Originally ReplicateShardToNode was meant for
`upgrade_to_reference_table`, which required handling of existing inactive
placements. These days `upgrade_to_reference_table` is deprecated and
cannot be used anymore. Now that we have SHARD_STATE_TO_DELETE too, this
left over code seemed error prone. So this removes support for
activating inactive reference table placemements, since these should not
be possible. If it finds a non active reference table placement anyway
it now errors out.
This also removes a few outdated comments related to `upgrade_to_refeference_table`.
InvalidateForeignKeyGraph sends an invalidation via shared memory to all
backends, including the current one.
However, we might not call AcceptInvalidationMessages before reading
from the cache below. It would be better to also add a call to
AcceptInvalidationMessages in IsForeignConstraintRelationshipGraphValid.
Previously this was usually done after argument parsing. This can cause
SEGFAULTs if the number or type of arguments changes in a new version.
By checking that Citus version is correct before doing any argument
parsing we protect against these types of issues. Issues like this have
occurred in pg_auto_failover, so it's not just a theoretical issue.
The main reason why these calls were not at the top of functions is
really just historical. It was because in the past we didn't allow
statements before declarations. Thus having this check before the
argument parsing would have only been possible if we first declared all
variables.
In addition to moving existing CheckCitusVersion calls it also adds
these calls to rebalancer related functions (they were missing there).
It was possible to block maintenance daemon by taking an SHARE ROW
EXCLUSIVE lock on pg_dist_placement. Until the lock is released
maintenance daemon would be blocked.
We should not block the maintenance daemon under any case hence now we
try to get the pg_dist_placement lock without waiting, if we cannot get
it then we don't try to drop the old placements.
DESCRIPTION: introduce `citus.local_hostname` GUC for connections to the current node
Citus once in a while needs to connect to itself for some systems operations. This used to be hardcoded to `localhost`. The hardcoded hostname causes some issues, for example in environments where `sslmode=verify-full` is required. It is not always desirable or even feasible to get `localhost` as an alt name on the certificate.
By introducing a GUC to use when connecting to the current instance the user has more control what network path is used and what hostname is required to be present in the server certificate.
* Fix problews with concurrent calls of DropMarkedShards
When trying to enable `citus.defer_drop_after_shard_move` by default it
turned out that DropMarkedShards was not safe to call concurrently.
This could especially cause big problems when also moving shards at the
same time. During tests it was possible to trigger a state where a shard
that was moved would not be available on any of the nodes anymore after
the move.
Currently DropMarkedShards is only called in production by the
maintenaince deamon. Since this is only a single process triggering such
a race is currently impossible in production settings. In future changes
we will want to call DropMarkedShards from other places too though.
* Add some isolation tests
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
This commit adds support for long partition names for distributed tables:
- ALTER TABLE dist_table ATTACH PARTITION ..
- CREATE TABLE .. PARTITION OF dist_table ..
Note: create_distributed_table UDF does not support long table and
partition names, and is not covered in this commit
* Reimplement citus_update_table_statistics
* Update stats for the given table not colocation group
* Add tests for reimplemented citus_update_table_statistics
* Use coordinated transaction, merge with citus_shard_sizes functions
* Update the old master_update_table_statistics as well
When we use PROCESS_UTILITY_TOPLEVEL it causes some problems when
combined with other extensions such as pg_audit. With this commit we use
PROCESS_UTILITY_QUERY in the codebase to fix those problems.
* Fix partition column index issue
We send column names to worker_hash/range_partition_table methods, and
in these methods we check the column name index from tuple descriptor.
Then this index is used to decide the bucket that the current row will
be sent for the repartition.
This becomes a problem when there are the same column names in the
tupleDescriptor. Then we can choose the wrong index. Hence the
partitioned data will be put to wrong workers. Then the result could
miss some data because workers might contain different range of data.
An example:
TupleDescriptor contains "trip_id", "car_id", "car_id" for one table.
It contains only "car_id" for the other table. And assuming that the
tables will be partitioned by car_id, it is not certain what should be
used for deciding the bucket number for the first table. Assuming value
2 goes to bucket 2 and value 3 goes to bucket 3, it is not certain which
bucket "1 2 3" (trip_id, car_id, car_id) row will go to.
As a solution we send the index of partition column in targetList
instead of the column name.
The old API is kept so that if workers upgrade work, it still works
(though it will have the same bug)
* Use the same method so that backporting is easier
Currently we choose an arbitrary colocation id from all the matches for
a colocation id. This could mean that 2 distributed tables, which have
the same scheme could go into different colocation groups. This fix
makes sure that the same match will go to the same colocation group.
On top of our foreign key graph, implement the infrastructure to get
list of relations that are connected to input relation via a foreign key
graph.
We need this to support cascading create_citus_local_table &
undistribute_table operations.
Also add regression tests to see what our foreign key graph is able to
capture currently.
With this commit, we remove visited flags from ForeignConstraintRelationshipNode
struct since keeping local state in global object is both dangerous and
meaningless.
Also to improve readability, this commit also converts needless recursion to
iterative DFS to avoid passing local hash-map as another parameter to
GetConnectedListHelper function.
