Commit Graph

168 Commits (2632343f64cb92b3ad0cee72e9b3cb3d77c3cfd1)

Author SHA1 Message Date
Jelte Fennema 2aabe3e2ef
Mark all connections for shutdown when citus.node_conninfo chan… (#3642)
We cache connections between nodes in our connection management code.
This is good for speed. For security this can be a problem though. If
the user changes settings related to TLS encryption they want those to
be applied to future queries. This is especially important when they did
not have TLS enabled before and now they want to enable it. This can
normally be achieved by changing citus.node_conninfo.  However, because
connections are not reopened there will still be old connections that
might not be encrypted at all.

This commit changes that by marking all connections to be shutdown at
the end of their current transaction. This way running transactions will
succeed, even if placement requires connections to be reused for this
transaction. But after this transaction completes any future statements
will use a connection created with the new connection options.

If a connection is requested and a connection is found that is marked
for shutdown, then we don't return this connection. Instead a new one is
created. This is needed to make sure that if there are no running
transactions, then the next statement will not use an old cached
connection, since connections are only actually shutdown at the end of a
transaction.
2020-03-24 15:31:41 +01:00
Marco Slot ede176d849 Implement shard placement copying 2020-03-23 08:33:08 -07:00
Jelte Fennema ed0376bb41
Unparallelize tests (#3629)
We're getting a lot of random failures on CI regarding connection errors. This
works around that by not running that create lots of connections in parallel.
2020-03-20 10:31:34 +01:00
Onur Tirtir a14739f808
Local execution of ddl/drop/truncate commands (#3514)
* reimplement ExecuteUtilityTaskListWithoutResults for local utility command execution

* introduce new functions for local execution of utility commands

* change ErrorIfTransactionAccessedPlacementsLocally logic for local utility command execution

* enable local execution for TRUNCATE command on distributed & reference tables

* update existing tests for local utility command execution

* enable local execution for DDL commands on distributed & reference tables

* enable local execution for DROP command on distributed & reference tables

* add normalization rules for cascaded commands

* add new tests for local utility command execution
2020-03-13 15:39:32 +03:00
Nils Dijk a77ed9cd23
Refactor master query to be planned by postgres' planner (#3326)
DESCRIPTION: Replace the query planner for the coordinator part with the postgres planner

Closes #2761 

Citus had a simple rule based planner for the query executed on the query coordinator. This planner grew over time with the addigion of SQL support till it was getting close to the functionality of the postgres planner. Except the code was brittle and its complexity rose which made it hard to add new SQL support.

Given its resemblance with the postgres planner it was a long outstanding wish to replace our hand crafted planner with the well supported postgres planner. This patch replaces our planner with a call to postgres' planner.

Due to the functionality of the postgres planner we needed to support both projections and filters/quals on the citus custom scan node. When a sort operation is planned above the custom scan it might require fields to be reordered in the custom scan before returning the tuple (projection). The postgres planner assumes every custom scan node implements projections. Because we controlled the plan that was created we prevented reordering in the custom scan and never had implemented it before.

A same optimisation applies to having clauses that could have been where clauses. Instead of applying the filter as a having on the aggregate it will push it down into the plan which could reach a custom scan node.

For both filters and projections we have implemented them when tuples are read from the tuple store. If no projections or filters are required it will directly return the tuple from the tuple store. Otherwise it will loop tuples from the tuple store through the filter and projection until a tuple is found and returned.

Besides filters being pushed down a side effect of having quals that could have been a where clause is that a call to read intermediate result could be called before the first tuple is fetched from the custom scan. This failed because the intermediate result would only be pulled to the coordinator on the first tuple fetch. To overcome this problem we do run the distributed subplans now before we run the postgres executor. This ensures the intermediate result is present on the coordinator in time. We do account for total time instrumentation by removing the instrumentation before handing control to the psotgres executor and update the timings our self.

For future SQL support it is enough to create a valid query structure for the part of the query to be executed on the query coordinating node. As a utility we do serialise and print the query at debug level4 for engineers to inspect what kind of query is being planned on the query coordinator.
2020-02-25 14:39:56 +01:00
Philip Dubé 025cb94159 Fix multi_task_string_size sometimes leaking intermediate files 2020-02-24 16:33:34 +00:00
Marco Slot 038e5999cb Implement direct COPY table TO stdout 2020-02-17 15:15:10 +01:00
Jelte Fennema 3d8efe303e
Fix flaky test introduced by #3374 (#3504)
Since #3374 multi_utilities is not safe to run in parallel anymore. This
is because it now also shows locks on shards created outside it's own
test. This is not really possible to fix.

