With this change DropShards function started to use new connection API. DropShards
function is used by DROP TABLE, master_drop_all_shards and master_apply_delete_command,
therefore all of these functions now support transactional operations. In DropShards
function, if we cannot reach a node, we mark shard state of related placements as
FILE_TO_DELETE and continue to drop remaining shards; however if any error occurs after
establishing the connection, we ROLLBACK whole operation.
Before this change, count on a distributed returned NULL if all shards
were pruned away, because on the master we replace with count(..) call
with a sum(..) call to sum the counts from the shards. However, sum
returns NULL when there are no rows, whereas count is expected to return
0.
"Staging table" will be the only valid use of 'stage' from now on, we
will now say "load" when talking about data ingestion. If creation of
shards is its own step, we'll just say "shard creation".
Fixes#547
This change removes all references to \stage in the regression tests
and puts \COPY instead. Doing so changed shard counts, min/max
values on some test tables (lineitem, orders, etc.).
Fixes#271
This change sets ShardIds and JobIds for each test case. Before this change,
when a new test that somehow increments Job or Shard IDs is added, then
the tests after the new test should be updated.
ShardID and JobID sequences are set at the beginning of each file with the
following commands:
```
ALTER SEQUENCE pg_catalog.pg_dist_shardid_seq RESTART 290000;
ALTER SEQUENCE pg_catalog.pg_dist_jobid_seq RESTART 290000;
```
ShardIds and JobIds are multiples of 10000. Exceptions are:
- multi_large_shardid: shardid and jobid sequences are set to much larger values
- multi_fdw_large_shardid: same as above
- multi_join_pruning: Causes a race condition with multi_hash_pruning since
they are run in parallel.
Fixes#10
This change creates a new UDF: master_modify_multiple_shards
Parameters:
modify_query: A simple DELETE or UPDATE query as a string.
The UDF is similar to the existing master_apply_delete_command UDF.
Basically, given the modify query, it prunes the shard list, re-constructs
the query for each shard and sends the query to the placements.
Depending on the value of citus.multi_shard_commit_protocol, the commit
can be done in one-phase or two-phase manner.
Limitations:
* It cannot be called inside a transaction block
* It only be called with simple operator expressions (like Single Shard Modify)
Sample Usage:
```
SELECT master_modify_multiple_shards(
'DELETE FROM customer_delete_protocol WHERE c_custkey > 500 AND c_custkey < 500');
```
After this change, shards and associated metadata are automatically
dropped when running DROP TABLE on a distributed table, which fixes#230.
It also adds schema support for master_apply_delete_command, which
fixes#73.
Dropping the shards happens in the master_drop_all_shards UDF, which is
called from the SQL_DROP trigger. Inside the trigger, the table is no
longer visible and calling master_apply_delete_command directly wouldn't
work and oid <-> name mappings are not available. The
master_drop_all_shards function therefore takes the relation id, schema
name, and table name as parameters, which can be obtained from
pg_event_trigger_dropped_objects() in the SQL_DROP trigger. If the user
calls master_drop_all_shards while the table still exists, the schema
name and table name are ignored.
Author: Marco Slot
Reviewed-By: Andres Freund