Commit Graph

6 Commits (28796894416680fe386711344462cca510f03aa0)

Author SHA1 Message Date
Nils Dijk 2879689441
Distribute Types to worker nodes (#2893)
DESCRIPTION: Distribute Types to worker nodes

When to propagate
==============

There are two logical moments that types could be distributed to the worker nodes
 - When they get used ( just in time distribution )
 - When they get created ( proactive distribution )

The just in time distribution follows the model used by how schema's get created right before we are going to create a table in that schema, for types this would be when the table uses a type as its column.

The proactive distribution is suitable for situations where it is benificial to have the type on the worker nodes directly. They can later on be used in queries where an intermediate result gets created with a cast to this type.

Just in time creation is always the last resort, you cannot create a distributed table before the type gets created. A good example use case is; you have an existing postgres server that needs to scale out. By adding the citus extension, add some nodes to the cluster, and distribute the table. The type got created before citus existed. There was no moment where citus could have propagated the creation of a type.

Proactive is almost always a good option. Types are not resource intensive objects, there is no performance overhead of having 100's of types. If you want to use them in a query to represent an intermediate result (which happens in our test suite) they just work.

There is however a moment when proactive type distribution is not beneficial; in transactions where the type is used in a distributed table.

Lets assume the following transaction:

```sql
BEGIN;
CREATE TYPE tt1 AS (a int, b int);
CREATE TABLE t1 AS (a int PRIMARY KEY, b tt1);
SELECT create_distributed_table('t1', 'a');
\copy t1 FROM bigdata.csv
```

Types are node scoped objects; meaning the type exists once per worker. Shards however have best performance when they are created over their own connection. For the type to be visible on all connections it needs to be created and committed before we try to create the shards. Here the just in time situation is most beneficial and follows how we create schema's on the workers. Outside of a transaction block we will just use 1 connection to propagate the creation.

How propagation works
=================

Just in time
-----------

Just in time propagation hooks into the infrastructure introduced in #2882. It adds types as a supported object in `SupportedDependencyByCitus`. This will make sure that any object being distributed by citus that depends on types will now cascade into types. When types are depending them self on other objects they will get created first.

Creation later works by getting the ddl commands to create the object by its `ObjectAddress` in `GetDependencyCreateDDLCommands` which will dispatch types to `CreateTypeDDLCommandsIdempotent`.

For the correct walking of the graph we follow array types, when later asked for the ddl commands for array types we return `NIL` (empty list) which makes that the object will not be recorded as distributed, (its an internal type, dependant on the user type).

Proactive distribution
---------------------

When the user creates a type (composite or enum) we will have a hook running in `multi_ProcessUtility` after the command has been applied locally. Running after running locally makes that we already have an `ObjectAddress` for the type. This is required to mark the type as being distributed.

Keeping the type up to date
====================

For types that are recorded in `pg_dist_object` (eg. `IsObjectDistributed` returns true for the `ObjectAddress`) we will intercept the utility commands that alter the type.
 - `AlterTableStmt` with `relkind` set to `OBJECT_TYPE` encapsulate changes to the fields of a composite type.
 - `DropStmt` with removeType set to `OBJECT_TYPE` encapsulate `DROP TYPE`.
 - `AlterEnumStmt` encapsulates changes to enum values.
    Enum types can not be changed transactionally. When the execution on a worker fails a warning will be shown to the user the propagation was incomplete due to worker communication failure. An idempotent command is shown for the user to re-execute when the worker communication is fixed.

Keeping types up to date is done via the executor. Before the statement is executed locally we create a plan on how to apply it on the workers. This plan is executed after we have applied the statement locally.