Example of flaky test:
- https://circleci.com/gh/citusdata/citus/89995
- https://circleci.com/gh/citusdata/citus/90017
2020-02-14 16:07:33 +01:00
Onder Kalaci 975c4c2264 Do not prune shards if the distribution key is NULL
The root of the problem is that, standard_planner() converts the following qual

```
   {OPEXPR
   :opno 98
   :opfuncid 67
   :opresulttype 16
   :opretset false
   :opcollid 0
   :inputcollid 100
   :args (
      {VAR
      :varno 1
      :varattno 1
      :vartype 25
      :vartypmod -1
      :varcollid 100
      :varlevelsup 0
      :varnoold 1
      :varoattno 1
      :location 45
      }
      {CONST
      :consttype 25
      :consttypmod -1
      :constcollid 100
      :constlen -1
      :constbyval false
      :constisnull true
      :location 51
      :constvalue <>
      }
   )
   :location 49
   }
```

To

```
(
   {CONST
   :consttype 16
   :consttypmod -1
   :constcollid 0
   :constlen 1
   :constbyval true
   :constisnull true
   :location -1
   :constvalue <>
   }
)
```

So, Citus doesn't deal with NULL values in real-time or non-fast path router queries.

And, in the FastPathRouter planner, we check constisnull in DistKeyInSimpleOpExpression().
However, in deferred pruning case, we do not check for isnull for const.

Thus, the fix consists of two parts:
- Let PruneShards() not crash when NULL parameter is passed
- For deferred shard pruning in fast-path queries, explicitly check that we have CONST which is not NULL
2020-02-13 15:00:31 +01:00
Hadi Moshayedi 9d988b3437 Add insert/select connection leak tests 2020-01-30 14:09:07 -08:00
Halil Ozan Akgul b40f067d05 Adds propagation for grant on schema commands 2020-01-20 14:51:28 +03:00
Hadi Moshayedi b4e5f4b10a Implement INSERT ... SELECT with repartitioning 2020-01-16 23:24:52 -08:00
Onder Kalaci 421bf68516 Add the specific regression tests
With this commit, we're adding the specific tests for CTE inlining.
The test has a different output file for pg 11, because as mentioned
in the previous commits, PG 12 generates more restriction information
for CTEs.
2020-01-16 12:28:15 +01:00
Philip Dubé 4d9a733c2f Fix inserting multiple values with row expression partition column causing the insert to be ignored
Raise an error instead of silently inserting nothing if we hit this condition in the future
2020-01-15 21:10:50 +00:00
Hadi Moshayedi f38d0e5b3f Partitioned task list results. 2020-01-09 10:32:58 -08:00
Jelte Fennema 3c770516eb
Commenting out flaky intermediate data leak test (#3359)
check-multi apparently has an intermediate data leak, so commenting out
that test for now. This was introduced by #3349 

Examples:
- https://app.circleci.com/jobs/github/citusdata/citus/74675
- https://app.circleci.com/jobs/github/citusdata/citus/74683
- https://app.circleci.com/jobs/github/citusdata/citus/74763
2020-01-06 11:55:01 +01:00
Philip Dubé 566246ecd4 End regression tests with ensure_no_intermediate_data_leak
Also update tests to clean up jobs when they're directly testing job udfs
2020-01-03 18:59:02 +00:00
Jelte Fennema cf88bdf833 Add tests for complex joins on reference tables 2019-12-27 15:05:51 +01:00
Hadi Moshayedi d7aea7fa10 Implement partitioned intermediate results. 2019-12-24 03:53:39 -08:00
Marco Slot b37ef0e394 Fix error in distributed queries when shards are on the coordinator 2019-12-24 06:36:43 +01:00
SaitTalhaNisanci 7ff4ce2169
Add adaptive executor support for repartition joins (#3169)
* WIP

* wip

* add basic logic to run a single job with repartioning joins with adaptive executor

* fix some warnings and return in ExecuteDependedTasks if there is none

* Add the logic to run depended jobs in adaptive executor

The execution of depended tasks logic is changed. With the current
logic:
- All tasks are created from the top level task list.
- At one iteration:
	- CurTasks whose dependencies are executed are found.
	- CurTasks are executed in parallel with adapter executor main
logic.
- The iteration is repeated until all tasks are completed.

* Separate adaptive executor repartioning logic

* Remove duplicate parts

* cleanup directories and schemas

* add basic repartion tests for adaptive executor

* Use the first placement to fetch data

In task tracker, when there are replicas, we try to fetch from a replica
for which a map task is succeeded. TaskExecution is used for this,
however TaskExecution is not used in adaptive executor. So we cannot use
the same thing as task tracker.

Since adaptive executor fails when a map task fails (There is no retry
logic yet). We know that if we try to execute a fetch task, all of its
map tasks already succeeded, so we can just use the first one to fetch
from.

* fix clean directories logic

* do not change the search path while creating a udf

* Enable repartition joins with adaptive executor with only enable_reparitition_joins guc

* Add comments to adaptive_executor_repartition

* dont run adaptive executor repartition test in paralle with other tests

* execute cleanup only in the top level execution

* do cleanup only in the top level ezecution

* not begin a transaction if repartition query is used

* use new connections for repartititon specific queries

New connections are opened to send repartition specific queries. The
opened connections will be closed at the FinishDistributedExecution.

While sending repartition queries no transaction is begun so that
we can see all changes.

