* WIP
* wip
* add basic logic to run a single job with repartioning joins with adaptive executor
* fix some warnings and return in ExecuteDependedTasks if there is none
* Add the logic to run depended jobs in adaptive executor
The execution of depended tasks logic is changed. With the current
logic:
- All tasks are created from the top level task list.
- At one iteration:
- CurTasks whose dependencies are executed are found.
- CurTasks are executed in parallel with adapter executor main
logic.
- The iteration is repeated until all tasks are completed.
* Separate adaptive executor repartioning logic
* Remove duplicate parts
* cleanup directories and schemas
* add basic repartion tests for adaptive executor
* Use the first placement to fetch data
In task tracker, when there are replicas, we try to fetch from a replica
for which a map task is succeeded. TaskExecution is used for this,
however TaskExecution is not used in adaptive executor. So we cannot use
the same thing as task tracker.
Since adaptive executor fails when a map task fails (There is no retry
logic yet). We know that if we try to execute a fetch task, all of its
map tasks already succeeded, so we can just use the first one to fetch
from.
* fix clean directories logic
* do not change the search path while creating a udf
* Enable repartition joins with adaptive executor with only enable_reparitition_joins guc
* Add comments to adaptive_executor_repartition
* dont run adaptive executor repartition test in paralle with other tests
* execute cleanup only in the top level execution
* do cleanup only in the top level ezecution
* not begin a transaction if repartition query is used
* use new connections for repartititon specific queries
New connections are opened to send repartition specific queries. The
opened connections will be closed at the FinishDistributedExecution.
While sending repartition queries no transaction is begun so that
we can see all changes.
* error if a modification was done prior to repartition execution
* not start a transaction if a repartition query and sql task, and clean temporary files and schemas at each subplan level
* fix cleanup logic
* update tests
* add missing function comments
* add test for transaction with DDL before repartition query
* do not close repartition connections in adaptive executor
* rollback instead of commit in repartition join test
* use close connection instead of shutdown connection
* remove unnecesary connection list, ensure schema owner before removing directory
* rename ExecuteTaskListRepartition
* put fetch query string in planner not executor as we currently support only replication factor = 1 with adaptive executor and repartition query and we know the query string in the planner phase in that case
* split adaptive executor repartition to DAG execution logic and repartition logic
* apply review items
* apply review items
* use an enum for remote transaction state and fix cleanup for repartition
* add outside transaction flag to find connections that are unclaimed instead of always opening a new transaction
* fix style
* wip
* rename removejobdir to partition cleanup
* do not close connections at the end of repartition queries
* do repartition cleanup in pg catch
* apply review items
* decide whether to use transaction or not at execution creation
* rename isOutsideTransaction and add missing comment
* not error in pg catch while doing cleanup
* use replication factor of the creation time, not current time to decide if task tracker should be chosen
* apply review items
* apply review items
* apply review item
Test ALTER ROLE doesn't deadlock when coordinator added, or propagate from mx workers
Consolidate wait_until_metadata_sync & verify_metadata to multi_test_helpers
In plain words, each distributed plan pulls the necessary intermediate
results to the worker nodes that the plan hits. This is primarily useful
in three ways.
(i) If the distributed plan that uses intermediate
result(s) is a router query, then the intermediate results are only
broadcasted to a single node.
(ii) If a distributed plan consists of only intermediate results, which
is not uncommon, the intermediate results are broadcasted to a single
node only.
(iii) If a distributed query hits a sub-set of the shards in multiple
workers, the intermediate results will be broadcasted to the relevant
node(s).
The final item (iii) becomes crucial for append/range distributed
tables where typically the distributed queries hit a small subset of
shards/workers.
To do this, for each query that Citus creates a distributed plan, we keep
track of the subPlans used in the queryTree, and save it in the distributed
plan. Just before Citus executes each subPlan, Citus first keeps track of
every worker node that the distributed plan hits, and marks every subPlan
should be broadcasted to these nodes. Later, for each subPlan which is a
distributed plan, Citus does this operation recursively since these
distributed plans may access to different subPlans, and those have to be
recorded as well.