Baseinfo also has pushed down filters etc, so it makes more sense to use
BaseRestrictInfo to determine what columns have constant equality
filters.
Also RteIdentity is used for removing conversion candidates instead of
rteIndex.
It seems that most of the updates were broken, we weren't aware of it
because there wasn't any data in the tables. They are broken mostly
because local tables do not have a shard id and some code paths should
be updated with that information, currently when there is an invalid
shard id, it is assumed to be pruned.
Consider local tables in router planner
In case there is a local table, the shard id will not be valid and there
are some checks that rely on shard id, we should skip these in case of
local tables, which is handled with a dummy placement.
Add citus local table dist table join tests
add local-dist table mixed joins tests
When distributing a columnar table, as well as changing options on a distributed columnar table, this patch will forward the settings from the coordinator to the workers.
For propagating options changes on an already distributed table this change is pretty straight forward. Before applying the change in options locally we will create a `DDLJob` that contains a call to `alter_columnar_table_set(...)` for every shard placement with all settings of the current table. This goes both for setting an option as well as resetting. This will reset the values to the defaults configured on the coordinator. Having the effect that the coordinator is authoritative on the settings and makes sure the shards have the same settings set as the table on the coordinator.
When a columnar table is distributed it is using the `TableDDLCommand` infra structure to create a new kind of `TableDDLCommand`. This new type, called a `TableDDLCommandFunction` contains a context and 2 function pointers to execute. One function returns the command as applied on the table, the second function will return the sql command to apply to a shard with a given shard id. The schema name is ignored as it will use the fully qualified name of the shard in the same schema as the base table.
Refactor internals on how Citus creates the SQL commands it sends to recreate shards.
Before Citus collected solely ddl commands as `char *`'s to recreate a table. If they were used to create a shard they were wrapped with `worker_apply_shard_ddl_command` and send to the workers. On the workers the UDF wrapping the ddl command would rewrite the parsetree to replace tables names with their shard name equivalent.
This worked well, but poses an issue when adding columnar. Due to limitations in Postgres on creating custom options on table access methods we need to fall back on a UDF to set columnar specific options. Now, to recreate the table, we can not longer rely on having solely DDL statements to recreate a table.
A prototype was made to run this UDF wrapped in `worker_apply_shard_ddl_command`. This became pretty messy, hard to understand and subsequently hard to maintain.
This PR proposes a refactor of the internal representation of table ddl commands into a `TableDDLCommand` structure. The current implementation only supports a `char *` as its contents. Based on the use of the DDL statement (eg. creating the table -mx- or creating a shard) one of two different functions can be called to get the statement to send to the worker:
- `GetTableDDLCommand(TableDDLCommand *command)`: This function returns that ddl command to create the table. In this implementation it will just return the `char *`. This has the same functionality as getting the old list and not wrapping it.
- `GetShardedTableDDLCommand(TableDDLCommand *command, uint64 shardId, char *schemaName)`: This function returns the ddl command wrapped in `worker_apply_shard_ddl_command` with the `shardId` as an argument. Due to backwards compatibility it also accepts a. `schemaName`. The exact purpose is not directly clear. Ideally new implementations would work with fully qualified statements and ignore the `schemaName`.
A future implementation could accept 2.function pointers and a `void *` for context to let the two pointers work on. This gives greater flexibility in controlling what commands get send in which situations. Also, in a future, we could implement the intermediate step of creating the `parsetree` datastructure of statements based on the contents in the catalog with a corresponding deparser. For sharded queries a mutator could be ran over the parsetree to rewrite the tablenames to the names with the shard identifier. This will completely omit the requirement for `worker_apply_shard_ddl_command`.
RemoveDuplicateJoinRestrictions() function was introduced with the aim of decrasing the overall planning times by eliminating the duplicate JOIN restriction entries (#1989). However, it turns out that the function itself is so CPU intensive with a very high algorithmic complexity, it hurts a lot more than it helps. The function is a clear example of premature optimization.
