This change adds a script to programatically group all includes in a
specific order. The script was used as a one time invocation to group
and sort all includes throught our formatted code. The grouping is as
follows:
- System includes (eg. `#include<...>`)
- Postgres.h (eg. `#include "postgres.h"`)
- Toplevel imports from postgres, not contained in a directory (eg.
`#include "miscadmin.h"`)
- General postgres includes (eg . `#include "nodes/..."`)
- Toplevel citus includes, not contained in a directory (eg. `#include
"citus_verion.h"`)
- Columnar includes (eg. `#include "columnar/..."`)
- Distributed includes (eg. `#include "distributed/..."`)
Because it is quite hard to understand the difference between toplevel
citus includes and toplevel postgres includes it hardcodes the list of
toplevel citus includes. In the same manner it assumes anything not
prefixed with `columnar/` or `distributed/` as a postgres include.
The sorting/grouping is enforced by CI. Since we do so with our own
script there are not changes required in our uncrustify configuration.
1) For distributed tables that are not colocated.
2) When joining on a non-distribution column for colocated tables.
3) When merging into a distributed table using reference or citus-local tables as the data source.
This is accomplished primarily through the implementation of the following two strategies.
Repartition: Plan the source query independently,
execute the results into intermediate files, and repartition the files to
co-locate them with the merge-target table. Subsequently, compile a final
merge query on the target table using the intermediate results as the data
source.
Pull-to-coordinator: Execute the plan that requires evaluation at the coordinator,
run the query on the coordinator, and redistribute the resulting rows to ensure
colocation with the target shards. Direct the MERGE SQL operation to the worker
nodes' target shards, using the intermediate files colocated with the data as the
data source.
DESCRIPTION: Adds views that monitor statistics on tenant usages
This PR adds `citus_stats_tenants` view that monitors the tenants on the
cluster.
`citus_stats_tenants` shows the node id, colocation id, tenant
attribute, read count in this period and last period, and query count in
this period and last period of the tenant.
Tenant attribute currently is the tenant's distribution column value,
later when schema based sharding is introduced, this meaning might
change.
A period is a time bucket the queries are counted by. Read and query
counts for this period can increase until the current period ends. After
that those counts are moved to last period's counts, which cannot
change. The period length can be set using 'citus.stats_tenants_period'.
`SELECT` queries are counted as _read_ queries, `INSERT`, `UPDATE` and
`DELETE` queries are counted as _write_ queries. So in the view read
counts are `SELECT` counts and query counts are `SELECT`, `INSERT`,
`UPDATE` and `DELETE` count.
The data is stored in shared memory, in a struct named
`MultiTenantMonitor`.
`citus_stats_tenants` shows the data from local tenants.
`citus_stats_tenants` show up to `citus.stats_tenant_limit` number of
tenants.
The tenants are scored based on the number of queries they run and the
recency of those queries. Every query ran increases the score of tenant
by `ONE_QUERY_SCORE`, and after every period ends the scores are halved.
Halving is done lazily.
To retain information a longer the monitor keeps up to 3 times
`citus.stats_tenant_limit` tenants. When the tenant count hits `3 *
citus.stats_tenant_limit`, last `citus.stats_tenant_limit` tenants are
removed. To see all stored tenants you can use
`citus_stats_tenants(return_all_tenants := true)`
- [x] Create collector view that gets data from all nodes. #6761
- [x] Add monitoring log #6762
- [x] Create enable/disable GUC #6769
- [x] Parse the annotation string correctly #6796
- [x] Add local queries and prepared statements #6797
- [x] Rename to citus_stat_statements #6821
- [x] Run pgbench
- [x] Fix role permissions #6812
---------
Co-authored-by: Gokhan Gulbiz <ggulbiz@gmail.com>
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
Removes unused job boundary tag `SUBQUERY_MAP_MERGE_JOB`.
Only usage is at `BuildMapMergeJob`, which is only called when the
boundary = `JOIN_MAP_MERGE_JOB`. Hence, it should be safe to remove.
BEGIN/COMMIT transaction block or in a UDF calling another UDF.