DESCRIPTION: Expression in reference join
Fixed: #2582
This patch allows arbitrary expressions in the join clause when joining to a reference table. An example of such joins could be found in CHbenCHmark queries 7, 8, 9 and 11; `mod((s_w_id * s_i_id),10000) = su_suppkey` and `ascii(substr(c_state,1,1)) = n2.n_nationkey`. Since the join is on a reference table these queries are able to be pushed down to the workers.
To implement these queries we will widen the `IsJoinClause` predicate to not check if the expressions are a type `Var` after stripping the implicit coerciens. Instead we define a join clause when the `Var`'s in a clause come from more than 1 table.
This allows more clauses to pass into the logical planner's `MultiNodeTree(...)` planning function. To compensate for this we tighten down the `LocalJoin`, `SinglePartitionJoin` and `DualPartitionJoin` to check for direct column references when planning. This allows the planner to work with arbitrary join expressions on reference tables.
Phase 1 seeks to implement minimal infrastructure, so does not include:
- dynamic generation of support aggregates to handle multiple arguments
- configuration methods to direct aggregation strategy,
or mark an aggregate's serialize/deserialize as safe to operate across nodes
Aggregates can be distributed when:
- they have a single argument
- they have a combinefunc
- their transition type is not a pseudotype
This is necassery to support Q20 of the CHbenCHmark: #2582.
To summarize the fix: The subquery is converted into an INNER JOIN on a
table. This fixes the issue, since an INNER JOIN on a table is already
supported by the repartion planner.
The way this replacement is happening.:
1. Postgres replaces `col in (subquery)` with a SEMI JOIN (subquery) on col = subquery_result
2. If this subquery is simple enough Postgres will replace it with a
regular read from a table
3. If the subquery returns unique results (e.g. a primary key) Postgres
will convert the SEMI JOIN into an INNER JOIN during the planning. It
will not change this in the rewritten query though.
4. We check if Postgres sends us any SEMI JOINs during its join order
planning, if it doesn't we replace all SEMI JOINs in the rewritten
query with INNER JOIN (which we already support).
Areas for further optimization:
- Don't save subquery results to a local file on the coordinator when the subquery is not in the having clause
- Push the the HAVING with subquery to the workers if there's a group by on the distribution column
- Don't push down the results to the workers when we don't push down the HAVING clause, only the coordinator needs it
Fixes#520Fixes#756Closes#2047
DESCRIPTION: Fix order for enum values and correctly support pg12
PG 12 introduces `ALTER TYPE ... ADD VALUE ...` during transactions. Earlier versions would error out when called in a transaction, hence we connect to workers outside of the transaction which could cause inconsistencies on pg12 now that postgres doesn't error with this syntax anymore.
During the implementation of this fix it became apparent there was an error with the ordering of enum labels when the type was recreated. A patch and test have been included.
DESCRIPTION: Propagate ALTER FUNCTION statements for distributed functions
Using the implemented deparser for function statements to propagate changes to both functions and procedures that are previously distributed.
This PR aims to add all the necessary logic to qualify and deparse all possible `{ALTER|DROP} .. {FUNCTION|PROCEDURE}` queries.
As Procedures are introduced in PG11, the code contains many PG version checks. I tried my best to make it easy to clean up once we drop PG10 support.
Here are some caveats:
- I assumed that the parse tree is a valid one. There are some queries that are not allowed, but still are parsed successfully by postgres planner. Such queries will result in errors in execution time. (e.g. `ALTER PROCEDURE p STRICT` -> `STRICT` action is valid for functions but not procedures. Postgres decides to parse them nevertheless.)
DESCRIPTION: Provide a GUC to turn of the new dependency propagation functionality
In the case the dependency propagation functionality introduced in 9.0 causes issues to a cluster of a user they can turn it off almost completely. The only dependency that will still be propagated and kept track of is the schema to emulate the old behaviour.
GUC to change is `citus.enable_object_propagation`. When set to `false` the functionality will be mostly turned off. Be aware that objects marked as distributed in `pg_dist_object` will still be kept in the catalog as a distributed object. Alter statements to these objects will not be propagated to workers and may cause desynchronisation.