The table below shows the difference clearly:
"distributed query planning
time master" RemoveDuplicateJoinRestrictions() execution time on master "Remove the function RemoveDuplicateJoinRestrictions()
this PR"
5 table INNER JOIN 9 msec 2msec 7 msec
10 table INNER JOIN 227 msec 194 msec 29 msec
20 table INNER JOIN 1 sec 235 msec 1 sec 139 msec 90 msecs
50 table INNER JOIN 24 seconds 21 seconds 1.5 seconds
100 table INNER JOIN 2 minutes 16 secods 1 minute 53 seconds 23 seconds
250 table INNER JOIN Bottleneck on JoinClauseList 18 minutes 52 seconds Bottleneck on JoinClauseList
5 table INNER JOIN in subquery 9 msec 0 msec 6 msec
10 table INNER JOIN subquery 33 msec 10 msec 32 msec
20 table INNER JOIN subquery 132 msec 67 msec 123 msec
50 table INNER JOIN subquery 1.2 seconds 900 msec 500 msec
100 table INNER JOIN subquery 6 seconds 5 seconds 2 seconds
250 table INNER JOIN subquery 54 seconds 37 seconds 20 seconds
5 table LEFT JOIN 5 msec 0 msec 5 msec
10 table LEFT JOIN 11 msec 0 msec 13 msec
20 table LEFT JOIN 26 msec 2 msec 30 msec
50 table LEFT JOIN 150 msec 15 msec 193 msec
100 table LEFT JOIN 757 msec 71 msec 722 msec
250 table LEFT JOIN 8 seconds 600 msec 8 seconds
5 JOINs among 2 table JOINs 37 msec 11 msec 25 msec
10 JOINs among 2 table JOINs 536 msec 306 msec 352 msec
20 JOINs among 2 table JOINs 794 msec 181 msec 640 msec
50 JOINs among 2 table JOINs 25 seconds 2 seconds 22 seconds
100 JOINs among 2 table JOINs Bottleneck on JoinClauseList 9 seconds Bottleneck on JoinClauseList
150 JOINs among 2 table JOINs Bottleneck on JoinClauseList 46 seconds Bottleneck on JoinClauseList
On top of the performance penalty, the function had a critical bug #4255, and with #4254 we hit one more important bug. It should be fixed by adding the followig check to the ContextCoversJoinRestriction():
```
static bool
JoinRelIdsSame(JoinRestriction *leftRestriction, JoinRestriction *rightRestriction)
{
Relids leftInnerRelIds = leftRestriction->innerrel->relids;
Relids rightInnerRelIds = rightRestriction->innerrel->relids;
if (!bms_equal(leftInnerRelIds, rightInnerRelIds))
{
return false;
}
Relids leftOuterRelIds = leftRestriction->outerrel->relids;
Relids rightOuterRelIds = rightRestriction->outerrel->relids;
if (!bms_equal(leftOuterRelIds, rightOuterRelIds))
{
return false;
}
return true;
}
```
However, adding this eliminates all the benefits tha RemoveDuplicateJoinRestrictions() brings.
I've used the commands here to generate the JOINs mentioned in the PR: https://gist.github.com/onderkalaci/fe8654f9df5916c7af4c7c5eb892561e#file-gistfile1-txt
Inner and outer JOINs behave roughly the same, to simplify the table only added INNER joins.
* Fix incorrect join related fields
Ruleutils expect to give the original index of join columns hence we
should consider the dropped columns while setting the fields in
SetJoinRelatedFieldsCompat.
* add some more tests for joins
* Move tests to join.sql and create a utility function
Use short lived per-tuple context in citus_evaluate_expr like
(pg) evaluate_expr does.
We should not use planState->ExprContext when evaluating expressions
as it might lead to freeing the same executor twice (first one happens
in citus_evaluate_expr itself and the other one happens when postgres
doing clean-up for the top level executor state), which in turn might
cause seg.faults.
However, now as we don't have necessary planState info to evaluate
prepared statements, we also add planState->es_param_list_info to
per-tuple ExprContext.
Citus has the logic to truncate the long shard names to prevent
various issues, including self-deadlocks. However, for partitioned
tables, when index is created on the parent table, the index names
on the partitions are auto-generated by Postgres. We use the same
Postgres function to generate the index names on the shards of the
partitions. If the length exceeds the limit, we switch to sequential
execution mode.
Add sort method parameter for regression tests
Fix check-style
Change sorting method parameters to enum
Polish
Add task fields to OutTask
Add test into multi_explain
Fix isolation test
* Not take ShareUpdateExlusiveLock on pg_dist_transaction
We were taking ShareUpdateExlusiveLock on pg_dist_transaction during
recovery to prevent multiple recoveries happening concurrenly. VACUUM(
not FULL) also takes ShareUpdateExclusiveLock, and they can conflict. It
seems that VACUUM will skip the table if there is a conflicting lock
already taken unless it is doing the vacuum to prevent id wraparound, in
which case there can be a deadlock. I guess the deadlock happens if:
- VACUUM takes a lock on pg_dist_transaction and is done for id
wraparound problem
- The transaction in the maintenance tries to take a lock but
cannot as that conflicts with the lock acquired by VACUUM
- The transaction in the maintenance daemon has a very old xid hence
VACUUM cannot proceed.
If we take a row exclusive lock in transaction recovery then it wouldn't
conflict with VACUUM hence it could proceed so the deadlock would be
resolved. To prevent concurrent transaction recoveries happening, an
advisory lock is taken with ShareUpdateExlusiveLock as before.
* Use CITUS_OPERATIONS tag
This commit brings following features:
Foreign key support from citus local tables to reference tables
* Foreign key support from reference tables to citus local tables
(only with RESTRICT & NO ACTION behavior)
* ALTER TABLE ENABLE/DISABLE trigger command support
* CREATE/DROP/ALTER trigger command support
and disallows:
* ALTER TABLE ATTACH/DETACH PARTITION commands
* CREATE TABLE <postgres table> ATTACH PARTITION <citus local table>
commands
* Foreign keys from postgres tables to citus local tables
(the other way was already disallowed)
for citus local tables.
Introduce table entry utility functions
Citus table cache entry utilities are introduced so that we can easily
extend existing functionality with minimum changes, specifically changes
to these functions. For example IsNonDistributedTableCacheEntry can be
extended for citus local tables without the need to scan the whole
codebase and update each relevant part.