* error if a modification was done prior to repartition execution

* not start a transaction if a repartition query and sql task, and clean temporary files and schemas at each subplan level

* fix cleanup logic

* update tests

* add missing function comments

* add test for transaction with DDL before repartition query

* do not close repartition connections in adaptive executor

* rollback instead of commit in repartition join test

* use close connection instead of shutdown connection

* remove unnecesary connection list, ensure schema owner before removing directory

* rename ExecuteTaskListRepartition

* put fetch query string in planner not executor as we currently support only replication factor = 1 with adaptive executor and repartition query and we know the query string in the planner phase in that case

* split adaptive executor repartition to DAG execution logic and repartition logic

* apply review items

* apply review items

* use an enum for remote transaction state and fix cleanup for repartition

* add outside transaction flag to find connections that are unclaimed instead of always opening a new transaction

* fix style

* wip

* rename removejobdir to partition cleanup

* do not close connections at the end of repartition queries

* do repartition cleanup in pg catch

* apply review items

* decide whether to use transaction or not at execution creation

* rename isOutsideTransaction and add missing comment

* not error in pg catch while doing cleanup

* use replication factor of the creation time, not current time to decide if task tracker should be chosen

* apply review items

* apply review items

* apply review item
2019-12-17 19:09:45 +03:00
Onur TIRTIR 8092529a2c
Split propagate extension test and add alternative output (#3314)
* Split extension name tests from propagate_extension_commands.sql

* Add alternative output for escape_extension_name.sql
2019-12-17 13:49:16 +03:00
Philip Dubé d138bb89bf Support creating collations as part of dependency resolution. Propagate ALTER/DROP on distributed collations
Propagate CREATE COLLATION when outside transaction
2019-12-09 04:42:51 +00:00
Philip Dubé 5a17fd6d9d Test more reference/local cases, also ALTER ROLE
Test ALTER ROLE doesn't deadlock when coordinator added, or propagate from mx workers

Consolidate wait_until_metadata_sync & verify_metadata to multi_test_helpers
2019-12-03 22:23:14 +00:00
Philip Dubé 5fcc169a3a Stray depended to dependent tidy up 2019-12-03 15:28:32 +00:00
Philip Dubé c563e0825c Strip trailing whitespace and add final newline (#3186)
This brings files in line with our editorconfig file
2019-11-21 14:25:37 +01:00
Hanefi Onaldi d82f3e9406
Introduce intermediate result broadcasting
In plain words, each distributed plan pulls the necessary intermediate
results to the worker nodes that the plan hits. This is primarily useful
in three ways. 

(i) If the distributed plan that uses intermediate
result(s) is a router query, then the intermediate results are only
broadcasted to a single node.

(ii) If a distributed plan consists of only intermediate results, which
is not uncommon, the intermediate results are broadcasted to a single
node only.

(iii) If a distributed query hits a sub-set of the shards in multiple
workers, the intermediate results will be broadcasted to the relevant
node(s).

The final item (iii) becomes crucial for append/range distributed
tables where typically the distributed queries hit a small subset of
shards/workers.

To do this, for each query that Citus creates a distributed plan, we keep
track of the subPlans used in the queryTree, and save it in the distributed
plan. Just before Citus executes each subPlan, Citus first keeps track of
every worker node that the distributed plan hits, and marks every subPlan
should be broadcasted to these nodes. Later, for each subPlan which is a
distributed plan, Citus does this operation recursively since these
distributed plans may access to different subPlans, and those have to be
recorded as well.
2019-11-20 15:26:36 +03:00
Onur TIRTIR 26c306d188
Add extensions to distributed object propagation infrastructure (#3185) 2019-11-19 17:56:28 +03:00
Halil Ozan Akgul 5ae7b219ff Create the ALTER ROLE propagation 2019-11-18 18:31:28 +03:00
Nils Dijk 217890af5f
Feature: Expression in reference join (#3180)
DESCRIPTION: Expression in reference join

Fixed: #2582

This patch allows arbitrary expressions in the join clause when joining to a reference table. An example of such joins could be found in CHbenCHmark queries 7, 8, 9 and 11; `mod((s_w_id * s_i_id),10000) = su_suppkey` and `ascii(substr(c_state,1,1)) = n2.n_nationkey`. Since the join is on a reference table these queries are able to be pushed down to the workers.

To implement these queries we will widen the `IsJoinClause` predicate to not check if the expressions are a type `Var` after stripping the implicit coerciens. Instead we define a join clause when the `Var`'s in a clause come from more than 1 table.

This allows more clauses to pass into the logical planner's `MultiNodeTree(...)` planning function. To compensate for this we tighten down the `LocalJoin`, `SinglePartitionJoin` and `DualPartitionJoin` to check for direct column references when planning. This allows the planner to work with arbitrary join expressions on reference tables.
2019-11-18 16:25:46 +01:00
Hadi Moshayedi 15af1637aa Replicate reference tables to coordinator. 2019-11-15 05:50:19 -08:00
Philip Dubé 495c0f5117 Phase 1 implementation of custom aggregates
Phase 1 seeks to implement minimal infrastructure, so does not include:
	- dynamic generation of support aggregates to handle multiple arguments
	- configuration methods to direct aggregation strategy,
		or mark an aggregate's serialize/deserialize as safe to operate across nodes

Aggregates can be distributed when:
	- they have a single argument
	- they have a combinefunc
	- their transition type is not a pseudotype
2019-11-14 19:01:24 +00:00
Jelte Fennema adc6ca6100
Make simple in queries on unique columns work with repartion join (#3171)
This is necassery to support Q20 of the CHbenCHmark: #2582.