DESCRIPTION: Rename remote types during type propagation
To prevent data to be destructed when a remote type differs from the type on the coordinator during type propagation we wanted to rename the type instead of `DROP CASCADE`.
This patch removes the `DROP` logic and adds the creation of a rename statement to a free name.
This PR aims to add the minimal set of changes required to start
distributing functions. You can use create_distributed_function(regproc)
UDF to distribute a function.
SELECT create_distributed_function('add(int,int)');
The function definition should include the param types to properly
identify the correct function that we wish to distribute
DESCRIPTION: Distribute Types to worker nodes
When to propagate
==============
There are two logical moments that types could be distributed to the worker nodes
- When they get used ( just in time distribution )
- When they get created ( proactive distribution )
The just in time distribution follows the model used by how schema's get created right before we are going to create a table in that schema, for types this would be when the table uses a type as its column.
The proactive distribution is suitable for situations where it is benificial to have the type on the worker nodes directly. They can later on be used in queries where an intermediate result gets created with a cast to this type.
Just in time creation is always the last resort, you cannot create a distributed table before the type gets created. A good example use case is; you have an existing postgres server that needs to scale out. By adding the citus extension, add some nodes to the cluster, and distribute the table. The type got created before citus existed. There was no moment where citus could have propagated the creation of a type.
Proactive is almost always a good option. Types are not resource intensive objects, there is no performance overhead of having 100's of types. If you want to use them in a query to represent an intermediate result (which happens in our test suite) they just work.
There is however a moment when proactive type distribution is not beneficial; in transactions where the type is used in a distributed table.
Lets assume the following transaction:
```sql
BEGIN;
CREATE TYPE tt1 AS (a int, b int);
CREATE TABLE t1 AS (a int PRIMARY KEY, b tt1);
SELECT create_distributed_table('t1', 'a');
\copy t1 FROM bigdata.csv
```
Types are node scoped objects; meaning the type exists once per worker. Shards however have best performance when they are created over their own connection. For the type to be visible on all connections it needs to be created and committed before we try to create the shards. Here the just in time situation is most beneficial and follows how we create schema's on the workers. Outside of a transaction block we will just use 1 connection to propagate the creation.
How propagation works
=================
Just in time
-----------
Just in time propagation hooks into the infrastructure introduced in #2882. It adds types as a supported object in `SupportedDependencyByCitus`. This will make sure that any object being distributed by citus that depends on types will now cascade into types. When types are depending them self on other objects they will get created first.
Creation later works by getting the ddl commands to create the object by its `ObjectAddress` in `GetDependencyCreateDDLCommands` which will dispatch types to `CreateTypeDDLCommandsIdempotent`.
For the correct walking of the graph we follow array types, when later asked for the ddl commands for array types we return `NIL` (empty list) which makes that the object will not be recorded as distributed, (its an internal type, dependant on the user type).
Proactive distribution
---------------------
When the user creates a type (composite or enum) we will have a hook running in `multi_ProcessUtility` after the command has been applied locally. Running after running locally makes that we already have an `ObjectAddress` for the type. This is required to mark the type as being distributed.
Keeping the type up to date
====================
For types that are recorded in `pg_dist_object` (eg. `IsObjectDistributed` returns true for the `ObjectAddress`) we will intercept the utility commands that alter the type.
- `AlterTableStmt` with `relkind` set to `OBJECT_TYPE` encapsulate changes to the fields of a composite type.
- `DropStmt` with removeType set to `OBJECT_TYPE` encapsulate `DROP TYPE`.
- `AlterEnumStmt` encapsulates changes to enum values.
Enum types can not be changed transactionally. When the execution on a worker fails a warning will be shown to the user the propagation was incomplete due to worker communication failure. An idempotent command is shown for the user to re-execute when the worker communication is fixed.
Keeping types up to date is done via the executor. Before the statement is executed locally we create a plan on how to apply it on the workers. This plan is executed after we have applied the statement locally.
All changes to types need to be done in the same transaction for types that have already been distributed and will fail with an error if parallel queries have already been executed in the same transaction. Much like foreign keys to reference tables.
With this commit, we're introducing the Adaptive Executor.