* Introduce utility functions to find the type of tables
A table type can be a reference table, a hash/range/append distributed
table. Utility methods are created so that we don't have to worry about
how a table is considered as a reference table etc. This also makes it
easy to extend the table types.
* Add IsCitusTableType utilities
* Rename IsCacheEntryCitusTableType -> IsCitusTableTypeCacheEntry
* Change citus table types in some checks
FindNodeCheck is not clear about what the function is doing. They are
renamed to FindNodeMatchingCheckFunctionXXX. Also for choosing elements in these
functions, CheckNodeFunc type is introduced.
This commit mostly adds pg_get_triggerdef_command to our ruleutils_13.
This doesn't add anything extra for ruleutils 13 so it is basically a copy
of the change on ruleutils_12
Commit on postgres side:
05d8449e73694585b59f8b03aaa087f04cc4679a
Command on postgres side:
git log --all --grep="hashutils"
include common/hashfn.h for pg >= 13
tag_hash was moved from hsearch.h to hashutils.h then to hashfn.h
Commits on Postgres side:
9341c783cc42ffae5860c86bdc713bd47d734ffd
With PG13 heap_* (heap_open, heap_close etc) are replaced with table_*
(table_open, table_close etc).
It is better to use the new table access methods in the codebase and
define the macros for the previous versions as we can easily remove the
macro without having to change the codebase when we drop the support for
the old version.
Commits that introduced this change on Postgres:
f25968c49697db673f6cd2a07b3f7626779f1827
e0c4ec07284db817e1f8d9adfb3fffc952252db0
4b21acf522d751ba5b6679df391d5121b6c4a35f
Command to see relevant commits on Postgres side:
git log --all --grep="heap_open"
Enable custom aggregates with multiple parameters to be executed on workers.
#2921 introduces distributed execution of custom aggregates. One of the limitations of this feature is that only aggregate functions with a single aggregation parameter can be pushed to worker nodes. Aim of this change is to remove that limitation and support handling of multi-parameter aggregates.
Resolves: #3997
See also: #2921
* Use CalculateUniformHashRangeIndex in HashPartitionId
INT32_MIN definition can change among different platforms hence it is
possible to get overflow, we would see crashes because of this in debian
distros. We have already solved a similar problem with introducing
CalculateUniformHashRangeIndex method, hence to solve it we can use the
same method, this also removes some duplication and has a single place
to decide that.
* Use PG_INT32_XX instead of INT32_XX to be safer
* use adaptive executor even if task-tracker is set
* Update check-multi-mx tests for adaptive executor
Basically repartition joins are enabled where necessary. For parallel
tests max adaptive executor pool size is decresed to 2, otherwise we
would get too many clients error.
* Update limit_intermediate_size test
It seems that when we use adaptive executor instead of task tracker, we
exceed the intermediate result size less in the test. Therefore updated
the tests accordingly.
* Update multi_router_planner
It seems that there is one problem with multi_router_planner when we use
adaptive executor, we should fix the following error:
+ERROR: relation "authors_range_840010" does not exist
+CONTEXT: while executing command on localhost:57637
* update repartition join tests for check-multi
* update isolation tests for repartitioning
* Error out if shard_replication_factor > 1 with repartitioning
As we are removing the task tracker, we cannot switch to it if
shard_replication_factor > 1. In that case, we simply error out.
* Remove MULTI_EXECUTOR_TASK_TRACKER
* Remove multi_task_tracker_executor
Some utility methods are moved to task_execution_utils.c.
* Remove task tracker protocol methods
* Remove task_tracker.c methods
* remove unused methods from multi_server_executor
* fix style
* remove task tracker specific tests from worker_schedule
* comment out task tracker udf calls in tests
We were using task tracker udfs to test permissions in
multi_multiuser.sql. We should find some other way to test them, then we
should remove the commented out task tracker calls.
* remove task tracker test from follower schedule
* remove task tracker tests from multi mx schedule
* Remove task-tracker specific functions from worker functions
* remove multi task tracker extra schedule
* Remove unused methods from multi physical planner
* remove task_executor_type related things in tests
* remove LoadTuplesIntoTupleStore
* Do initial cleanup for repartition leftovers
During startup, task tracker would call TrackerCleanupJobDirectories and
TrackerCleanupJobSchemas to clean up leftover directories and job
schemas. With adaptive executor, while doing repartitions it is possible
to leak these things as well. We don't retry cleanups, so it is possible
to have leftover in case of errors.
TrackerCleanupJobDirectories is renamed as
RepartitionCleanupJobDirectories since it is repartition specific now,
however TrackerCleanupJobSchemas cannot be used currently because it is
task tracker specific. The thing is that this function is a no-op
currently.
We should add cleaning up intermediate schemas to DoInitialCleanup
method when that problem is solved(We might want to solve it in this PR
as well)
* Revert "remove task tracker tests from multi mx schedule"
This reverts commit 03ecc0a681.
