This change adds a script to programatically group all includes in a
specific order. The script was used as a one time invocation to group
and sort all includes throught our formatted code. The grouping is as
follows:
- System includes (eg. `#include<...>`)
- Postgres.h (eg. `#include "postgres.h"`)
- Toplevel imports from postgres, not contained in a directory (eg.
`#include "miscadmin.h"`)
- General postgres includes (eg . `#include "nodes/..."`)
- Toplevel citus includes, not contained in a directory (eg. `#include
"citus_verion.h"`)
- Columnar includes (eg. `#include "columnar/..."`)
- Distributed includes (eg. `#include "distributed/..."`)
Because it is quite hard to understand the difference between toplevel
citus includes and toplevel postgres includes it hardcodes the list of
toplevel citus includes. In the same manner it assumes anything not
prefixed with `columnar/` or `distributed/` as a postgres include.
The sorting/grouping is enforced by CI. Since we do so with our own
script there are not changes required in our uncrustify configuration.
This commit adds support for long partition names for distributed tables:
- ALTER TABLE dist_table ATTACH PARTITION ..
- CREATE TABLE .. PARTITION OF dist_table ..
Note: create_distributed_table UDF does not support long table and
partition names, and is not covered in this commit
This commit brings following features:
Foreign key support from citus local tables to reference tables
* Foreign key support from reference tables to citus local tables
(only with RESTRICT & NO ACTION behavior)
* ALTER TABLE ENABLE/DISABLE trigger command support
* CREATE/DROP/ALTER trigger command support
and disallows:
* ALTER TABLE ATTACH/DETACH PARTITION commands
* CREATE TABLE <postgres table> ATTACH PARTITION <citus local table>
commands
* Foreign keys from postgres tables to citus local tables
(the other way was already disallowed)
for citus local tables.
Introduce table entry utility functions
Citus table cache entry utilities are introduced so that we can easily
extend existing functionality with minimum changes, specifically changes
to these functions. For example IsNonDistributedTableCacheEntry can be
extended for citus local tables without the need to scan the whole
codebase and update each relevant part.
* Introduce utility functions to find the type of tables
A table type can be a reference table, a hash/range/append distributed
table. Utility methods are created so that we don't have to worry about
how a table is considered as a reference table etc. This also makes it
easy to extend the table types.
* Add IsCitusTableType utilities
* Rename IsCacheEntryCitusTableType -> IsCitusTableTypeCacheEntry
* Change citus table types in some checks
A copy will be executed locally if
- Local execution is enabled and current transaction accessed a local placement
- Local execution is enabled and we are inside a transaction block.
So even if local execution is enabled but we are not in a transaction block, the copy will not be run locally.
This will not run locally:
```
COPY distributed_table FROM STDIN;
....
```
This will run locally:
```
SET citus.enable_local_execution to 'on';
BEGIN;
COPY distributed_table FROM STDIN;
COMMIT;
....
```
.
There are 3 ways to do a copy in postgres programmatically:
- from a file
- from a program
- from a callback function
I have chosen to implement it with a callback function, which means that we write the rows of copy from a callback function to the output buffer, which is used to insert tuples into the actual table.
For each shard id, we have a buffer that keeps the current rows to be written, we perform the actual copy operation either when:
- copy buffer for the given shard id reaches to a threshold, which is currently 512KB
- we reach to the end of the copy
The buffer size is debatable(512KB). At a given time, we might allocate (local placement * buffer size) memory at most.
The local copy uses the same copy format as remote copy, which means that we serialize the data in the same format as remote copy and send it locally.
There was also the option to use ExecSimpleRelationInsert to insert
slots one by one, which would avoid the extra
serialization/deserialization but doing some benchmarks it seems that
using buffers are significantly better in terms of the performance.
You can see this comment for more details: https://github.com/citusdata/citus/pull/3557#discussion_r389499054