The commit message consists of two distinct sections. The first part explains
how the executor works. The second part consists of the commit messages of
the individual smaller commits that resulted in this commit. The readers
can search for the each of the smaller commit messages on
https://github.com/citusdata/citus and can learn more about the history
of the change.
/*-------------------------------------------------------------------------
*
* adaptive_executor.c
*
* The adaptive executor executes a list of tasks (queries on shards) over
* a connection pool per worker node. The results of the queries, if any,
* are written to a tuple store.
*
* The concepts in the executor are modelled in a set of structs:
*
* - DistributedExecution:
* Execution of a Task list over a set of WorkerPools.
* - WorkerPool
* Pool of WorkerSessions for the same worker which opportunistically
* executes "unassigned" tasks from a queue.
* - WorkerSession:
* Connection to a worker that is used to execute "assigned" tasks
* from a queue and may execute unasssigned tasks from the WorkerPool.
* - ShardCommandExecution:
* Execution of a Task across a list of placements.
* - TaskPlacementExecution:
* Execution of a Task on a specific placement.
* Used in the WorkerPool and WorkerSession queues.
*
* Every connection pool (WorkerPool) and every connection (WorkerSession)
* have a queue of tasks that are ready to execute (readyTaskQueue) and a
* queue/set of pending tasks that may become ready later in the execution
* (pendingTaskQueue). The tasks are wrapped in a ShardCommandExecution,
* which keeps track of the state of execution and is referenced from a
* TaskPlacementExecution, which is the data structure that is actually
* added to the queues and describes the state of the execution of a task
* on a particular worker node.
*
* When the task list is part of a bigger distributed transaction, the
* shards that are accessed or modified by the task may have already been
* accessed earlier in the transaction. We need to make sure we use the
* same connection since it may hold relevant locks or have uncommitted
* writes. In that case we "assign" the task to a connection by adding
* it to the task queue of specific connection (in
* AssignTasksToConnections). Otherwise we consider the task unassigned
* and add it to the task queue of a worker pool, which means that it
* can be executed over any connection in the pool.
*
* A task may be executed on multiple placements in case of a reference
* table or a replicated distributed table. Depending on the type of
* task, it may not be ready to be executed on a worker node immediately.
* For instance, INSERTs on a reference table are executed serially across
* placements to avoid deadlocks when concurrent INSERTs take conflicting
* locks. At the beginning, only the "first" placement is ready to execute
* and therefore added to the readyTaskQueue in the pool or connection.
* The remaining placements are added to the pendingTaskQueue. Once
* execution on the first placement is done the second placement moves
* from pendingTaskQueue to readyTaskQueue. The same approach is used to
* fail over read-only tasks to another placement.
*
* Once all the tasks are added to a queue, the main loop in
* RunDistributedExecution repeatedly does the following:
*
* For each pool:
* - ManageWorkPool evaluates whether to open additional connections
* based on the number unassigned tasks that are ready to execute
* and the targetPoolSize of the execution.
*
* Poll all connections:
* - We use a WaitEventSet that contains all (non-failed) connections
* and is rebuilt whenever the set of active connections or any of
* their wait flags change.
*
* We almost always check for WL_SOCKET_READABLE because a session
* can emit notices at any time during execution, but it will only
* wake up WaitEventSetWait when there are actual bytes to read.
*
* We check for WL_SOCKET_WRITEABLE just after sending bytes in case
* there is not enough space in the TCP buffer. Since a socket is
* almost always writable we also use WL_SOCKET_WRITEABLE as a
* mechanism to wake up WaitEventSetWait for non-I/O events, e.g.
* when a task moves from pending to ready.
*
* For each connection that is ready:
* - ConnectionStateMachine handles connection establishment and failure
* as well as command execution via TransactionStateMachine.
*
* When a connection is ready to execute a new task, it first checks its
* own readyTaskQueue and otherwise takes a task from the worker pool's
* readyTaskQueue (on a first-come-first-serve basis).
*
* In cases where the tasks finish quickly (e.g. <1ms), a single
* connection will often be sufficient to finish all tasks. It is
* therefore not necessary that all connections are established
* successfully or open a transaction (which may be blocked by an
* intermediate pgbouncer in transaction pooling mode). It is therefore
* essential that we take a task from the queue only after opening a
* transaction block.