* update multi mx repartition parallel tests
* not error with task_tracker_conninfo_cache_invalidate
* not run 4 repartition queries in parallel
It seems that when we run 4 repartition queries in parallel we get too
many clients error on CI even though we don't get it locally. Our guess
is that, it is because we open/close many connections without doing some
work and postgres has some delay to close the connections. Hence even
though connections are removed from the pg_stat_activity, they might
still not be closed. If the above assumption is correct, it is unlikely
for it to happen in practice because:
- There is some network latency in clusters, so this leaves some times
for connections to be able to close
- Repartition joins return some data and that also leaves some time for
connections to be fully closed.
As we don't get this error in our local, we currently assume that it is
not a bug. Ideally this wouldn't happen when we get rid of the
task-tracker repartition methods because they don't do any pruning and
might be opening more connections than necessary.
If this still gives us "too many clients" error, we can try to increase
the max_connections in our test suite(which is 100 by default).
Also there are different places where this error is given in postgres,
but adding some backtrace it seems that we get this from
ProcessStartupPacket. The backtraces can be found in this link:
https://circleci.com/gh/citusdata/citus/138702
* Set distributePlan->relationIdList when it is needed
It seems that we were setting the distributedPlan->relationIdList after
JobExecutorType is called, which would choose task-tracker if
replication factor > 1 and there is a repartition query. However, it
uses relationIdList to decide if the query has a repartition query, and
since it was not set yet, it would always think it is not a repartition
query and would choose adaptive executor when it should choose
task-tracker.
* use adaptive executor even with shard_replication_factor > 1
It seems that we were already using adaptive executor when
replication_factor > 1. So this commit removes the check.
* remove multi_resowner.c and deprecate some settings
* remove TaskExecution related leftovers
* change deprecated API error message
* not recursively plan single relatition repartition subquery
* recursively plan single relation repartition subquery
* test depreceated task tracker functions
* fix overlapping shard intervals in range-distributed test
* fix error message for citus_metadata_container
* drop task-tracker deprecated functions
* put the implemantation back to worker_cleanup_job_schema_cachesince citus cloud uses it
* drop some functions, add downgrade script
Some deprecated functions are dropped.
Downgrade script is added.
Some gucs are deprecated.
A new guc for repartition joins bucket size is added.
* order by a test to fix flappiness
This is so we don't need to calculate it twice in
insert_select_executor.c and multi_explain.c, which can
cause discrepancy if an update in one of them is not
reflected in the other site.
In #3901 the "Data received from worker(s)" sections were added to EXPLAIN
ANALYZE. After merging @pykello posted some review comments. This addresses
those comments as well as fixing a other issues that I found while addressing
them. The things this does:
1. Fix `EXPLAIN ANALYZE EXECUTE p1` to not increase received data on every
execution
2. Fix `EXPLAIN ANALYZE EXECUTE p1(1)` to not return 0 bytes as received data
allways.
3. Move `EXPLAIN ANALYZE` specific logic to `multi_explain.c` from
`adaptive_executor.c`
4. Change naming of new explain sections to `Tuple data received from node(s)`.
Firstly because a task can reference the coordinator too, so "worker(s)" was
incorrect. Secondly to indicate that this is tuple data and not all network
traffic that was performed.
5. Rename `totalReceivedData` in our codebase to `totalReceivedTupleData` to
make it clearer that it's a tuple data counter, not all network traffic.
6. Actually add `binary_protocol` test to `multi_schedule` (woops)
7. Fix a randomly failing test in `local_shard_execution.sql`.
Shard id to index mapping stored in cache entry as there may now be multiple entries alive for a given relation
insert_select_executor: revert copying cache entry, which was a hack added to avoid memory safety issues
Sadly this does not actually work yet for binary protocol data, because
when doing EXPLAIN ANALYZE we send two commands at the same time. This
means we cannot use `SendRemoteCommandParams`, and thus cannot use the
binary protocol. This can still be useful though when using the text
protocol, to find out that a lot of data is being sent.
We still recursively plan some cases, eg:
- INSERTs
- SELECT FOR UPDATE when reference tables in query
- Everything must be same single shard & replication model
We wrap worker tasks in worker_save_query_explain_analyze() so we can fetch
their explain output later by a call worker_last_saved_explain_analyze().
Fixes#3519Fixes#2347Fixes#2613Fixes#621
Implements a new `TupleDestination` interface to allow custom tuple processing per task.
This can be specially useful if a task contains multiple queries. An example of this EXPLAIN
ANALYZE, where it needs to add some UDF calls to the query to fetch the explain output
from worker after fetching the actual query results.
To reduce code duplication, implement function that pushes search_path
to be NIL and sets addCatalog to true so that all objects outside of
pg_catalog will be schema-prefixed.
SELECT_TASK is renamed to READ_TASK as a SELECT with modifying CTEs will be a MODIFYING_TASK
RouterInsertJob: Assert originalQuery->commandType == CMD_INSERT
CreateModifyPlan: Assert originalQuery->commandType != CMD_SELECT
Remove unused function IsModifyDistributedPlan
DistributedExecution, ExecutionParams, DistributedPlan: Rename hasReturning to expectResults
SELECTs set expectResults to true
Rename CreateSingleTaskRouterPlan to CreateSingleTaskRouterSelectPlan
* Not append empty task in ExtractLocalAndRemoteTasks
ExtractLocalAndRemoteTasks extracts the local and remote tasks. If we do
not have a local task the localTaskPlacementList will be NIL, in this
case we should not append anything to local tasks. Previously we would
first check if a task contains a single placement or not, now we first
check if there is any local task before doing anything.