(2) Prohibit/Limit the delegated function not to do a 2PC (or any work on a
remote connection).
(3) Have a safety net to ensure the (2) i.e. we should block the connections
from the delegated procedure or make sure that no 2PC happens on the node.
(4) Such delegated functions are restricted to use only the distributed argument
value.
Note: To limit the scope of the project we are considering only Functions(not
procedures) for the initial work.
DESCRIPTION: Introduce a new flag "force_delegation" in create_distributed_function(),
which will allow a function to be delegated in an explicit transaction block.
Fixes#3265
Once the function is delegated to the worker, on that node during the planning
distributed_planner()
TryToDelegateFunctionCall()
CheckDelegatedFunctionExecution()
EnableInForceDelegatedFuncExecution()
Save the distribution argument (Constant)
ExecutorStart()
CitusBeginScan()
IsShardKeyValueAllowed()
Ensure to not use non-distribution argument.
ExecutorRun()
AdaptiveExecutor()
StartDistributedExecution()
EnsureNoRemoteExecutionFromWorkers()
Ensure all the shards are local to the node in the remoteTaskList.
NonPushableInsertSelectExecScan()
InitializeCopyShardState()
EnsureNoRemoteExecutionFromWorkers()
Ensure all the shards are local to the node in the placementList.
This also fixes a minor issue: Properly handle expressions+parameters in distribution arguments
In the past, we allowed users to manually switch to 1PC
(e.g., one phase commit). However, with this commit, we
don't. All multi-shard modifications are done via 2PC.
Before this commit, we always synced the metadata with superuser.
However, that creates various edge cases such as visibility errors
or self distributed deadlocks or complicates user access checks.
Instead, with this commit, we use the current user to sync the metadata.
Note that, `start_metadata_sync_to_node` still requires super user
because accessing certain metadata (like pg_dist_node) always require
superuser (e.g., the current user should be a superuser).
However, metadata syncing operations regarding the distributed
tables can now be done with regular users, as long as the user
is the owner of the table. A table owner can still insert non-sense
metadata, however it'd only affect its own table. So, we cannot do
anything about that.
Baseinfo also has pushed down filters etc, so it makes more sense to use
BaseRestrictInfo to determine what columns have constant equality
filters.
Also RteIdentity is used for removing conversion candidates instead of
rteIndex.
It seems that most of the updates were broken, we weren't aware of it
because there wasn't any data in the tables. They are broken mostly
because local tables do not have a shard id and some code paths should
be updated with that information, currently when there is an invalid
shard id, it is assumed to be pruned.
Consider local tables in router planner
In case there is a local table, the shard id will not be valid and there
are some checks that rely on shard id, we should skip these in case of
local tables, which is handled with a dummy placement.
Add citus local table dist table join tests
add local-dist table mixed joins tests
We should not recursively plan an already routable plannable query. An
example of this is (SELECT * FROM local JOIN (SELECT * FROM dist) d1
USING(a));
So we let the recursive planner do all of its work and at the end we
convert the final query to to handle unsupported joins. While doing each
conversion, we check if it is router plannable, if so we stop.
Only consider range table entries that are in jointree
If a range table is not in jointree then there is no point in
considering that because we are trying to convert range table entries to
subqueries for join use case.
Check equality in quals
We want to recursively plan distributed tables only if they have an
equality filter on a unique column. So '>' and '<' operators will not
trigger recursive planning of distributed tables in local-distributed
table joins.
Recursively plan distributed table only if the filter is constant
If the filter is not a constant then the join might return multiple rows
and there is a chance that the distributed table will return huge data.
Hence if the filter is not constant we choose to recursively plan the
local table.
With this commit, we make sure that local execution adds the
intermediate result size as the distributed execution adds. Plus,
it enforces the citus.max_intermediate_result_size value.
Add sort method parameter for regression tests
Fix check-style
Change sorting method parameters to enum
Polish
Add task fields to OutTask
Add test into multi_explain
Fix isolation test
* use adaptive executor even if task-tracker is set
* Update check-multi-mx tests for adaptive executor
Basically repartition joins are enabled where necessary. For parallel
tests max adaptive executor pool size is decresed to 2, otherwise we
would get too many clients error.