*
* When a command on a worker finishes or the connection is lost, we call
* PlacementExecutionDone, which then updates the state of the task
* based on whether we need to run it on other placements. When a
* connection fails or all connections to a worker fail, we also call
* PlacementExecutionDone for all queued tasks to try the next placement
* and, if necessary, mark shard placements as inactive. If a task fails
* to execute on all placements, the execution fails and the distributed
* transaction rolls back.
*
* For multi-row INSERTs, tasks are executed sequentially by
* SequentialRunDistributedExecution instead of in parallel, which allows
* a high degree of concurrency without high risk of deadlocks.
* Conversely, multi-row UPDATE/DELETE/DDL commands take aggressive locks
* which forbids concurrency, but allows parallelism without high risk
* of deadlocks. Note that this is unrelated to SEQUENTIAL_CONNECTION,
* which indicates that we should use at most one connection per node, but
* can run tasks in parallel across nodes. This is used when there are
* writes to a reference table that has foreign keys from a distributed
* table.
*
* Execution finishes when all tasks are done, the query errors out, or
* the user cancels the query.
*
*-------------------------------------------------------------------------
*/
All the commits involved here:
* Initial unified executor prototype
* Latest changes
* Fix rebase conflicts to master branch
* Add missing variable for assertion
* Ensure that master_modify_multiple_shards() returns the affectedTupleCount
* Adjust intermediate result sizes
The real-time executor uses COPY command to get the results
from the worker nodes. Unified executor avoids that which
results in less data transfer. Simply adjust the tests to lower
sizes.
* Force one connection per placement (or co-located placements) when requested
The existing executors (real-time and router) always open 1 connection per
placement when parallel execution is requested.
That might be useful under certain circumstances:
(a) User wants to utilize as much as CPUs on the workers per
distributed query
(b) User has a transaction block which involves COPY command
Also, lots of regression tests rely on this execution semantics.
So, we'd enable few of the tests with this change as well.
* For parameters to be resolved before using them
For the details, see PostgreSQL's copyParamList()
* Unified executor sorts the returning output
* Ensure that unified executor doesn't ignore sequential execution of DDLJob's
Certain DDL commands, mainly creating foreign keys to reference tables,
should be executed sequentially. Otherwise, we'd end up with a self
distributed deadlock.
To overcome this situaiton, we set a flag `DDLJob->executeSequentially`
and execute it sequentially. Note that we have to do this because
the command might not be called within a transaction block, and
we cannot call `SetLocalMultiShardModifyModeToSequential()`.
This fixes at least two test: multi_insert_select_on_conflit.sql and
multi_foreign_key.sql
Also, I wouldn't mind scattering local `targetPoolSize` variables within
the code. The reason is that we'll soon have a GUC (or a global
variable based on a GUC) that'd set the pool size. In that case, we'd
simply replace `targetPoolSize` with the global variables.
* Fix 2PC conditions for DDL tasks
* Improve closing connections that are not fully established in unified execution
* Support foreign keys to reference tables in unified executor
The idea for supporting foreign keys to reference tables is simple:
Keep track of the relation accesses within a transaction block.
- If a parallel access happens on a distributed table which
has a foreign key to a reference table, one cannot modify
the reference table in the same transaction. Otherwise,
we're very likely to end-up with a self-distributed deadlock.
- If an access to a reference table happens, and then a parallel
access to a distributed table (which has a fkey to the reference
table) happens, we switch to sequential mode.
Unified executor misses the function calls that marks the relation
accesses during the execution. Thus, simply add the necessary calls
and let the logic kick in.
* Make sure to close the failed connections after the execution
* Improve comments
* Fix savepoints in unified executor.
* Rebuild the WaitEventSet only when necessary
* Unclaim connections on all errors.