* fix copy of node task
Task node has task query, which might contain a list of strings in its
fields. We were using postgres copyObject for these lists. Postgres
assumes that each element of list will be a node type. If it is not a
node type it will error.
As a solution to that, a new macro is introduced to copy a list of
strings.
This copies over fixes from reference counting branch,
all CitusTableCacheEntry data may be freed when a GetCitusTableCacheEntry call occurs for its relationId
This fix is not complete, but reference counting is being deferred until 9.4
CopyShardInterval: remove dest parameter, always return newly allocated object
DESCRIPTION: Alter role only works for citus managed roles
Alter role was implemented before we implemented good role management that hooks into the object propagation framework. This is a refactor of all alter role commands that have been implemented to
- be on by default
- only work for supported roles
- make the citus extension owner a supported role
Instead of distributing the alter role commands for roles at the beginning of the node activation role it now _only_ executes the alter role commands for all users in all databases and in the current database.
In preparation of full role support small refactors have been done in the deparser.
Earlier tests targeting other roles than the citus extension owner have been either slightly changed or removed to be put back where we have full role support.
Fixes#2549
We had many fields in task related to query strings. It was kind of
complex, and only of them could be set at a time. Therefore it makes
more sense to abstract this and use a union so that it is clear that
only of them should be set.
We have three fields that could have query related strings:
- queryForLocation
- queryStringLazy
- perPlacementQueryStrings
Relatively, they can be set with:
- SetTaskQueryString
- SetTaskQueryIfShouldLazyDeparse
- SetTaskPerPlacementQueryStrings
The direct usage of the query related fields are also removed.
Rename queryForLocalExecution
Currently queryForLocalExecution is only used for deparsing purposes,
therefore it makes sense to rename it to what it is doing.
Sometimes we have concatenated query strings for a task. However,
when we want to find each query string, it is not a trivial task.
Therefore, it makes sense to store this in task so that when we need
each query string we can easily get it.
Some refactoring:
Consolidate expression which decides whether GROUP BY/HAVING are pushed down
Rename early pullUpIntermediateRows to hasNonDistributableAggregates
Create WorkerColumnName to handle formatting WORKER_COLUMN_FORMAT
Ignore NULL StringInfo pointers to SafeToPushdownWindowFunction
Fix bug where SubqueryPushdownMultiNodeTree mutates supplied Query,
SafeToPushdownWindowFunction requires the original query as it relies on rtable
If two tables have the same distribution column type, we implicitly
colocate them. This is useful since colocation has a big performance
impact in most applications.
When a table is rebalanced, all of the colocated tables are also
rebalanced. If table A and table B are colocated and we want to
rebalance table A, table B will also be rebalanced. We need replica
identity so that logical replication can replicate updates and deletes
during rebalancing. If table B does not have a replica identity we
error out.
A solution to this is to introduce a UDF so that colocation can be
updated. The remaining tables in the colocation group will stay
colocated. For example if table A, B and C are colocated and after
updating table B's colocations, table A and table C stay colocated.
The "updating colocation" step does not move any data around, it only
updated pg_dist_partition and pg_dist_colocation tables. Specifically it
creates a new colocation group for the table and updates the entry in
pg_dist_partition while invalidating any cache.
A copy will be executed locally if
- Local execution is enabled and current transaction accessed a local placement
- Local execution is enabled and we are inside a transaction block.
So even if local execution is enabled but we are not in a transaction block, the copy will not be run locally.
This will not run locally:
```
COPY distributed_table FROM STDIN;
....
```
This will run locally:
```
SET citus.enable_local_execution to 'on';
BEGIN;
COPY distributed_table FROM STDIN;
COMMIT;
....
```
.
There are 3 ways to do a copy in postgres programmatically:
- from a file
- from a program
- from a callback function
I have chosen to implement it with a callback function, which means that we write the rows of copy from a callback function to the output buffer, which is used to insert tuples into the actual table.
For each shard id, we have a buffer that keeps the current rows to be written, we perform the actual copy operation either when:
- copy buffer for the given shard id reaches to a threshold, which is currently 512KB
- we reach to the end of the copy
The buffer size is debatable(512KB). At a given time, we might allocate (local placement * buffer size) memory at most.
The local copy uses the same copy format as remote copy, which means that we serialize the data in the same format as remote copy and send it locally.
There was also the option to use ExecSimpleRelationInsert to insert
slots one by one, which would avoid the extra
serialization/deserialization but doing some benchmarks it seems that
using buffers are significantly better in terms of the performance.