To summarize the fix: The subquery is converted into an INNER JOIN on a
table. This fixes the issue, since an INNER JOIN on a table is already
supported by the repartion planner.

The way this replacement is happening.:
1. Postgres replaces `col in (subquery)` with a SEMI JOIN (subquery) on col = subquery_result
2. If this subquery is simple enough Postgres will replace it with a
   regular read from a table
3. If the subquery returns unique results (e.g. a primary key) Postgres
   will convert the SEMI JOIN into an INNER JOIN during the planning. It
   will not change this in the rewritten query though.
4. We check if Postgres sends us any SEMI JOINs during its join order
   planning, if it doesn't we replace all SEMI JOINs in the rewritten
   query with INNER JOIN (which we already support).
2019-11-11 13:44:28 +01:00
Philip Dubé 2fc45e5897 create_distributed_function: accept aggregates
Adds support for OCLASS_PROC to worker_create_or_replace_object
2019-11-06 18:23:37 +00:00
Halil Ozan Akgul 5f04ac774f Adds the tests for refresh materialized views 2019-10-17 16:00:56 +03:00
Jelte Fennema 7abedc38b0
Support subqueries in HAVING (#3098)
Areas for further optimization:
- Don't save subquery results to a local file on the coordinator when the subquery is not in the having clause
- Push the the HAVING with subquery to the workers if there's a group by on the distribution column
- Don't push down the results to the workers when we don't push down the HAVING clause, only the coordinator needs it

Fixes #520
Fixes #756
Closes #2047
2019-10-16 16:40:14 +02:00
Nils Dijk 4a4a220945
Fix enum add value order and pg12 (#3082)
DESCRIPTION: Fix order for enum values and correctly support pg12

PG 12 introduces `ALTER TYPE ... ADD VALUE ...` during transactions. Earlier versions would error out when called in a transaction, hence we connect to workers outside of the transaction which could cause inconsistencies on pg12 now that postgres doesn't error with this syntax anymore.

During the implementation of this fix it became apparent there was an error with the ordering of enum labels when the type was recreated. A patch and test have been included.
2019-10-07 17:16:19 +02:00
Nils Dijk 9c2c50d875
Hookup function/procedure deparsing to our utility hook (#3041)
DESCRIPTION: Propagate ALTER FUNCTION statements for distributed functions

Using the implemented deparser for function statements to propagate changes to both functions and procedures that are previously distributed.
2019-09-27 22:06:49 +02:00
Hanefi Onaldi 66b9f2e887 Deparsing and qualifiying for FUNCTION/PROCEDURE statements (#3014)
This PR aims to add all the necessary logic to qualify and deparse all possible `{ALTER|DROP} .. {FUNCTION|PROCEDURE}` queries.

As Procedures are introduced in PG11, the code contains many PG version checks. I tried my best to make it easy to clean up once we drop PG10 support.


Here are some caveats:
- I assumed that the parse tree is a valid one. There are some queries that are not allowed, but still are parsed successfully by postgres planner. Such queries will result in errors in execution time. (e.g. `ALTER PROCEDURE p STRICT` -> `STRICT` action is valid for functions but not procedures. Postgres decides to parse them nevertheless.)
2019-09-27 19:02:52 +02:00
Marco Slot d85d77634d Handle anonymous composite types on the target list 2019-09-23 14:53:02 +02:00
Nils Dijk db5d03931d
Feature disable object propagation (#2986)
DESCRIPTION: Provide a GUC to turn of the new dependency propagation functionality

In the case the dependency propagation functionality introduced in 9.0 causes issues to a cluster of a user they can turn it off almost completely. The only dependency that will still be propagated and kept track of is the schema to emulate the old behaviour.

GUC to change is `citus.enable_object_propagation`. When set to `false` the functionality will be mostly turned off. Be aware that objects marked as distributed in `pg_dist_object` will still be kept in the catalog as a distributed object. Alter statements to these objects will not be propagated to workers and may cause desynchronisation.
2019-09-18 17:16:22 +02:00
Nils Dijk 2b7f5552c8
Fix: rename remote type on conflict (#2983)
DESCRIPTION: Rename remote types during type propagation

To prevent data to be destructed when a remote type differs from the type on the coordinator during type propagation we wanted to rename the type instead of `DROP CASCADE`.

This patch removes the `DROP` logic and adds the creation of a rename statement to a free name.
2019-09-17 18:54:10 +02:00
Hanefi Onaldi 8f2a3a0604
Introduce create_distributed_function(regproc) UDF (#2961)
This PR aims to add the minimal set of changes required to start
distributing functions. You can use create_distributed_function(regproc)
UDF to distribute a function.