* Improve failure handling for unified executor
- Implement the notion of errorOnAnyFailure. This is similar to
Critical Connections that the connection managament APIs provide
- If the nodes inside a modifying transaction expand, activate 2PC
- Fix few bugs related to wait event sets
- Mark placement INACTIVE during the execution as much as possible
as opposed to we do in the COMMIT handler
- Fix few bugs related to scheduling next placement executions
- Improve decision on when to use 2PC
Improve the logic to start a transaction block for distributed transactions
- Make sure that only reference table modifications are always
executed with distributed transactions
- Make sure that stored procedures and functions are executed
with distributed transactions
* Move waitEventSet to DistributedExecution
This could also be local to RunDistributedExecution(), but in that case
we had to mark it as "volatile" to avoid PG_TRY()/PG_CATCH() issues, and
cast it to non-volatile when doing WaitEventSetFree(). We thought that
would make code a bit harder to read than making this non-local, so we
move it here. See comments for PG_TRY() in postgres/src/include/elog.h
and "man 3 siglongjmp" for more context.
* Fix multi_insert_select test outputs
Two things:
1) One complex transaction block is now supported. Simply update
the test output
2) Due to dynamic nature of the unified executor, the orders of
the errors coming from the shards might change (e.g., all of
the queries on the shards would fail, but which one appears
on the error message?). To fix that, we simply added it to
our shardId normalization tool which happens just before diff.
* Fix subeury_and_cte test
The error message is updated from:
failed to execute task
To:
more than one row returned by a subquery or an expression
which is a lot clearer to the user.
* Fix intermediate_results test outputs
Simply update the error message from:
could not receive query results
to
result "squares" does not exist
which makes a lot more sense.
* Fix multi_function_in_join test
The error messages update from:
Failed to execute task XXX
To:
function f(..) does not exist
* Fix multi_query_directory_cleanup test
The unified executor does not create any intermediate files.
* Fix with_transactions test
A test case that just started to work fine
* Fix multi_router_planner test outputs
The error message is update from:
Could not receive query results
To:
Relation does not exists
which is a lot more clearer for the users
* Fix multi_router_planner_fast_path test
The error message is update from:
Could not receive query results
To:
Relation does not exists
which is a lot more clearer for the users
* Fix isolation_copy_placement_vs_modification by disabling select_opens_transaction_block
* Fix ordering in isolation_multi_shard_modify_vs_all
* Add executor locks to unified executor
* Make sure to allocate enought WaitEvents
The previous code was missing the waitEvents for the latch and
postmaster death.
* Fix rebase conflicts for master rebase
* Make sure that TRUNCATE relies on unified executor
* Implement true sequential execution for multi-row INSERTS
Execute the individual tasks executed one by one. Note that this is different than
MultiShardConnectionType == SEQUENTIAL_CONNECTION case (e.g., sequential execution
mode). In that case, running the tasks across the nodes in parallel is acceptable
and implemented in that way.
However, the executions that are qualified here would perform poorly if the
tasks across the workers are executed in parallel. We currently qualify only
one class of distributed queries here, multi-row INSERTs. If we do not enforce
true sequential execution, concurrent multi-row upserts could easily form
a distributed deadlock when the upserts touch the same rows.
* Remove SESSION_LIFESPAN flag in unified_executor
* Apply failure test updates
We've changed the failure behaviour a bit, and also the error messages
that show up to the user. This PR covers majority of the updates.
* Unified executor honors citus.node_connection_timeout
With this commit, unified executor errors out if even
a single connection cannot be established within
citus.node_connection_timeout.
And, as a side effect this fixes failure_connection_establishment
test.
* Properly increment/decrement pool size variables
Before this commit, the idle and active connection
counts were not properly calculated.
* insert_select_executor goes through unified executor.
* Add missing file for task tracker
* Modify ExecuteTaskListExtended()'s signature
* Sort output of INSERT ... SELECT ... RETURNING
* Take partition locks correctly in unified executor
* Alternative implementation for force_max_query_parallelization
* Fix compile warnings in unified executor
* Fix style issues
* Decrement idleConnectionCount when idle connection is lost
* Always rebuild the wait event sets
In the previous implementation, on waitFlag changes, we were only
modifying the wait events. However, we've realized that it might
be an over optimization since (a) we couldn't see any performance
benefits (b) we see some errors on failures and because of (a)
we prefer to disable it now.