You can see this comment for more details: https://github.com/citusdata/citus/pull/3557#discussion_r389499054
This fixes 3 bugs:
1. `strtoul` never underflows, so that branch was useless
2. `strtoul` has ULONG_MAX instead of LONG_MAX when it overflows
3. `long` and `unsigned long` are not necessarily 64bit, they can be
either more or less. So now `strtoll` and `strtoull` are used
and 64 bit bounds are checked.
Semmle reported quite some places where we use a value that could be NULL. Most of these are not actually a real issue, but better to be on the safe side with these things and make the static analysis happy.
DESCRIPTION: Replace the query planner for the coordinator part with the postgres planner
Closes#2761
Citus had a simple rule based planner for the query executed on the query coordinator. This planner grew over time with the addigion of SQL support till it was getting close to the functionality of the postgres planner. Except the code was brittle and its complexity rose which made it hard to add new SQL support.
Given its resemblance with the postgres planner it was a long outstanding wish to replace our hand crafted planner with the well supported postgres planner. This patch replaces our planner with a call to postgres' planner.
Due to the functionality of the postgres planner we needed to support both projections and filters/quals on the citus custom scan node. When a sort operation is planned above the custom scan it might require fields to be reordered in the custom scan before returning the tuple (projection). The postgres planner assumes every custom scan node implements projections. Because we controlled the plan that was created we prevented reordering in the custom scan and never had implemented it before.
A same optimisation applies to having clauses that could have been where clauses. Instead of applying the filter as a having on the aggregate it will push it down into the plan which could reach a custom scan node.
For both filters and projections we have implemented them when tuples are read from the tuple store. If no projections or filters are required it will directly return the tuple from the tuple store. Otherwise it will loop tuples from the tuple store through the filter and projection until a tuple is found and returned.
Besides filters being pushed down a side effect of having quals that could have been a where clause is that a call to read intermediate result could be called before the first tuple is fetched from the custom scan. This failed because the intermediate result would only be pulled to the coordinator on the first tuple fetch. To overcome this problem we do run the distributed subplans now before we run the postgres executor. This ensures the intermediate result is present on the coordinator in time. We do account for total time instrumentation by removing the instrumentation before handing control to the psotgres executor and update the timings our self.
For future SQL support it is enough to create a valid query structure for the part of the query to be executed on the query coordinating node. As a utility we do serialise and print the query at debug level4 for engineers to inspect what kind of query is being planned on the query coordinator.
We don't actually use these functions anymore since merging #1477.
Advantages of removing:
1. They add work whenever we add a new node.
2. They contain some usage of stdlib APIs that are banned by Microsoft.
Removing it means we don't have to replace those with safe ones.
- Stop the daemon when citus extension is dropped
- Bail on maintenance daemon startup if myDbData is started with a non-zero pid
- Stop maintenance daemon from spawning itself
- Don't use postgres die, just wrap proc_exit(0)
- Assert(myDbData->workerPid == MyProcPid)
The two issues were that multiple daemons could be running for a database,
or that a daemon would be leftover after DROP EXTENSION citus
Comparison between differently sized integers in loop conditions can cause
infinite loops. This can happen when doing something like this:
```c
int64 very_big = MAX_INT32 + 1;
for (int32 i = 0; i < very_big; i++) {
// do something
}
// never reached because i overflows before it can reach the value of very_big
```
When using --allow-group-access option from initdb our keys and
certificates would be created with 0640 permissions. Which is a pretty
serious security issue: This changes that. This would not be exploitable
though, since postgres would not actually enable SSL and would output
the following message in the logs:
```
DETAIL: File must have permissions u=rw (0600) or less if owned by the database user, or permissions u=rw,g=r (0640) or less if owned by root.
```
Since citus still expected the cluster to have SSL enabled handshakes
between workers and coordinator would fail. So instead of a security
issue the cluster would simply be unusable.
For example, a PARAM might reside inside a function just because
of a casting of a type such as the follows:
```
{FUNCEXPR
:funcid 1740
:funcresulttype 1700
:funcretset false
:funcvariadic false
:funcformat 2
:funccollid 0
:inputcollid 0
:args (
{PARAM
:paramkind 0
:paramid 15
:paramtype 23
:paramtypmod -1
:paramcollid 0
:location 356
}
)
```
We should recursively check the expression before bailing out.
Previously, the logic for evaluting the functions and the parameters
were the same. That ended-up evaluting the functions inaccurately
on the coordinator. Instead, split the function evaluation logic
from parameter evalution logic.
Previously, we've identified the usedSubPlans by only looking
to the subPlanId.
With this commit, we're expanding it to also include information
on the location of the subPlan.
This is useful to distinguish the cases where the subPlan is used
either on only HAVING or both HAVING and any other part of the query.
In #3374 a new way of locking shard distribution metadata was
implemented. However, this was only done in the function
`LockShardDistributionMetadata` and not in
`TryLockShardDistributionMetadata`. This is bad, since it causes these
locks to not block eachother in some cases.
This commit fixes this issue by sharing the code that sets the locktag
between the two function.
Deparsing and parsing a query can be heavy on CPU. When locally executing
the query we don't need to do this in theory most of the time.
This PR is the first step in allowing to skip deparsing and parsing
the query in these cases, by lazily creating the query string and
storing the query in the task. Future commits will make use of this and
not deparse and parse the query anymore, but use the one from the task
directly.