    SELECT create_distributed_function('add(int,int)');

The function definition should include the param types to properly
identify the correct function that we wish to distribute
2019-09-13 23:27:46 +03:00
Nils Dijk 2879689441
Distribute Types to worker nodes (#2893)
DESCRIPTION: Distribute Types to worker nodes

When to propagate
==============

There are two logical moments that types could be distributed to the worker nodes
 - When they get used ( just in time distribution )
 - When they get created ( proactive distribution )

The just in time distribution follows the model used by how schema's get created right before we are going to create a table in that schema, for types this would be when the table uses a type as its column.

The proactive distribution is suitable for situations where it is benificial to have the type on the worker nodes directly. They can later on be used in queries where an intermediate result gets created with a cast to this type.

Just in time creation is always the last resort, you cannot create a distributed table before the type gets created. A good example use case is; you have an existing postgres server that needs to scale out. By adding the citus extension, add some nodes to the cluster, and distribute the table. The type got created before citus existed. There was no moment where citus could have propagated the creation of a type.

Proactive is almost always a good option. Types are not resource intensive objects, there is no performance overhead of having 100's of types. If you want to use them in a query to represent an intermediate result (which happens in our test suite) they just work.

There is however a moment when proactive type distribution is not beneficial; in transactions where the type is used in a distributed table.

Lets assume the following transaction:

```sql
BEGIN;
CREATE TYPE tt1 AS (a int, b int);
CREATE TABLE t1 AS (a int PRIMARY KEY, b tt1);
SELECT create_distributed_table('t1', 'a');
\copy t1 FROM bigdata.csv
```

Types are node scoped objects; meaning the type exists once per worker. Shards however have best performance when they are created over their own connection. For the type to be visible on all connections it needs to be created and committed before we try to create the shards. Here the just in time situation is most beneficial and follows how we create schema's on the workers. Outside of a transaction block we will just use 1 connection to propagate the creation.

How propagation works
=================

Just in time
-----------

Just in time propagation hooks into the infrastructure introduced in #2882. It adds types as a supported object in `SupportedDependencyByCitus`. This will make sure that any object being distributed by citus that depends on types will now cascade into types. When types are depending them self on other objects they will get created first.

Creation later works by getting the ddl commands to create the object by its `ObjectAddress` in `GetDependencyCreateDDLCommands` which will dispatch types to `CreateTypeDDLCommandsIdempotent`.

For the correct walking of the graph we follow array types, when later asked for the ddl commands for array types we return `NIL` (empty list) which makes that the object will not be recorded as distributed, (its an internal type, dependant on the user type).

Proactive distribution
---------------------

When the user creates a type (composite or enum) we will have a hook running in `multi_ProcessUtility` after the command has been applied locally. Running after running locally makes that we already have an `ObjectAddress` for the type. This is required to mark the type as being distributed.

Keeping the type up to date
====================

For types that are recorded in `pg_dist_object` (eg. `IsObjectDistributed` returns true for the `ObjectAddress`) we will intercept the utility commands that alter the type.
 - `AlterTableStmt` with `relkind` set to `OBJECT_TYPE` encapsulate changes to the fields of a composite type.
 - `DropStmt` with removeType set to `OBJECT_TYPE` encapsulate `DROP TYPE`.
 - `AlterEnumStmt` encapsulates changes to enum values.
    Enum types can not be changed transactionally. When the execution on a worker fails a warning will be shown to the user the propagation was incomplete due to worker communication failure. An idempotent command is shown for the user to re-execute when the worker communication is fixed.

Keeping types up to date is done via the executor. Before the statement is executed locally we create a plan on how to apply it on the workers. This plan is executed after we have applied the statement locally.

All changes to types need to be done in the same transaction for types that have already been distributed and will fail with an error if parallel queries have already been executed in the same transaction. Much like foreign keys to reference tables.
2019-09-13 17:46:07 +02:00
Philip Dubé 693d4695d7 Create a test 'pg12' for pg12 features & error on unsupported new features
Unsupported new features: COPY FROM WHERE, GENERATED ALWAYS AS, non-heap table access methods
2019-08-22 19:30:56 +00:00
Hadi Moshayedi 46608e42f9 Add hyperscale tutorial to the regression tests. 2019-07-10 10:47:55 +02:00
Marco Slot 07d2266e11 Fix RESET and other types of SET 2019-07-05 19:30:48 +02:00
Önder Kalacı 40da78c6fd
Introduce the adaptive executor (#2798)
With this commit, we're introducing the Adaptive Executor. 


The commit message consists of two distinct sections. The first part explains
how the executor works. The second part consists of the commit messages of
the individual smaller commits that resulted in this commit. The readers
can search for the each of the smaller commit messages on 
https://github.com/citusdata/citus and can learn more about the history
of the change.

