We should not recursively plan an already routable plannable query. An
example of this is (SELECT * FROM local JOIN (SELECT * FROM dist) d1
USING(a));
So we let the recursive planner do all of its work and at the end we
convert the final query to to handle unsupported joins. While doing each
conversion, we check if it is router plannable, if so we stop.
Only consider range table entries that are in jointree
If a range table is not in jointree then there is no point in
considering that because we are trying to convert range table entries to
subqueries for join use case.
Refactor internals on how Citus creates the SQL commands it sends to recreate shards.
Before Citus collected solely ddl commands as `char *`'s to recreate a table. If they were used to create a shard they were wrapped with `worker_apply_shard_ddl_command` and send to the workers. On the workers the UDF wrapping the ddl command would rewrite the parsetree to replace tables names with their shard name equivalent.
This worked well, but poses an issue when adding columnar. Due to limitations in Postgres on creating custom options on table access methods we need to fall back on a UDF to set columnar specific options. Now, to recreate the table, we can not longer rely on having solely DDL statements to recreate a table.
A prototype was made to run this UDF wrapped in `worker_apply_shard_ddl_command`. This became pretty messy, hard to understand and subsequently hard to maintain.
This PR proposes a refactor of the internal representation of table ddl commands into a `TableDDLCommand` structure. The current implementation only supports a `char *` as its contents. Based on the use of the DDL statement (eg. creating the table -mx- or creating a shard) one of two different functions can be called to get the statement to send to the worker:
- `GetTableDDLCommand(TableDDLCommand *command)`: This function returns that ddl command to create the table. In this implementation it will just return the `char *`. This has the same functionality as getting the old list and not wrapping it.
- `GetShardedTableDDLCommand(TableDDLCommand *command, uint64 shardId, char *schemaName)`: This function returns the ddl command wrapped in `worker_apply_shard_ddl_command` with the `shardId` as an argument. Due to backwards compatibility it also accepts a. `schemaName`. The exact purpose is not directly clear. Ideally new implementations would work with fully qualified statements and ignore the `schemaName`.
A future implementation could accept 2.function pointers and a `void *` for context to let the two pointers work on. This gives greater flexibility in controlling what commands get send in which situations. Also, in a future, we could implement the intermediate step of creating the `parsetree` datastructure of statements based on the contents in the catalog with a corresponding deparser. For sharded queries a mutator could be ran over the parsetree to rewrite the tablenames to the names with the shard identifier. This will completely omit the requirement for `worker_apply_shard_ddl_command`.
CitusTableTypeIdList() function iterates on all the entries of pg_dist_partition
and loads all the metadata in to the cache. This can be quite memory intensive
especially when there are lots of distributed tables.
When partitioned tables are used, it is common to have many distributed tables
given that each partition also becomes a distributed table.
CitusTableTypeIdList() is used on every CREATE TABLE .. PARTITION OF.. command
as well. It means that, anytime a partition is created, Citus loads all the
metadata to the cache. Note that Citus typically only loads the accessed table's
metadata to the cache.
If one wishes to iterate through a List and insert list elements in
PG13, it is not safe to use for_each_ptr as the List representation
in PostgreSQL no longer linked lists, but arrays, and it is possible
that the whole array is repalloc'ed if ther is not sufficient space
available.
See postgres commit 1cff1b95ab6ddae32faa3efe0d95a820dbfdc164 for more
information
Citus has the logic to truncate the long shard names to prevent
various issues, including self-deadlocks. However, for partitioned
tables, when index is created on the parent table, the index names
on the partitions are auto-generated by Postgres. We use the same
Postgres function to generate the index names on the shards of the
partitions. If the length exceeds the limit, we switch to sequential
execution mode.
Pushing down the CALLs to the node that the CALL is executed is
dangerous and could lead to infinite recursion.
When the coordinator added as worker, Citus was by chance preventing
this. The coordinator was marked as "not metadatasynced" node
in pg_dist_node, which prevented CALL/function delegation to happen.