Different versions of reindent tool reformatted citus_custom_scan.c
and citus_copyfuncs.c differently. So some developers spent some
extra attention not to commit these two files after reindent.
This PR tries to address this.
Use partition column's collation for range distributed tables
Don't allow non deterministic collations for hash distributed tables
CoPartitionedTables: don't compare unequal types
DESCRIPTION: add gitref to the output of citus_version
During debugging of custom builds it is hard to know the exact version of the citus build you are using. This patch will add a human readable/understandable git reference to the build of citus which can be retrieved by calling `citus_version();`.
In plain words, each distributed plan pulls the necessary intermediate
results to the worker nodes that the plan hits. This is primarily useful
in three ways.
(i) If the distributed plan that uses intermediate
result(s) is a router query, then the intermediate results are only
broadcasted to a single node.
(ii) If a distributed plan consists of only intermediate results, which
is not uncommon, the intermediate results are broadcasted to a single
node only.
(iii) If a distributed query hits a sub-set of the shards in multiple
workers, the intermediate results will be broadcasted to the relevant
node(s).
The final item (iii) becomes crucial for append/range distributed
tables where typically the distributed queries hit a small subset of
shards/workers.
To do this, for each query that Citus creates a distributed plan, we keep
track of the subPlans used in the queryTree, and save it in the distributed
plan. Just before Citus executes each subPlan, Citus first keeps track of
every worker node that the distributed plan hits, and marks every subPlan
should be broadcasted to these nodes. Later, for each subPlan which is a
distributed plan, Citus does this operation recursively since these
distributed plans may access to different subPlans, and those have to be
recorded as well.
Phase 1 seeks to implement minimal infrastructure, so does not include:
- dynamic generation of support aggregates to handle multiple arguments
- configuration methods to direct aggregation strategy,
or mark an aggregate's serialize/deserialize as safe to operate across nodes
Aggregates can be distributed when:
- they have a single argument
- they have a combinefunc
- their transition type is not a pseudotype
Postgres doesn't require you to add all columns that are in the target list to
the GROUP BY when you group by a unique column (or columns). It even actively
removes these group by clauses when you do.
This is normally fine, but for repartition joins it is not. The reason for this
is that the temporary tables don't have these primary key columns. So when the
worker executes the query it will complain that it is missing columns in the
group by.
This PR fixes that by adding an ANY_VALUE aggregate around each variable in
the target list that does is not contained in the group by or in an aggregate.
This is done only for repartition joins.
The ANY_VALUE aggregate chooses the value from an undefined row in the
group.
It looks like the logic to prevent RETURNING in reference tables to
have duplicate entries that comes from local and remote executions
leads to missing some tuples for distributed tables.
With this PR, we're ensuring to kick in the logic for reference tables
only.
* Remove unused executor codes
All of the codes of real-time executor. Some functions
in router executor still remains there because there
are common functions. We'll move them to accurate places
in the follow-up commits.
* Move GUCs to transaction mngnt and remove unused struct
* Update test output
* Get rid of references of real-time executor from code
* Warn if real-time executor is picked
* Remove lots of unused connection codes
* Removed unused code for connection restrictions
Real-time and router executors cannot handle re-using of the existing
connections within a transaction block.
Adaptive executor and COPY can re-use the connections. So, there is no
reason to keep the code around for applying the restrictions in the
placement connection logic.
We've changed the logic for pulling RTE_RELATIONs in #3109 and
non-colocated subquery joins and partitioned tables.
@onurctirtir found this steps where I traced back and found the issues.
While looking into it in more detail, we decided to expand the list in a
way that the callers get all the relevant RTE_RELATIONs RELKIND_RELATION,
RELKIND_PARTITIONED_TABLE, RELKIND_FOREIGN_TABLE and RELKIND_MATVIEW.
These are all relation kinds that Citus planner is aware of.
This completely hides `ListCell` to the user of the loop
Example usage:
```c
WorkerNode *workerNode = NULL;
foreach_ptr(workerNode, workerNodeList) {
// Do stuff with workerNode
}
```
Instead of:
```c
ListCell *workerNodeCell = NULL;
foreach(cell, workerNodeList) {
WorkerNode *workerNode = lfirst(workerNodeCell);
// Do stuff with workerNode
}
```
This is an improvement over #2512.
This adds the boolean shouldhaveshards column to pg_dist_node. When it's false, create_distributed_table for new collocation groups will not create shards on that node. Reference tables will still be created on nodes where it is false.
When a function is marked as colocated with a distributed table,
we try delegating queries of kind "SELECT func(...)" to workers.
We currently only support this simple form, and don't delegate
forms like "SELECT f1(...), f2(...)", "SELECT f1(...) FROM ...",
or function calls inside transactions.
As a side effect, we also fix the transactional semantics of DO blocks.
Previously we didn't consider a DO block a multi-statement transaction.
Now we do.
Co-authored-by: Marco Slot <marco@citusdata.com>
Co-authored-by: serprex <serprex@users.noreply.github.com>
Co-authored-by: pykello <hadi.moshayedi@microsoft.com>