* Update limit_intermediate_size test
It seems that when we use adaptive executor instead of task tracker, we
exceed the intermediate result size less in the test. Therefore updated
the tests accordingly.
* Update multi_router_planner
It seems that there is one problem with multi_router_planner when we use
adaptive executor, we should fix the following error:
+ERROR: relation "authors_range_840010" does not exist
+CONTEXT: while executing command on localhost:57637
* update repartition join tests for check-multi
* update isolation tests for repartitioning
* Error out if shard_replication_factor > 1 with repartitioning
As we are removing the task tracker, we cannot switch to it if
shard_replication_factor > 1. In that case, we simply error out.
* Remove MULTI_EXECUTOR_TASK_TRACKER
* Remove multi_task_tracker_executor
Some utility methods are moved to task_execution_utils.c.
* Remove task tracker protocol methods
* Remove task_tracker.c methods
* remove unused methods from multi_server_executor
* fix style
* remove task tracker specific tests from worker_schedule
* comment out task tracker udf calls in tests
We were using task tracker udfs to test permissions in
multi_multiuser.sql. We should find some other way to test them, then we
should remove the commented out task tracker calls.
* remove task tracker test from follower schedule
* remove task tracker tests from multi mx schedule
* Remove task-tracker specific functions from worker functions
* remove multi task tracker extra schedule
* Remove unused methods from multi physical planner
* remove task_executor_type related things in tests
* remove LoadTuplesIntoTupleStore
* Do initial cleanup for repartition leftovers
During startup, task tracker would call TrackerCleanupJobDirectories and
TrackerCleanupJobSchemas to clean up leftover directories and job
schemas. With adaptive executor, while doing repartitions it is possible
to leak these things as well. We don't retry cleanups, so it is possible
to have leftover in case of errors.
TrackerCleanupJobDirectories is renamed as
RepartitionCleanupJobDirectories since it is repartition specific now,
however TrackerCleanupJobSchemas cannot be used currently because it is
task tracker specific. The thing is that this function is a no-op
currently.
We should add cleaning up intermediate schemas to DoInitialCleanup
method when that problem is solved(We might want to solve it in this PR
as well)
* Revert "remove task tracker tests from multi mx schedule"
This reverts commit 03ecc0a681.
* update multi mx repartition parallel tests
* not error with task_tracker_conninfo_cache_invalidate
* not run 4 repartition queries in parallel
It seems that when we run 4 repartition queries in parallel we get too
many clients error on CI even though we don't get it locally. Our guess
is that, it is because we open/close many connections without doing some
work and postgres has some delay to close the connections. Hence even
though connections are removed from the pg_stat_activity, they might
still not be closed. If the above assumption is correct, it is unlikely
for it to happen in practice because:
- There is some network latency in clusters, so this leaves some times
for connections to be able to close
- Repartition joins return some data and that also leaves some time for
connections to be fully closed.
As we don't get this error in our local, we currently assume that it is
not a bug. Ideally this wouldn't happen when we get rid of the
task-tracker repartition methods because they don't do any pruning and
might be opening more connections than necessary.
If this still gives us "too many clients" error, we can try to increase
the max_connections in our test suite(which is 100 by default).
Also there are different places where this error is given in postgres,
but adding some backtrace it seems that we get this from
ProcessStartupPacket. The backtraces can be found in this link:
https://circleci.com/gh/citusdata/citus/138702
* Set distributePlan->relationIdList when it is needed
It seems that we were setting the distributedPlan->relationIdList after
JobExecutorType is called, which would choose task-tracker if
replication factor > 1 and there is a repartition query. However, it
uses relationIdList to decide if the query has a repartition query, and
since it was not set yet, it would always think it is not a repartition
query and would choose adaptive executor when it should choose
task-tracker.
* use adaptive executor even with shard_replication_factor > 1
It seems that we were already using adaptive executor when
replication_factor > 1. So this commit removes the check.