/*-------------------------------------------------------------------------
 *
 * adaptive_executor.c
 *
 * The adaptive executor executes a list of tasks (queries on shards) over
 * a connection pool per worker node. The results of the queries, if any,
 * are written to a tuple store.
 *
 * The concepts in the executor are modelled in a set of structs:
 *
 * - DistributedExecution:
 *     Execution of a Task list over a set of WorkerPools.
 * - WorkerPool
 *     Pool of WorkerSessions for the same worker which opportunistically
 *     executes "unassigned" tasks from a queue.
 * - WorkerSession:
 *     Connection to a worker that is used to execute "assigned" tasks
 *     from a queue and may execute unasssigned tasks from the WorkerPool.
 * - ShardCommandExecution:
 *     Execution of a Task across a list of placements.
 * - TaskPlacementExecution:
 *     Execution of a Task on a specific placement.
 *     Used in the WorkerPool and WorkerSession queues.
 *
 * Every connection pool (WorkerPool) and every connection (WorkerSession)
 * have a queue of tasks that are ready to execute (readyTaskQueue) and a
 * queue/set of pending tasks that may become ready later in the execution
 * (pendingTaskQueue). The tasks are wrapped in a ShardCommandExecution,
 * which keeps track of the state of execution and is referenced from a
 * TaskPlacementExecution, which is the data structure that is actually
 * added to the queues and describes the state of the execution of a task
 * on a particular worker node.
 *
 * When the task list is part of a bigger distributed transaction, the
 * shards that are accessed or modified by the task may have already been
 * accessed earlier in the transaction. We need to make sure we use the
 * same connection since it may hold relevant locks or have uncommitted
 * writes. In that case we "assign" the task to a connection by adding
 * it to the task queue of specific connection (in
 * AssignTasksToConnections). Otherwise we consider the task unassigned
 * and add it to the task queue of a worker pool, which means that it
 * can be executed over any connection in the pool.
 *
 * A task may be executed on multiple placements in case of a reference
 * table or a replicated distributed table. Depending on the type of
 * task, it may not be ready to be executed on a worker node immediately.
 * For instance, INSERTs on a reference table are executed serially across
 * placements to avoid deadlocks when concurrent INSERTs take conflicting
 * locks. At the beginning, only the "first" placement is ready to execute
 * and therefore added to the readyTaskQueue in the pool or connection.
 * The remaining placements are added to the pendingTaskQueue. Once
 * execution on the first placement is done the second placement moves
 * from pendingTaskQueue to readyTaskQueue. The same approach is used to
 * fail over read-only tasks to another placement.
 *
 * Once all the tasks are added to a queue, the main loop in
 * RunDistributedExecution repeatedly does the following:
 *
 * For each pool:
 * - ManageWorkPool evaluates whether to open additional connections
 *   based on the number unassigned tasks that are ready to execute
 *   and the targetPoolSize of the execution.
 *
 * Poll all connections:
 * - We use a WaitEventSet that contains all (non-failed) connections
 *   and is rebuilt whenever the set of active connections or any of
 *   their wait flags change.
 *
 *   We almost always check for WL_SOCKET_READABLE because a session
 *   can emit notices at any time during execution, but it will only
 *   wake up WaitEventSetWait when there are actual bytes to read.
 *
 *   We check for WL_SOCKET_WRITEABLE just after sending bytes in case
 *   there is not enough space in the TCP buffer. Since a socket is
 *   almost always writable we also use WL_SOCKET_WRITEABLE as a
 *   mechanism to wake up WaitEventSetWait for non-I/O events, e.g.
 *   when a task moves from pending to ready.
 *
 * For each connection that is ready:
 * - ConnectionStateMachine handles connection establishment and failure
 *   as well as command execution via TransactionStateMachine.
 *
 * When a connection is ready to execute a new task, it first checks its
 * own readyTaskQueue and otherwise takes a task from the worker pool's
 * readyTaskQueue (on a first-come-first-serve basis).
 *
 * In cases where the tasks finish quickly (e.g. <1ms), a single
 * connection will often be sufficient to finish all tasks. It is
 * therefore not necessary that all connections are established
 * successfully or open a transaction (which may be blocked by an
 * intermediate pgbouncer in transaction pooling mode). It is therefore
 * essential that we take a task from the queue only after opening a
 * transaction block.
 *
 * When a command on a worker finishes or the connection is lost, we call
 * PlacementExecutionDone, which then updates the state of the task
 * based on whether we need to run it on other placements. When a
 * connection fails or all connections to a worker fail, we also call
 * PlacementExecutionDone for all queued tasks to try the next placement
 * and, if necessary, mark shard placements as inactive. If a task fails
 * to execute on all placements, the execution fails and the distributed
 * transaction rolls back.
 *
 * For multi-row INSERTs, tasks are executed sequentially by
 * SequentialRunDistributedExecution instead of in parallel, which allows
 * a high degree of concurrency without high risk of deadlocks.
 * Conversely, multi-row UPDATE/DELETE/DDL commands take aggressive locks
 * which forbids concurrency, but allows parallelism without high risk
 * of deadlocks. Note that this is unrelated to SEQUENTIAL_CONNECTION,
 * which indicates that we should use at most one connection per node, but
 * can run tasks in parallel across nodes. This is used when there are
 * writes to a reference table that has foreign keys from a distributed
 * table.
 *
 * Execution finishes when all tasks are done, the query errors out, or
 * the user cancels the query.
 *
 *-------------------------------------------------------------------------
 */



All the commits involved here:
* Initial unified executor prototype

* Latest changes

* Fix rebase conflicts to master branch

* Add missing variable for assertion

* Ensure that master_modify_multiple_shards() returns the affectedTupleCount

* Adjust intermediate result sizes

The real-time executor uses COPY command to get the results
from the worker nodes. Unified executor avoids that which
results in less data transfer. Simply adjust the tests to lower
sizes.