* Make sure to allocate enough sized waitEventSet
With multi-row INSERTs, we might have more sessions than
task*workerCount after few calls of RunDistributedExecution()
because the previous sessions would also be alive.
Instead, re-allocate events when the connectino set changes.
* Implement SELECT FOR UPDATE on reference tables
On master branch, we do two extra things on SELECT FOR UPDATE
queries on reference tables:
- Acquire executor locks
- Execute the query on all replicas
With this commit, we're implementing the same logic on the
new executor.
* SELECT FOR UPDATE opens transaction block even if SelectOpensTransactionBlock disabled
Otherwise, users would be very confused and their logic is very likely
to break.
* Fix build error
* Fix the newConnectionCount calculation in ManageWorkerPool
* Fix rebase conflicts
* Fix minor test output differences
* Fix citus indent
* Remove duplicate sorts that is added with rebase
* Create distributed table via executor
* Fix wait flags in CheckConnectionReady
* failure_savepoints output for unified executor.
* failure_vacuum output (pg 10) for unified executor.
* Fix WaitEventSetWait timeout in unified executor
* Stabilize failure_truncate test output
* Add an ORDER BY to multi_upsert
* Fix regression test outputs after rebase to master
* Add executor.c comment
* Rename executor.c to adaptive_executor.c
* Do not schedule tasks if the failed placement is not ready to execute
Before the commit, we were blindly scheduling the next placement executions
even if the failed placement is not on the ready queue. Now, we're ensuring
that if failed placement execution is on a failed pool or session where the
execution is on the pendingQueue, we do not schedule the next task. Because
the other placement execution should be already running.
* Implement a proper custom scan node for adaptive executor
- Switch between the executors, add GUC to set the pool size
- Add non-adaptive regression test suites
- Enable CIRCLE CI for non-adaptive tests
- Adjust test output files
* Add slow start interval to the executor
* Expose max_cached_connection_per_worker to user
* Do not start slow when there are cached connections
* Consider ExecutorSlowStartInterval in NextEventTimeout
* Fix memory issues with ReceiveResults().
* Disable executor via TaskExecutorType
* Make sure to execute the tests with the other executor
* Use task_executor_type to enable-disable adaptive executor
* Remove useless code
* Adjust the regression tests
* Add slow start regression test
* Rebase to master
* Fix test failures in adaptive executor.
* Rebase to master - 2
* Improve comments & debug messages
* Set force_max_query_parallelization in isolation_citus_dist_activity
* Force max parallelization for creating shards when asked to use exclusive connection.
* Adjust the default pool size
* Expand description of max_adaptive_executor_pool_size GUC
* Update warnings in FinishRemoteTransactionCommit()
* Improve session clean up at the end of execution
Explicitly list all the states that the execution might end,
otherwise warn.
* Remove MULTI_CONNECTION_WAIT_RETRY which is not used at all
* Add more ORDER BYs to multi_mx_partitioning
Since flattening query may flatten outer joins' columns into coalesce expr that is
in the USING part, and that was not expected before this commit, these queries were
erroring out. It is fixed by this commit with considering coalesce expression as well.
In this context, we define "Fast Path Planning for SELECT" as trivial
queries where Citus can skip relying on the standard_planner() and
handle all the planning.
For router planner, standard_planner() is mostly important to generate
the necessary restriction information. Later, the restriction information
generated by the standard_planner is used to decide whether all the shards
that a distributed query touches reside on a single worker node. However,
standard_planner() does a lot of extra things such as cost estimation and
execution path generations which are completely unnecessary in the context
of distributed planning.
There are certain types of queries where Citus could skip relying on
standard_planner() to generate the restriction information. For queries
in the following format, Citus does not need any information that the
standard_planner() generates:
SELECT ... FROM single_table WHERE distribution_key = X; or
DELETE FROM single_table WHERE distribution_key = X; or
UPDATE single_table SET value_1 = value_2 + 1 WHERE distribution_key = X;
Note that the queries might not be as simple as the above such that
GROUP BY, WINDOW FUNCIONS, ORDER BY or HAVING etc. are all acceptable. The
only rule is that the query is on a single distributed (or reference) table
and there is a "distribution_key = X;" in the WHERE clause. With that, we
could use to decide the shard that a distributed query touches reside on
a worker node.