All changes to types need to be done in the same transaction for types that have already been distributed and will fail with an error if parallel queries have already been executed in the same transaction. Much like foreign keys to reference tables.
2019-09-13 17:46:07 +02:00
Hadi Moshayedi 48ff4691a0 Return nodeid instead of record in some UDFs 2019-09-12 12:46:21 -07:00
Jelte Fennema d6deb062aa Add shard rebalancer stubs 2019-09-12 16:40:25 +02:00
Marco Slot 810aca8d41 Drop foreign key from pg_dist_poolinfo to pg_dist_node 2019-09-10 09:52:19 +02:00
Nils Dijk 936d546a3c
Refactor Ensure Schema Exists to Ensure Dependecies Exists (#2882)
DESCRIPTION: Refactor ensure schema exists to dependency exists

Historically we only supported schema's as table dependencies to be created on the workers before a table gets distributed. This PR puts infrastructure in place to walk pg_depend to figure out which dependencies to create on the workers. Currently only schema's are supported as objects to create before creating a table.

We also keep track of dependencies that have been created in the cluster. When we add a new node to the cluster we use this catalog to know which objects need to be created on the worker.

Side effect of knowing which objects are already distributed is that we don't have debug messages anymore when creating schema's that are already created on the workers.
2019-09-04 14:10:20 +02:00
Nils Dijk be6b7bec69
Add UDF citus_(prepare|finish)_pg_upgrade to aid with upgrading citus (#2877)
DESCRIPTION: Add functions to help with postgres upgrades

Currently there is [a list of manual steps](https://docs.citusdata.com/en/v8.2/admin_guide/upgrading_citus.html?highlight=upgrade#upgrading-postgresql-version-from-10-to-11) to perform during a postgres upgrade. These steps guarantee our catalog tables are kept and counter values are maintained across upgrades.

Having more than 1 command in our docs for users to manually execute during upgrades is error prone for both the user, and our docs. There are already 2 catalog tables that have been introduced to citus that have not been added to our docs for backing up during upgrades (`pg_authinfo` and `pg_dist_poolinfo`).

As we add more functionality to citus we run into situations where there are more steps required either before or after the upgrade. At the same time, when we move catalog tables to a place where the contents will be maintained automatically during upgrades we could have less steps in our docs. This will come to a hard to maintain matrix of citus versions and steps to be performed.

Instead we could take ownership of these steps within the extension itself. This PR introduces two new functions for the user to use instead of long lists of error prone instructions to follow.
 - `citus_prepare_pg_upgrade`
    This function should be called by the user right before shutting down the cluster. This will ensure all citus catalog tables are backed up in a location where the information will be retained during an upgrade.
- `citus_finish_pg_upgrade`
    This function should be called right after a pg_upgrade of the cluster. This will restore the catalog tables to the state before the upgrade happend.

Both functions need to be executed both on the coordinator and on all the workers, in the same fashion our current documentation instructs to do.

There are two known problems with this function in its current form, which is also a problem with our docs. We should schedule time in the future to improve on this, but having it automated now is better as we are about to add extra steps to take after upgrades.
 - When you install citus in a clean cluster we do enable ssl for communication between the coordinator and the workers. If an upgrade to a clean cluster is performed we do not setup ssl on the new cluster causing the communication to fail.
 - There are no automated tests added in this PR to execute an upgrade test durning every build. 
    Our current test infrastructure does not allow for 2 versions of postgres to exist in the same environment. We will need to invest time to create a new testing harness that could run the following scenario:
      1. Create cluster
      2. Run extensible scripts to execute arbitrary statements on this cluster
      3. Perform an upgrade by preparing, upgrading and finishing
      4. Run extensible scripts to verify all objects created by earlier scripts exists in correct form in the upgraded cluster

    Given the non trivial amount of work involved for such a suite I'd like to land this before we have 
automated testing.

On a side note; As the reviewer noticed, the tables created in the public namespace are not visible in `psql` with `\d`. The backup catalog tables have the same name as the tables in `pg_catalog`. Due to postgres internals `pg_catalog` is first in the search path and therefore the non-qualified name would alwasy resolve to `pg_catalog.pg_dist_*`. Internally this is called a non-visible table as it would resolve to a different table without a qualified name. Only visible tables are shown with `\d`.
2019-08-13 15:53:10 +02:00