* Force one connection per placement (or co-located placements) when requested

The existing executors (real-time and router) always open 1 connection per
placement when parallel execution is requested.

That might be useful under certain circumstances:

(a) User wants to utilize as much as CPUs on the workers per
distributed query
(b) User has a transaction block which involves COPY command

Also, lots of regression tests rely on this execution semantics.
So, we'd enable few of the tests with this change as well.

* For parameters to be resolved before using them

For the details, see PostgreSQL's copyParamList()

* Unified executor sorts the returning output

* Ensure that unified executor doesn't ignore sequential execution of DDLJob's

Certain DDL commands, mainly creating foreign keys to reference tables,
should be executed sequentially. Otherwise, we'd end up with a self
distributed deadlock.

To overcome this situaiton, we set a flag `DDLJob->executeSequentially`
and execute it sequentially. Note that we have to do this because
the command might not be called within a transaction block, and
we cannot call `SetLocalMultiShardModifyModeToSequential()`.

This fixes at least two test: multi_insert_select_on_conflit.sql and
multi_foreign_key.sql

Also, I wouldn't mind scattering local `targetPoolSize` variables within
the code. The reason is that we'll soon have a GUC (or a global
variable based on a GUC) that'd set the pool size. In that case, we'd
simply replace `targetPoolSize` with the global variables.

* Fix 2PC conditions for DDL tasks

* Improve closing connections that are not fully established in unified execution

* Support foreign keys to reference tables in unified executor

The idea for supporting foreign keys to reference tables is simple:
Keep track of the relation accesses within a transaction block.
    - If a parallel access happens on a distributed table which
      has a foreign key to a reference table, one cannot modify
      the reference table in the same transaction. Otherwise,
      we're very likely to end-up with a self-distributed deadlock.
    - If an access to a reference table happens, and then a parallel
      access to a distributed table (which has a fkey to the reference
      table) happens, we switch to sequential mode.

Unified executor misses the function calls that marks the relation
accesses during the execution. Thus, simply add the necessary calls
and let the logic kick in.

* Make sure to close the failed connections after the execution

* Improve comments

* Fix savepoints in unified executor.

* Rebuild the WaitEventSet only when necessary

* Unclaim connections on all errors.

* Improve failure handling for unified executor

   - Implement the notion of errorOnAnyFailure. This is similar to
     Critical Connections that the connection managament APIs provide
   - If the nodes inside a modifying transaction expand, activate 2PC
   - Fix few bugs related to wait event sets
   - Mark placement INACTIVE during the execution as much as possible
     as opposed to we do in the COMMIT handler
   - Fix few bugs related to scheduling next placement executions
   - Improve decision on when to use 2PC

Improve the logic to start a transaction block for distributed transactions

- Make sure that only reference table modifications are always
  executed with distributed transactions
- Make sure that stored procedures and functions are executed
  with distributed transactions

* Move waitEventSet to DistributedExecution

This could also be local to RunDistributedExecution(), but in that case
we had to mark it as "volatile" to avoid PG_TRY()/PG_CATCH() issues, and
cast it to non-volatile when doing WaitEventSetFree(). We thought that
would make code a bit harder to read than making this non-local, so we
move it here. See comments for PG_TRY() in postgres/src/include/elog.h
and "man 3 siglongjmp" for more context.

* Fix multi_insert_select test outputs

Two things:
   1) One complex transaction block is now supported. Simply update
      the test output
   2) Due to dynamic nature of the unified executor, the orders of
      the errors coming from the shards might change (e.g., all of
      the queries on the shards would fail, but which one appears
      on the error message?). To fix that, we simply added it to
      our shardId normalization tool which happens just before diff.

* Fix subeury_and_cte test

The error message is updated from:
	failed to execute task
To:
        more than one row returned by a subquery or an expression

which is a lot clearer to the user.

* Fix intermediate_results test outputs

Simply update the error message from:
	could not receive query results
to
	result "squares" does not exist

which makes a lot more sense.

* Fix multi_function_in_join test

The error messages update from:
     Failed to execute task XXX
To:
     function f(..) does not exist

* Fix multi_query_directory_cleanup test

The unified executor does not create any intermediate files.

* Fix with_transactions test

A test case that just started to work fine

* Fix multi_router_planner test outputs

The error message is update from:
	Could not receive query results
To:
	Relation does not exists

which is a lot more clearer for the users

* Fix multi_router_planner_fast_path test

The error message is update from:
	Could not receive query results
To:
	Relation does not exists

which is a lot more clearer for the users

* Fix isolation_copy_placement_vs_modification by disabling select_opens_transaction_block

* Fix ordering in isolation_multi_shard_modify_vs_all

* Add executor locks to unified executor

* Make sure to allocate enought WaitEvents

The previous code was missing the waitEvents for the latch and
postmaster death.

