PG13 now supports dropping expression from a column such as generated
columns. We error out with this currently.
Changelog entry in postgres:
Add ALTER TABLE clause DROP EXPRESSION to remove generated properties from columns (Peter Eisentraut)
Postgres 13 added a new VACUUM option, PARALLEL. It is now supported
in our code as well.
Relevant changelog message on postgres:
Allow VACUUM to process indexes in parallel (Masahiko Sawada, Amit Kapila)
With pg13, constants functions from "FROM" clause are replaced. This
means that in citus side, we will see the constraints in restriction
info, instead of the function call. For example:
SELECT * FROM table1 JOIN add(3,5) sum ON (id = sum) ORDER BY id ASC;
Assuming that the function `add` returns constant, it will be evaluated
on postgres side. This means that this query will be routable because
there will be only one shard after pruning with the restrictions.
However before pg13, this would be multi shard query. And it would go
into recursive planning, the function would be evaluated on the
coordinator because it can be.
This means that with pg13, users will need to distribute the function
because when it is routable executable, it will currently also send the
function call to the worker in the query. So the function should exist
in the worker.
It could be better to replace the constant in the query tree as well so
that the query string sent to the worker has the constant value and
therefore it doesn't need the function. However I feel like users would
already have the function in workers if they have any multi shard query.
Commit on Postgres side:
7266d0997dd2a0632da38a594c78e25ff21df67e
With this patch, we introduce `locally_reserved_shared_connections.c/h` files
which are responsible for reserving some space in shared memory counters
upfront.
We sometimes need to reserve connections, but not necessarily
establish them. For example:
- COPY command should reserve connections as it cannot know which
connections it needs in which order. COPY establishes connections
as any input data hits the workers. For example, for router COPY
command, it only establishes 1 connection.
As discussed here (https://github.com/citusdata/citus/pull/3849#pullrequestreview-431792473),
COPY needs to reserve connections up-front, otherwise we can end
up with resource starvation/un-detected deadlocks.
* ensure propagation of CHECK statements to workers with parantheses & adjust regression test outputs
* add tests for distributing tables with simple CHECK constraints
* added test for CHECK on bool variable
Enable custom aggregates with multiple parameters to be executed on workers.
#2921 introduces distributed execution of custom aggregates. One of the limitations of this feature is that only aggregate functions with a single aggregation parameter can be pushed to worker nodes. Aim of this change is to remove that limitation and support handling of multi-parameter aggregates.
Resolves: #3997
See also: #2921
Some GUCs support a list of values which is indicated by GUC_LIST_INPUT flag.
When an ALTER ROLE .. SET statement is executed, the new configuration
default for affected users and databases are stored in the
setconfig(text[]) column in a pg_db_role_setting record.
If a GUC that supports a list of values is used in an ALTER ROLE .. SET
statement, we need to split the text into items delimited by commas.
As noted by Talha https://github.com/citusdata/citus/pull/4029#issuecomment-660466972 there was still some sort order flappiness in the test.
The root cause is that sorting on `1::text` sorts on the literal `'1'` which causes sorting to be indeterministic.
This behaviour is consistent with Postgres' behaviour, so no bug on Citus' side.
* use adaptive executor even if task-tracker is set
* Update check-multi-mx tests for adaptive executor
Basically repartition joins are enabled where necessary. For parallel
tests max adaptive executor pool size is decresed to 2, otherwise we
would get too many clients error.
* Update limit_intermediate_size test
It seems that when we use adaptive executor instead of task tracker, we
exceed the intermediate result size less in the test. Therefore updated
the tests accordingly.
* Update multi_router_planner
It seems that there is one problem with multi_router_planner when we use
adaptive executor, we should fix the following error:
+ERROR: relation "authors_range_840010" does not exist
+CONTEXT: while executing command on localhost:57637
* update repartition join tests for check-multi
* update isolation tests for repartitioning
* Error out if shard_replication_factor > 1 with repartitioning
As we are removing the task tracker, we cannot switch to it if
shard_replication_factor > 1. In that case, we simply error out.
* Remove MULTI_EXECUTOR_TASK_TRACKER
* Remove multi_task_tracker_executor
Some utility methods are moved to task_execution_utils.c.