Before this commit, Citus supported INSERT...SELECT queries with
ON CONFLICT or RETURNING clauses only for pushdownable ones, since
queries supported via coordinator were utilizing COPY infrastructure
of PG to send selected tuples to the target worker nodes.
After this PR, INSERT...SELECT queries with ON CONFLICT or RETURNING
clauses will be performed in two phases via coordinator. In the first
phase selected tuples will be saved to the intermediate table which
is colocated with target table of the INSERT...SELECT query. Note that,
a utility function to save results to the colocated intermediate result
also implemented as a part of this commit. In the second phase, INSERT..
SELECT query is directly run on the worker node using the intermediate
table as the source table.
After Fast ALTER TABLE ADD COLUMN with a non-NULL default in PG11, physical heaps might not contain all attributes after a ALTER TABLE ADD COLUMN happens. heap_getattr() returns NULL when the physical tuple doesn't contain an attribute. So we should use heap_deform_tuple() in these cases, which fills in the missing attributes.
Our catalog tables evolve over time, and an upgrade might involve some ALTER TABLE ADD COLUMN commands.
Note that we don't need to worry about postgres catalog tables and we can use heap_getattr() for them, because they only change between major versions.
This also fixes#2453.
With this commit, we all partitioned distributed tables with
replication factor > 1. However, we also have many restrictions.
In summary, we disallow all kinds of modifications (including DDLs)
on the partition tables. Instead, the user is allowed to run the
modifications over the parent table.
The necessity for such a restriction have two aspects:
- We need to acquire shard resource locks appropriately
- We need to handle marking partitions INVALID in case
of any failures. Note that, in theory, the parent table
should also become INVALID, which is too aggressive.
PG11 introduced PROCEDURE concept similar to FUNCTION
Procedure's allow committing/rolling back behavior.
This commmit adds regression tests for procedure calls.
This commit should be reverted once a new PostgreSQL 11 beta is
available: it's due to a bug in the partitioning code which has been
fixed in REL_11_STABLE but (not yet) a released tag.
When a hash distributed table have a foreign key to a reference
table, there are few restrictions we have to apply in order to
prevent distributed deadlocks or reading wrong results.
The necessity to apply the restrictions arise from cascading
nature of foreign keys. When a foreign key on a reference table
cascades to a distributed table, a single operation over a single
connection can acquire locks on multiple shards of the distributed
table. Thus, any parallel operation on that distributed table, in the
same transaction should not open parallel connections to the shards.
Otherwise, we'd either end-up with a self-distributed deadlock or
read wrong results.
As briefly described above, the restrictions that we apply is done
by tracking the distributed/reference relation accesses inside
transaction blocks, and act accordingly when necessary.
The two main rules are as follows:
- Whenever a parallel distributed relation access conflicts
with a consecutive reference relation access, Citus errors
out
- Whenever a reference relation access is followed by a
conflicting parallel relation access, the execution mode
is switched to sequential mode.
There are also some other notes to mention:
- If the user does SET LOCAL citus.multi_shard_modify_mode
TO 'sequential';, all the queries should simply work with
using one connection per worker and sequentially executing
the commands. That's obviously a slower approach than Citus'
usual parallel execution. However, we've at least have a way
to run all commands successfully.
- If an unrelated parallel query executed on any distributed
table, we cannot switch to sequential mode. Because, the essense
of sequential mode is using one connection per worker. However,
in the presence of a parallel connection, the connection manager
picks those connections to execute the commands. That contradicts
with our purpose, thus we error out.
- COPY to a distributed table cannot be executed in sequential mode.
Thus, if we switch to sequential mode and COPY is executed, the
operation fails and there is currently no way of implementing that.
Note that, when the local table is not empty and create_distributed_table
is used, citus uses COPY internally. Thus, in those cases,
create_distributed_table() will also fail.
- There is a GUC called citus.enforce_foreign_key_restrictions
to disable all the checks. We added that GUC since the restrictions
we apply is sometimes a bit more restrictive than its necessary.
The user might want to relax those. Similarly, if you don't have
CASCADEing reference tables, you might consider disabling all the
checks.