With this commit, we do the following:
- Fix metadatasynced column for the coordinator on pg_dist_node
- Prevent pushdown of function/procedure to the same node that
the function/procedure is being executed. Today, we do not sync
pg_dist_object (e.g., distributed functions metadata) to the
worker nodes. But, even if we do it now, the function call delegation
would prevent the infinite recursion.
* Not allow removing a single node with ref tables
We should not allow removing a node if it is the only node in the
cluster and there is a data on it. We have this check for distributed
tables but we didn't have it for reference tables.
* Update src/test/regress/expected/single_node.out
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
* Update src/test/regress/sql/single_node.sql
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
This commit brings following features:
Foreign key support from citus local tables to reference tables
* Foreign key support from reference tables to citus local tables
(only with RESTRICT & NO ACTION behavior)
* ALTER TABLE ENABLE/DISABLE trigger command support
* CREATE/DROP/ALTER trigger command support
and disallows:
* ALTER TABLE ATTACH/DETACH PARTITION commands
* CREATE TABLE <postgres table> ATTACH PARTITION <citus local table>
commands
* Foreign keys from postgres tables to citus local tables
(the other way was already disallowed)
for citus local tables.
Introduce table entry utility functions
Citus table cache entry utilities are introduced so that we can easily
extend existing functionality with minimum changes, specifically changes
to these functions. For example IsNonDistributedTableCacheEntry can be
extended for citus local tables without the need to scan the whole
codebase and update each relevant part.
* Introduce utility functions to find the type of tables
A table type can be a reference table, a hash/range/append distributed
table. Utility methods are created so that we don't have to worry about
how a table is considered as a reference table etc. This also makes it
easy to extend the table types.
* Add IsCitusTableType utilities
* Rename IsCacheEntryCitusTableType -> IsCitusTableTypeCacheEntry
* Change citus table types in some checks
create_distributed_function(function_name,
distribution_arg_name,
colocate_with text)
This UDF did not allow colocate_with parameters when there were no
disttribution_arg_name supplied. This commit changes the behaviour to
allow missing distribution_arg_name parameters when the function should
be colocated with a reference table.
CMDTAG_SELECT exists in PG12 hence defining a MACRO such as
CMDTAG_SELECT -> "SELECT" is not possible. I chose CMDTAG_SELECT_COMPAT
because with the COMPAT suffix it is explicit that it maps to different
things in different versions and also has a less chance of mapping
something irrevelant. For example if we used SELECT as a macro, then it
would map every SELECT to whatever it is mapping to, which might have
unexpected/undesired behaviour.
This commit mostly adds pg_get_triggerdef_command to our ruleutils_13.
This doesn't add anything extra for ruleutils 13 so it is basically a copy
of the change on ruleutils_12
Commit on postgres side:
05d8449e73694585b59f8b03aaa087f04cc4679a
Command on postgres side:
git log --all --grep="hashutils"
include common/hashfn.h for pg >= 13
tag_hash was moved from hsearch.h to hashutils.h then to hashfn.h
Commits on Postgres side:
9341c783cc42ffae5860c86bdc713bd47d734ffd
With PG13 heap_* (heap_open, heap_close etc) are replaced with table_*
(table_open, table_close etc).
It is better to use the new table access methods in the codebase and
define the macros for the previous versions as we can easily remove the
macro without having to change the codebase when we drop the support for
the old version.
Commits that introduced this change on Postgres:
f25968c49697db673f6cd2a07b3f7626779f1827
e0c4ec07284db817e1f8d9adfb3fffc952252db0
4b21acf522d751ba5b6679df391d5121b6c4a35f
Command to see relevant commits on Postgres side:
git log --all --grep="heap_open"
* Use CalculateUniformHashRangeIndex in HashPartitionId
INT32_MIN definition can change among different platforms hence it is
possible to get overflow, we would see crashes because of this in debian
distros. We have already solved a similar problem with introducing
CalculateUniformHashRangeIndex method, hence to solve it we can use the
same method, this also removes some duplication and has a single place
to decide that.
