----------------------------------------------------------------------
| {
| "tasks": [
| {
| "state": "runnable",
| "command": "SELECT pg_catalog.citus_move_shard_placement(1
| "message": "ERROR: Moving shards to a node that shouldn't
| "retried": 2,
| "task_id": 3
| }
| ],
| "task_state_counts": {
| "blocked": 1,
| "runnable": 1
| }
| }
+-----------------------------------------------------------------------
```
citus_job_list() lists all background jobs by simply showing the records
in pg_dist_background_job.
citus_job_status(job_id bigint, raw boolean default false) shows the
status of a single background job by appending a jsonb details column to
the associated row from pg_dist_background_job. If the raw argument is
set, machine readable sizes are used instead of human readable
alternatives.
citus_rebalance_status(raw boolean default false) shows the status of
the last rebalance operation. If the raw argument is set, machine
readable sizes are used instead of human readable alternatives.
DESCRIPTION: Drop `SHARD_STATE_TO_DELETE` and use the cleanup records
instead
Drops the shard state that is used to mark shards as orphaned. Now we
insert cleanup records into `pg_dist_cleanup` so "orphaned" shards will
be dropped either by maintenance daemon or internal cleanup calls. With
this PR, we make the "cleanup orphaned shards" functions to be no-op, as
they would not be needed anymore.
This PR includes some naming changes about placement functions. We don't
need functions that filter orphaned shards, as there will be no orphaned
shards anymore.
We will also be introducing a small script with this PR, for users with
orphaned shards. We'll basically delete the orphaned shard entries from
`pg_dist_placement` and insert cleanup records into `pg_dist_cleanup`
for each one of them, during Citus upgrade.
We also have a lot of flakiness fixes in this PR.
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
Fixes a missed include in #6315.
While adding the cluster clock we have added some extra steps to
`citus_prepare_pg_upgrade` and `citus_finish_pg_upgrade`. These changes
were not added to the citus upgrade and downgrade scripts, this allowed
for a syntax error to slip in.
This PR adds the new versions of both UDF's to the upgrade script while
adding the old version to the downgrade script. This exposed the syntax
error which is also solved.
We already have citus_job_wait to wait until the job reaches the desired
state. That PR adds waiting on task state to allow more granular
waiting. It can be used for Citus operations. Moreover, it is also
useful for testing purposes. (wait until a task reaches specified state)
Related to #6459.
DESCRIPTION: Create replication artifacts with unique names
We're creating replication objects with generic names. This disallows us
to enable parallel shard moves, as two operations might use the same
objects. With this PR, we'll create below objects with operation
specific names, by appending OparationId to the names.
* Subscriptions
* Publications
* Replication Slots
* Users created for subscriptions
1) Regular users fail to use clock UDF with permission issue.
2) Clock functions were declared as STABLE, whereas by definition they are VOLATILE. By design, any clock/time
functions will return different results for each call even within a single SQL statement.
Note: UDF citus_get_transaction_clock() is a misnomer as it internally calls the clock tick which always returns
different results for every invocation in the same transaction.
increasing logical clock. Clock guarantees to never go back in value after restarts,
and makes best attempt to keep the value close to unix epoch time in milliseconds.
Also, introduces a new GUC "citus.enable_cluster_clock", when true, every
distributed transaction is stamped with logical causal clock and persisted
in a catalog pg_dist_commit_transaction.
We should not introduce breaking sql changes to upgrade files after they
are released. We did that for worker_fetch_foreign_file in v9.0.0 and
worker_repartition_cleanup in v9.2.0. Later when we try to drop those
udfs, they were missing for some clients unexpectedly due to breaking
change in an old upgrade script. For that case, the fix is to add DROP
IF EXISTS for those 2 udfs in 11.0-4--11.1-1.
DESCRIPTION: Adds status column to get_rebalance_progress()
Introduces a new column named `status` for the function
`get_rebalance_progress()`. For each ongoing shard move, this column
will reveal information about that shard move operation's current
status.
For now, candidate status messages could be one of the below.
* Not Started
* Setting Up
* Copying Data
* Catching Up
* Creating Constraints
* Final Catchup
* Creating Foreign Keys
* Completing
* Completed
In #6405 I added better improved blocked process detection for isolation
tests. But when cleaning up unnecessary code I cleaned up a bit too
much. This actually includes the new function definition in our
migrations.
Sometimes our CI randomly fails on a test in a way similar to this:
```diff
step s2-drop:
DROP TABLE cancel_table;
-
+ <waiting ...>
+step s2-drop: <... completed>
starting permutation: s1-timeout s1-begin s1-sleep10000 s1-rollback s1-reset s1-drop
```
Source:
https://app.circleci.com/pipelines/github/citusdata/citus/26524/workflows/5415b84f-13a3-482f-bef9-648314c79a67/jobs/756377
I tried to fix that already in #6252 by disabling the maintenance daemon
during isolation tests. But it seems that hasn't fixed all cases of
these errors. This is another attempt at fixing these issues that seems
to have better results.
What it does is that it starts using the pInterestingPids parameter that
citus_isolation_test_session_is_blocked receives. With this change we
start filter out block-edges that are not caused by any of these pids.
In passing this change also makes it possible to run
`isolation_create_distributed_table_concurrently` with
`check-isolation-base`
DESCRIPTION: Adds source_lsn and target_lsn fields into
get_rebalance_progress
Adding two fields named `source_lsn` and `target_lsn` to the function
`get_rebalance_progress`.
Target lsn data is fetched in `GetShardStatistics`, by expanding the
query sent to workers (joining with pg_subscription_rel and
pg_stat_subscription). Then put into the hashmap, for each shard.
Source lsn data is fetched in `BuildWorkerShardStatististicsHash`, in
the loop that iterate each node, by sending a pg_current_wal_lsn query
to each node. Then put into the hashmap, for each node.
DESCRIPTION: Show citus_copy_shard_placement progress in
get_rebalance_progress
When rebalancing to a new node that does not have reference tables yet
the rebalancer will first copy the reference tables to the nodes.
Depending on the size of the reference tables, this might take a long
time. However, there's no indication of what's happening at this stage
of the rebalance.
This PR improves this situation by also showing the progress of any
citus_copy_shard_placement calls when calling get_rebalance_progress.
DESCRIPTION: Add a rebalancer that uses background tasks for its
execution
Based on the baclground jobs and tasks introduced in #6296 we implement
a new rebalancer on top of the primitives of background execution. This
allows the user to initiate a rebalance and let Citus execute the long
running steps in the background until completion.
Users can invoke the new background rebalancer with `SELECT
citus_rebalance_start();`. It will output information on its job id and
how to track progress. Also it returns its job id for automation
purposes. If you simply want to wait till the rebalance is done you can
use `SELECT citus_rebalance_wait();`
A running rebalance can be canelled/stopped with `SELECT
citus_rebalance_stop();`.