* remove multi_resowner.c and deprecate some settings
* remove TaskExecution related leftovers
* change deprecated API error message
* not recursively plan single relatition repartition subquery
* recursively plan single relation repartition subquery
* test depreceated task tracker functions
* fix overlapping shard intervals in range-distributed test
* fix error message for citus_metadata_container
* drop task-tracker deprecated functions
* put the implemantation back to worker_cleanup_job_schema_cachesince citus cloud uses it
* drop some functions, add downgrade script
Some deprecated functions are dropped.
Downgrade script is added.
Some gucs are deprecated.
A new guc for repartition joins bucket size is added.
* order by a test to fix flappiness
This is so we don't need to calculate it twice in
insert_select_executor.c and multi_explain.c, which can
cause discrepancy if an update in one of them is not
reflected in the other site.
In #3901 the "Data received from worker(s)" sections were added to EXPLAIN
ANALYZE. After merging @pykello posted some review comments. This addresses
those comments as well as fixing a other issues that I found while addressing
them. The things this does:
1. Fix `EXPLAIN ANALYZE EXECUTE p1` to not increase received data on every
execution
2. Fix `EXPLAIN ANALYZE EXECUTE p1(1)` to not return 0 bytes as received data
allways.
3. Move `EXPLAIN ANALYZE` specific logic to `multi_explain.c` from
`adaptive_executor.c`
4. Change naming of new explain sections to `Tuple data received from node(s)`.
Firstly because a task can reference the coordinator too, so "worker(s)" was
incorrect. Secondly to indicate that this is tuple data and not all network
traffic that was performed.
5. Rename `totalReceivedData` in our codebase to `totalReceivedTupleData` to
make it clearer that it's a tuple data counter, not all network traffic.
6. Actually add `binary_protocol` test to `multi_schedule` (woops)
7. Fix a randomly failing test in `local_shard_execution.sql`.
Sadly this does not actually work yet for binary protocol data, because
when doing EXPLAIN ANALYZE we send two commands at the same time. This
means we cannot use `SendRemoteCommandParams`, and thus cannot use the
binary protocol. This can still be useful though when using the text
protocol, to find out that a lot of data is being sent.
* Insert select with master query
* Use relid to set custom_scan_tlist varno
* Reviews
* Fixes null check
Co-authored-by: Marco Slot <marco.slot@gmail.com>
We wrap worker tasks in worker_save_query_explain_analyze() so we can fetch
their explain output later by a call worker_last_saved_explain_analyze().
Fixes#3519Fixes#2347Fixes#2613Fixes#621
Implements a new `TupleDestination` interface to allow custom tuple processing per task.
This can be specially useful if a task contains multiple queries. An example of this EXPLAIN
ANALYZE, where it needs to add some UDF calls to the query to fetch the explain output
from worker after fetching the actual query results.
SELECT_TASK is renamed to READ_TASK as a SELECT with modifying CTEs will be a MODIFYING_TASK
RouterInsertJob: Assert originalQuery->commandType == CMD_INSERT
CreateModifyPlan: Assert originalQuery->commandType != CMD_SELECT
Remove unused function IsModifyDistributedPlan
DistributedExecution, ExecutionParams, DistributedPlan: Rename hasReturning to expectResults
SELECTs set expectResults to true
Rename CreateSingleTaskRouterPlan to CreateSingleTaskRouterSelectPlan
When we call SetTaskQueryString we would set the task type to
TASK_QUERY_TEXT, and some parts of the codebase rely on the fact that if
TASK_QUERY_TEXT is set, the data can be read safely. However if
SetTaskQueryString is called with a NULL taskQueryString this can cause
crashes. In that case taskQueryType will simply be set to
TASK_QUERY_NULL.
For shardplacements, we were setting nodeid, nodename, nodeport and
nodegroup manually. This makes it very error prone, and it seems that we
already forgot to set some of them. This would mean that they would have
their default values, e.g group id would be 0 when its group id is not
0.
So the implication is that we would have inconsistent worker metadata.
A new method is introduced, and we call the method to set those fields
now, so that as long as we call this method, we won't be setting
inconsistent metadata.
It probably makes sense to have a struct for these fields. We already
have NodeMetadata but it doesn't have nodename or nodeport. So that
could be done over another refactor to make things simpler.