* Remove task tracker protocol methods
* Remove task_tracker.c methods
* remove unused methods from multi_server_executor
* fix style
* remove task tracker specific tests from worker_schedule
* comment out task tracker udf calls in tests
We were using task tracker udfs to test permissions in
multi_multiuser.sql. We should find some other way to test them, then we
should remove the commented out task tracker calls.
* remove task tracker test from follower schedule
* remove task tracker tests from multi mx schedule
* Remove task-tracker specific functions from worker functions
* remove multi task tracker extra schedule
* Remove unused methods from multi physical planner
* remove task_executor_type related things in tests
* remove LoadTuplesIntoTupleStore
* Do initial cleanup for repartition leftovers
During startup, task tracker would call TrackerCleanupJobDirectories and
TrackerCleanupJobSchemas to clean up leftover directories and job
schemas. With adaptive executor, while doing repartitions it is possible
to leak these things as well. We don't retry cleanups, so it is possible
to have leftover in case of errors.
TrackerCleanupJobDirectories is renamed as
RepartitionCleanupJobDirectories since it is repartition specific now,
however TrackerCleanupJobSchemas cannot be used currently because it is
task tracker specific. The thing is that this function is a no-op
currently.
We should add cleaning up intermediate schemas to DoInitialCleanup
method when that problem is solved(We might want to solve it in this PR
as well)
* Revert "remove task tracker tests from multi mx schedule"
This reverts commit 03ecc0a681.
* update multi mx repartition parallel tests
* not error with task_tracker_conninfo_cache_invalidate
* not run 4 repartition queries in parallel
It seems that when we run 4 repartition queries in parallel we get too
many clients error on CI even though we don't get it locally. Our guess
is that, it is because we open/close many connections without doing some
work and postgres has some delay to close the connections. Hence even
though connections are removed from the pg_stat_activity, they might
still not be closed. If the above assumption is correct, it is unlikely
for it to happen in practice because:
- There is some network latency in clusters, so this leaves some times
for connections to be able to close
- Repartition joins return some data and that also leaves some time for
connections to be fully closed.
As we don't get this error in our local, we currently assume that it is
not a bug. Ideally this wouldn't happen when we get rid of the
task-tracker repartition methods because they don't do any pruning and
might be opening more connections than necessary.
If this still gives us "too many clients" error, we can try to increase
the max_connections in our test suite(which is 100 by default).
Also there are different places where this error is given in postgres,
but adding some backtrace it seems that we get this from
ProcessStartupPacket. The backtraces can be found in this link:
https://circleci.com/gh/citusdata/citus/138702
* Set distributePlan->relationIdList when it is needed
It seems that we were setting the distributedPlan->relationIdList after
JobExecutorType is called, which would choose task-tracker if
replication factor > 1 and there is a repartition query. However, it
uses relationIdList to decide if the query has a repartition query, and
since it was not set yet, it would always think it is not a repartition
query and would choose adaptive executor when it should choose
task-tracker.
* use adaptive executor even with shard_replication_factor > 1
It seems that we were already using adaptive executor when
replication_factor > 1. So this commit removes the check.
* remove multi_resowner.c and deprecate some settings
* remove TaskExecution related leftovers
* change deprecated API error message
* not recursively plan single relatition repartition subquery
* recursively plan single relation repartition subquery
* test depreceated task tracker functions
* fix overlapping shard intervals in range-distributed test
* fix error message for citus_metadata_container
* drop task-tracker deprecated functions
* put the implemantation back to worker_cleanup_job_schema_cachesince citus cloud uses it
* drop some functions, add downgrade script
Some deprecated functions are dropped.
Downgrade script is added.
Some gucs are deprecated.
A new guc for repartition joins bucket size is added.
* order by a test to fix flappiness
As reported on #4011https://github.com/citusdata/citus/pull/4011/files#r453804702 some of the tests were flapping due to an indeterministic order for test outputs.
This PR makes the test output ordered for all tests returning non-zero rows.
Needs to be backported to 9.2, 9.3, 9.4
The reason we should use ActiveReadableNodeList instead of ActiveReadableNonCoordinatorNodeList is that if coordinator is added to cluster as a worker, it should be counted as well. Otherwise if there is only coordinator in the cluster, the count will be 0, hence we get a warning.
In MultiTaskTrackerExecute, we should connect to coordinator if it is
added to the cluster because it will also be assigned tasks.