* Use PG_INT32_XX instead of INT32_XX to be safer
#3866 removed the shard ID hash in metadata_cache.c to simplify cache management,
but we observed a significant performance regression that was being masked by the
performance improvement provided by #3654 in our benchmarks, but #3654 only
applies to specific workloads.
This PR brings back the shard ID cache as it existed before #3866 with some extra
measures to handle invalidation. When we load a table entry, we overwrite
ShardIdCacheEntry->tableEntry pointers for all the shards in that table, though
it's possible that the table no longer contains the old shard ID or the table
entry is never reloaded, which would leave a dangling pointer once the table
entry is freed. To handle that case, we remove all shard ID cache entries that
point exactly to that table entry when a table is freed (at the end of the
transaction or any call to CitusTableCacheFlushInvalidatedEntries).
Co-authored-by: SaitTalhaNisanci <s.talhanisanci@gmail.com>
Co-authored-by: Marco Slot <marco.slot@gmail.com>
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
Shard id to index mapping stored in cache entry as there may now be multiple entries alive for a given relation
insert_select_executor: revert copying cache entry, which was a hack added to avoid memory safety issues
DESCRIPTION: Adds support to partially push down tdigest aggregates
tdigest extensions: https://github.com/tvondra/tdigest
This PR implements the partial pushdown of tdigest calculations when possible. The extension adds a tdigest type which can be combined into the same structure. There are several aggregate functions that can be used to get;
- a quantile
- a list of quantiles
- the quantile of a hypothetical value
- a list of quantiles for a list of hypothetical values
These function can work both on values or tdigest types.
Since we can create tdigest values either by combining them, or based on a group of values we can rewrite the aggregates in such a way that most of the computation gets delegated to the compute on the shards. This both speeds up the percentile calculations because the values don't have to be sorted while at the same time making the transfer size from the shards to the coordinator significantly less.
Implements worker_save_query_explain_analyze and worker_last_saved_explain_analyze.
worker_save_query_explain_analyze executes and returns results of query while
saving its EXPLAIN ANALYZE to be fetched later.
worker_last_saved_explain_analyze returns the saved EXPLAIN ANALYZE result.
* invalidate plan cache in master_update_node
If a plan is cached by postgres but a user uses master_update_node, then
when the plan cache is used for the updated node, they will get the old
nodename/nodepost in the plan. This is because the plan cache doesn't
know about the master_update_node. This could be a problem in prepared
statements or anything that goes into plancache. As a solution the plan
cache is invalidated inside master_update_node.
* add invalidate_inactive_shared_connections test function
We introduce invalidate_inactive_shared_connections udf to be used in
testing. It is possible that a connection count for an inactive node
will be greater than 0 and in that case it will not be removed at the
time of invalidation. However, later we don't have a mechanism to remove
it, which means that it will stay in the hash. For this not to cause a
problem, we use this udf in testing.
* move invalidate_inactive_shared_connections to udfs from test as it will be used in mx
* remove the test udf
* remove the IsInactive check
This copies over fixes from reference counting branch,
all CitusTableCacheEntry data may be freed when a GetCitusTableCacheEntry call occurs for its relationId
This fix is not complete, but reference counting is being deferred until 9.4
CopyShardInterval: remove dest parameter, always return newly allocated object
We initially considered removing entries just before any change to
pg_dist_node. However, that ended-up being very complex and making
MX even more complex.
Instead, we're switching to a simpler solution, where we remove entries
when the counter gets to 0.
With certain workloads, this may have some performance penalty. But, two
notes on that:
- When counter == 0, it implies that the cluster is not busy
- With cached connections, that's not possible
DESCRIPTION: Alter role only works for citus managed roles
Alter role was implemented before we implemented good role management that hooks into the object propagation framework. This is a refactor of all alter role commands that have been implemented to
- be on by default
- only work for supported roles
- make the citus extension owner a supported role
Instead of distributing the alter role commands for roles at the beginning of the node activation role it now _only_ executes the alter role commands for all users in all databases and in the current database.
