The changes made are:
realWorker1Host -> publicWorker1Host
realWorker2Host -> publicWorker2Host
real_master_host -> master_host
real_worker_1_host -> public_worker_1_host
real_worker_2_host -> public_worker_2_host
This commit will be a fixup for Adds real host commit.
/*
* local_executor.c
*
* The scope of the local execution is locally executing the queries on the
* shards. In other words, local execution does not deal with any local tables
* that are not shards on the node that the query is being executed. In that sense,
* the local executor is only triggered if the node has both the metadata and the
* shards (e.g., only Citus MX worker nodes).
*
* The goal of the local execution is to skip the unnecessary network round-trip
* happening on the node itself. Instead, identify the locally executable tasks and
* simply call PostgreSQL's planner and executor.
*
* The local executor is an extension of the adaptive executor. So, the executor uses
* adaptive executor's custom scan nodes.
*
* One thing to note that Citus MX is only supported with replication factor = 1, so
* keep that in mind while continuing the comments below.
*
* On the high level, there are 3 slightly different ways of utilizing local execution:
*
* (1) Execution of local single shard queries of a distributed table
*
* This is the simplest case. The executor kicks at the start of the adaptive
* executor, and since the query is only a single task the execution finishes
* without going to the network at all.
*
* Even if there is a transaction block (or recursively planned CTEs), as long
* as the queries hit the shards on the same, the local execution will kick in.
*
* (2) Execution of local single queries and remote multi-shard queries
*
* The rule is simple. If a transaction block starts with a local query execution,
* all the other queries in the same transaction block that touch any local shard
* have to use the local execution. Although this sounds restrictive, we prefer to
* implement in this way, otherwise we'd end-up with as complex scenarious as we
* have in the connection managements due to foreign keys.
*
* See the following example:
* BEGIN;
* -- assume that the query is executed locally
* SELECT count(*) FROM test WHERE key = 1;
*
* -- at this point, all the shards that reside on the
* -- node is executed locally one-by-one. After those finishes
* -- the remaining tasks are handled by adaptive executor
* SELECT count(*) FROM test;
*
*
* (3) Modifications of reference tables
*
* Modifications to reference tables have to be executed on all nodes. So, after the
* local execution, the adaptive executor keeps continuing the execution on the other
* nodes.
*
* Note that for read-only queries, after the local execution, there is no need to
* kick in adaptive executor.
*
* There are also few limitations/trade-offs that is worth mentioning. First, the
* local execution on multiple shards might be slow because the execution has to
* happen one task at a time (e.g., no parallelism). Second, if a transaction
* block/CTE starts with a multi-shard command, we do not use local query execution
* since local execution is sequential. Basically, we do not want to lose parallelism
* across local tasks by switching to local execution. Third, the local execution
* currently only supports queries. In other words, any utility commands like TRUNCATE,
* fails if the command is executed after a local execution inside a transaction block.
* Forth, the local execution cannot be mixed with the executors other than adaptive,
* namely task-tracker, real-time and router executors. Finally, related with the
* previous item, COPY command cannot be mixed with local execution in a transaction.
* The implication of that any part of INSERT..SELECT via coordinator cannot happen
* via the local execution.
*/