ActiveReadableWorkerNodeList doesn't include coordinator, however if
coordinator is added as a worker, we should also include that while
planning. The current methods are very easily misusable and this
requires a refactoring to make the distinction between methods that
include coordinator and that don't very explicit as they can introduce
subtle/major bugs pretty easily.
We were using ALL_WORKERS TargetWorkerSet while sending temporary schema
creation and cleanup. We(well mostly I) thought that ALL_WORKERS would also include coordinator when it is added as a worker. It turns out that it was FILTERING OUT the coordinator even if it is added as a worker to the cluster.
So to have some context here, in repartitions, for each jobId we create
(at least we were supposed to) a schema in each worker node in the cluster. Then we partition each shard table into some intermediate files, which is called the PARTITION step. So after this partition step each node has some intermediate files having tuples in those nodes. Then we fetch the partition files to necessary worker nodes, which is called the FETCH step. Then from the files we create intermediate tables in the temporarily created schemas, which is called a MERGE step. Then after evaluating the result, we remove the temporary schemas(one for each job ID in each node) and files.
If node 1 has file1, and node 2 has file2 after PARTITION step, it is
enough to either move file1 from node1 to node2 or vice versa. So we
prune one of them.
In the MERGE step, if the schema for a given jobID doesn't exist, the
node tries to use the `public` schema if it is a superuser, which is
actually added for testing in the past.
So when we were not sending schema creation comands for each job ID to
the coordinator(because we were using ALL_WORKERS flag, and it doesn't
include the coordinator), we would basically not have any schemas for
repartitions in the coordinator. The PARTITION step would be executed on
the coordinator (because the tasks are generated in the planner part)
and it wouldn't give us any error because it doesn't have anything to do
with the temporary schemas(that we didn't create). But later two things
would happen:
- If by chance the fetch is pruned on the coordinator side, we the other
nodes would fetch the partitioned files from the coordinator and execute
the query as expected, because it has all the information.
- If the fetch tasks are not pruned in the coordinator, in the MERGE
step, the coordinator would either error out saying that the necessary
schema doesn't exist, or it would try to create the temporary tables
under public schema ( if it is a superuser). But then if we had the same
task ID with different jobID it would fail saying that the table already
exists, which is an error we were getting.
In the first case, the query would work okay, but it would still not do
the cleanup, hence we would leave the partitioned files from the
PARTITION step there. Hence ensure_no_intermediate_data_leak would fail.
To make things more explicit and prevent such bugs in the future,
ALL_WORKERS is named as ALL_NON_COORD_WORKERS. And a new flag to return
all the active nodes is added as ALL_DATA_NODES. For repartition case,
we don't use the only-reference table nodes but this version makes the
code simpler and there shouldn't be any significant performance issue
with that.
DESCRIPTION: Force aliases in deparsing for queries with anonymous column references
Fixes: #3985
The root cause has todo with discrepancies in the query tree we create. I think in the future we should spend some time on categorising all changes we made to ruleutils and see if we can change the data structure `query` we pass to the deparser to have an actual valid postgres query for the deparser to render.
For now the fix is to keep track, besides changing the names of the entries in the target list, also if we have a reference to an anonymous columns. If there are anonymous columns we set the `printaliases` flag to true which forces the deparser to add the aliases.
Static analysis found an issue where we could dereference `NULL`, because
`CreateDummyPlacement` could return `NULL` when there were no workers. This
PR changes it so that it never returns `NULL`, which was intended by
@marcocitus when doing this change: https://github.com/citusdata/citus/pull/3887/files#r438136433
While adding tests for citus on a single node I also added some more basic
tests and it turns out we error out on repartition joins. This has been
present since `shouldhaveshards` was introduced and is not trivial to fix.
So I created a separate issue for this: https://github.com/citusdata/citus/issues/3996
I recently forgot to add tests to a schedule in two of my PRs. One of
these was caught by review, but the other one was not. This adds a
script to causes CI to ensure that each test in the repo is included in
at least one schedule.
Three tests were found that were currently not part of a schedule. This PR
adds those three tests to a schedule as well and it also fixes some small
issues with these tests.
It was possible to get an assertion error, if a DML command was
cancelled that opened a connection and then "ROLLBACK TO SAVEPOINT" was
used to continue the transaction. The reason for this was that canceling
the transaction might leave the `claimedExclusively` flag on for (some
of) it's connections.