* Fix rebase conflicts for master rebase

* Make sure that TRUNCATE relies on unified executor

* Implement true sequential execution for multi-row INSERTS

Execute the individual tasks executed one by one. Note that this is different than
MultiShardConnectionType == SEQUENTIAL_CONNECTION case (e.g., sequential execution
mode). In that case, running the tasks across the nodes in parallel is acceptable
and implemented in that way.

However, the executions that are qualified here would perform poorly if the
tasks across the workers are executed in parallel. We currently qualify only
one class of distributed queries here, multi-row INSERTs. If we do not enforce
true sequential execution, concurrent multi-row upserts could easily form
a distributed deadlock when the upserts touch the same rows.

* Remove SESSION_LIFESPAN flag in unified_executor

* Apply failure test updates

We've changed the failure behaviour a bit, and also the error messages
that show up to the user. This PR covers majority of the updates.

* Unified executor honors citus.node_connection_timeout

With this commit, unified executor errors out if even
a single connection cannot be established within
citus.node_connection_timeout.

And, as a side effect this fixes failure_connection_establishment
test.

* Properly increment/decrement pool size variables

Before this commit, the idle and active connection
counts were not properly calculated.

* insert_select_executor goes through unified executor.

* Add missing file for task tracker

* Modify ExecuteTaskListExtended()'s signature

* Sort output of INSERT ... SELECT ... RETURNING

* Take partition locks correctly in unified executor

* Alternative implementation for force_max_query_parallelization

* Fix compile warnings in unified executor

* Fix style issues

* Decrement idleConnectionCount when idle connection is lost

* Always rebuild the wait event sets

In the previous implementation, on waitFlag changes, we were only
modifying the wait events. However, we've realized that it might
be an over optimization since (a) we couldn't see any performance
benefits (b) we see some errors on failures and because of (a)
we prefer to disable it now.

* Make sure to allocate enough sized waitEventSet

With multi-row INSERTs, we might have more sessions than
task*workerCount after few calls of RunDistributedExecution()
because the previous sessions would also be alive.

Instead, re-allocate events when the connectino set changes.

* Implement SELECT FOR UPDATE on reference tables

On master branch, we do two extra things on SELECT FOR UPDATE
queries on reference tables:
   - Acquire executor locks
   - Execute the query on all replicas

With this commit, we're implementing the same logic on the
new executor.

* SELECT FOR UPDATE opens transaction block even if SelectOpensTransactionBlock disabled

Otherwise, users would be very confused and their logic is very likely
to break.

* Fix build error

* Fix the newConnectionCount calculation in ManageWorkerPool

* Fix rebase conflicts

* Fix minor test output differences

* Fix citus indent

* Remove duplicate sorts that is added with rebase

* Create distributed table via executor

* Fix wait flags in CheckConnectionReady

* failure_savepoints output for unified executor.

* failure_vacuum output (pg 10) for unified executor.

* Fix WaitEventSetWait timeout in unified executor

* Stabilize failure_truncate test output

* Add an ORDER BY to multi_upsert

* Fix regression test outputs after rebase to master

* Add executor.c comment

* Rename executor.c to adaptive_executor.c

* Do not schedule tasks if the failed placement is not ready to execute

Before the commit, we were blindly scheduling the next placement executions
even if the failed placement is not on the ready queue. Now, we're ensuring
that if failed placement execution is on a failed pool or session where the
execution is on the pendingQueue, we do not schedule the next task. Because
the other placement execution should be already running.

* Implement a proper custom scan node for adaptive executor

- Switch between the executors, add GUC to set the pool size
- Add non-adaptive regression test suites
- Enable CIRCLE CI for non-adaptive tests
- Adjust test output files

* Add slow start interval to the executor

* Expose max_cached_connection_per_worker to user

* Do not start slow when there are cached connections

* Consider ExecutorSlowStartInterval in NextEventTimeout

* Fix memory issues with ReceiveResults().

* Disable executor via TaskExecutorType

* Make sure to execute the tests with the other executor

* Use task_executor_type to enable-disable adaptive executor

* Remove useless code

* Adjust the regression tests

* Add slow start regression test

* Rebase to master

* Fix test failures in adaptive executor.

* Rebase to master - 2

* Improve comments & debug messages

* Set force_max_query_parallelization in isolation_citus_dist_activity

* Force max parallelization for creating shards when asked to use exclusive connection.

* Adjust the default pool size

* Expand description of max_adaptive_executor_pool_size GUC

* Update warnings in FinishRemoteTransactionCommit()

* Improve session clean up at the end of execution

Explicitly list all the states that the execution might end,
otherwise warn.

* Remove MULTI_CONNECTION_WAIT_RETRY which is not used at all

* Add more ORDER BYs to multi_mx_partitioning
2019-06-28 14:04:40 +02:00
Philip Dubé 342d423725 Fix join alias resolution
FROM (query) alias ignored renaming
In nested subqueries the select list would rename, while the join alias would not respect that
2019-06-12 17:25:07 -07:00
Marco Slot 4b9bd54ae0 Remove create_insert_proxy_for_table 2019-03-15 14:13:03 -06:00