This caused an assertion failure because `CanUseExistingConnection`
would return false and a new connection would be opened, and then there
would be two connections doing DML for the same placement. Which is
disallowed. That this situation caused an assertion failure instead of
an error, means that without asserts this could possibly result in some
visibility bugs, similar to the ones described
https://github.com/citusdata/citus/issues/3867
This is so we don't need to calculate it twice in
insert_select_executor.c and multi_explain.c, which can
cause discrepancy if an update in one of them is not
reflected in the other site.
* Not set TaskExecution with adaptive executor
Adaptive executor is using a utility method from task tracker for
repartition joins, however adaptive executor doesn't need taskExecution.
It is only used by task tracker. This causes a problem when explain
analyze is used because what taskExecution is pointing to might be
random.
We solve this by not setting taskExecution from adaptive executor. So it
will stay NULL as set by CreateTask.
* use same memory context as task for taskExecution
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
In #3901 the "Data received from worker(s)" sections were added to EXPLAIN
ANALYZE. After merging @pykello posted some review comments. This addresses
those comments as well as fixing a other issues that I found while addressing
them. The things this does:
1. Fix `EXPLAIN ANALYZE EXECUTE p1` to not increase received data on every
execution
2. Fix `EXPLAIN ANALYZE EXECUTE p1(1)` to not return 0 bytes as received data
allways.
3. Move `EXPLAIN ANALYZE` specific logic to `multi_explain.c` from
`adaptive_executor.c`
4. Change naming of new explain sections to `Tuple data received from node(s)`.
Firstly because a task can reference the coordinator too, so "worker(s)" was
incorrect. Secondly to indicate that this is tuple data and not all network
traffic that was performed.
5. Rename `totalReceivedData` in our codebase to `totalReceivedTupleData` to
make it clearer that it's a tuple data counter, not all network traffic.
6. Actually add `binary_protocol` test to `multi_schedule` (woops)
7. Fix a randomly failing test in `local_shard_execution.sql`.
Sadly this does not actually work yet for binary protocol data, because
when doing EXPLAIN ANALYZE we send two commands at the same time. This
means we cannot use `SendRemoteCommandParams`, and thus cannot use the
binary protocol. This can still be useful though when using the text
protocol, to find out that a lot of data is being sent.
* Insert select with master query
* Use relid to set custom_scan_tlist varno
* Reviews
* Fixes null check
Co-authored-by: Marco Slot <marco.slot@gmail.com>
This can save a lot of data to be sent in some cases, thus improving
performance for which inter query bandwidth is the bottleneck.
There's some issues with enabling this as default, so that's currently not done.
DESCRIPTION: Adds support to partially push down tdigest aggregates
tdigest extensions: https://github.com/tvondra/tdigest
This PR implements the partial pushdown of tdigest calculations when possible. The extension adds a tdigest type which can be combined into the same structure. There are several aggregate functions that can be used to get;
- a quantile
- a list of quantiles
- the quantile of a hypothetical value
- a list of quantiles for a list of hypothetical values
These function can work both on values or tdigest types.
Since we can create tdigest values either by combining them, or based on a group of values we can rewrite the aggregates in such a way that most of the computation gets delegated to the compute on the shards. This both speeds up the percentile calculations because the values don't have to be sorted while at the same time making the transfer size from the shards to the coordinator significantly less.
We still recursively plan some cases, eg:
- INSERTs
- SELECT FOR UPDATE when reference tables in query
- Everything must be same single shard & replication model
We wrap worker tasks in worker_save_query_explain_analyze() so we can fetch
their explain output later by a call worker_last_saved_explain_analyze().
Fixes#3519Fixes#2347Fixes#2613Fixes#621
Implements worker_save_query_explain_analyze and worker_last_saved_explain_analyze.
worker_save_query_explain_analyze executes and returns results of query while
saving its EXPLAIN ANALYZE to be fetched later.
worker_last_saved_explain_analyze returns the saved EXPLAIN ANALYZE result.
DESCRIPTION: Ignore pruned target list entries in coordinator plan
The postgres planner has the ability to prune target list entries that are proven not used in the output relation. When this happens at the `CitusCustomScan` boundary we need to _not_ return these pruned columns to not upset the rest of the planner.
By using the target list the planner asks us to return we fix issues that lead to Assertion failures, and potentially could be runtime errors when they hit in a production build.
Fixes#3809
In the code, we had the assumption that if restriction information
is NULL, it means that we cannot have any disributetd tables in
the subquery.
However, for subqueries in WHERE clause, that is not the case when
the subquery is ANDed with FALSE. In that case, Citus operates
on the originalQuery (which doesn't go through the standard_planner()),
and rely on the restriction information generated by standard_plannner().
As Postgres is smart enough to no generate restriction information for
subqueries ANDed with FALSE, we hit the assertion.
* Not append empty task in ExtractLocalAndRemoteTasks
ExtractLocalAndRemoteTasks extracts the local and remote tasks. If we do
not have a local task the localTaskPlacementList will be NIL, in this
case we should not append anything to local tasks. Previously we would
first check if a task contains a single placement or not, now we first
check if there is any local task before doing anything.
* fix copy of node task
Task node has task query, which might contain a list of strings in its
fields. We were using postgres copyObject for these lists. Postgres
assumes that each element of list will be a node type. If it is not a
node type it will error.
As a solution to that, a new macro is introduced to copy a list of
strings.
Physical planner doesn't support parameters. If the parameters have already
been resolved when the physical planner handling the queries, mark it.
The reason is that the executor is unaware of this, and sends the parameters
along with the worker queries, which fails for composite types.
(See `DissuadePlannerFromUsingPlan()` for the details of paramater resolving)
We currently put the actual error message to the detail part. However,
many drivers don't show detail part.
As connection errors are somehow common, and hard to trace back, can't
we added the detail to the message itself.
In addition to that, we changed "connection error" message, as it
was confusing to the users who think that the error was happening
while connecting to the coordinator. In fact, this error is showing
up when the coordinator fails to connect remote nodes.
* invalidate plan cache in master_update_node
If a plan is cached by postgres but a user uses master_update_node, then
when the plan cache is used for the updated node, they will get the old
nodename/nodepost in the plan. This is because the plan cache doesn't
know about the master_update_node. This could be a problem in prepared
statements or anything that goes into plancache. As a solution the plan
cache is invalidated inside master_update_node.
* add invalidate_inactive_shared_connections test function
We introduce invalidate_inactive_shared_connections udf to be used in
testing. It is possible that a connection count for an inactive node
will be greater than 0 and in that case it will not be removed at the
time of invalidation. However, later we don't have a mechanism to remove
it, which means that it will stay in the hash. For this not to cause a
problem, we use this udf in testing.
* move invalidate_inactive_shared_connections to udfs from test as it will be used in mx
* remove the test udf
* remove the IsInactive check
When we call SetTaskQueryString we would set the task type to
TASK_QUERY_TEXT, and some parts of the codebase rely on the fact that if
TASK_QUERY_TEXT is set, the data can be read safely. However if
SetTaskQueryString is called with a NULL taskQueryString this can cause
crashes. In that case taskQueryType will simply be set to
TASK_QUERY_NULL.
DESCRIPTION: Alter role only works for citus managed roles
Alter role was implemented before we implemented good role management that hooks into the object propagation framework. This is a refactor of all alter role commands that have been implemented to
- be on by default
- only work for supported roles
- make the citus extension owner a supported role
Instead of distributing the alter role commands for roles at the beginning of the node activation role it now _only_ executes the alter role commands for all users in all databases and in the current database.
In preparation of full role support small refactors have been done in the deparser.
Earlier tests targeting other roles than the citus extension owner have been either slightly changed or removed to be put back where we have full role support.
Fixes#2549
With this commit, we're introducing a new infrastructure to throttle
connections to the worker nodes. This infrastructure is useful for
multi-shard queries, router queries are have not been affected by this.
The goal is to prevent establishing more than citus.max_shared_pool_size
number of connections per worker node in total, across sessions.
To do that, we've introduced a new connection flag OPTIONAL_CONNECTION.
The idea is that some connections are optional such as the second
(and further connections) for the adaptive executor. A single connection
is enough to finish the distributed execution, the others are useful to
execute the query faster. Thus, they can be consider as optional connections.
When an optional connection is not allowed to the adaptive executor, it
simply skips it and continues the execution with the already established
connections. However, it'll keep retrying to establish optional
connections, in case some slots are open again.
* use local executon when in a transaction block
When we are inside a transaction block, there could be other methods
that need local execution, therefore we will use local execution in a
transaction block.
* update test outputs with transaction block local execution
* add a test to verify we dont leak intermediate schemas