In preparation of full role support small refactors have been done in the deparser.
Earlier tests targeting other roles than the citus extension owner have been either slightly changed or removed to be put back where we have full role support.
Fixes#2549
With this commit, we're introducing a new infrastructure to throttle
connections to the worker nodes. This infrastructure is useful for
multi-shard queries, router queries are have not been affected by this.
The goal is to prevent establishing more than citus.max_shared_pool_size
number of connections per worker node in total, across sessions.
To do that, we've introduced a new connection flag OPTIONAL_CONNECTION.
The idea is that some connections are optional such as the second
(and further connections) for the adaptive executor. A single connection
is enough to finish the distributed execution, the others are useful to
execute the query faster. Thus, they can be consider as optional connections.
When an optional connection is not allowed to the adaptive executor, it
simply skips it and continues the execution with the already established
connections. However, it'll keep retrying to establish optional
connections, in case some slots are open again.
For shardplacements, we were setting nodeid, nodename, nodeport and
nodegroup manually. This makes it very error prone, and it seems that we
already forgot to set some of them. This would mean that they would have
their default values, e.g group id would be 0 when its group id is not
0.
So the implication is that we would have inconsistent worker metadata.
A new method is introduced, and we call the method to set those fields
now, so that as long as we call this method, we won't be setting
inconsistent metadata.
It probably makes sense to have a struct for these fields. We already
have NodeMetadata but it doesn't have nodename or nodeport. So that
could be done over another refactor to make things simpler.
In PostgreSQL, user defaults for config parameters can be changed by
ALTER ROLE .. SET statements. We wish to propagate those defaults
accross the Citus cluster so that the behaviour will be similar in
different workers.
The defaults can either be set in a specific database, or the whole
cluster, similarly they can be set for a single role or all roles.
We propagate the ALTER ROLE .. SET if all the conditions below are met:
- The query affects the current database, or all databases
- The user is already created in worker nodes
DESCRIPTION: Refactor dependency resolution and resolve from pg_shdepend
This PR refactors how dependencies are resolved by not assuming solely a `pg_depend` record describing the dependency. Instead we keep a definition of the dependency around which records how the dependency is resolved. This can be one of the following ways
- `pg_depend`, data will contain a copy of the `pg_depend` record
- `pg_shdepend`, data will contain a copy of the `pg_shdepend` record
- `ObjectAddress`, data will contain only an `ObjectAddress` describing a dependency
Irregardless of way the dependency was found it will always be able to get to the address of the dependency as that is the most important property.
For some checks we can inspect the source where the dependency was found and perform a deep inspection to decide if we want to follow the dependency. This is important to not distribute dependencies coming from extensions for example.
New stack memory can contain anything including passwords/private keys.
In these functions we return structs that can have their padding
bytes uninitialized. By first zeroing out the struct fully, we try to
ensure that any data that is in these padding bytes is at least
overwritten once. It might not be zero anymore after setting the fields,
but at least it shouldn't be private data anymore.
As @onderkalaci suggested removing the definition of GetWorkerNodeCount() that can potentially cause misunderstandings.
I can advise using ActiveReadableWorkerNodeCount() that returns the number of active primaries is a safer alternative than GetWorkerNodeCount() that returns the total number of workers containing inactives, primaries, and unavailable nodes. I introduced a bug #3556 and in the bugfix #3564 removed the single usage of said function
Semmle reported quite some places where we use a value that could be NULL. Most of these are not actually a real issue, but better to be on the safe side with these things and make the static analysis happy.
Mark existing objects that are not included in distributed object infrastructure
in older versions of Citus (but now should be) as distributed, after updating
Citus successfully.
Use partition column's collation for range distributed tables
Don't allow non deterministic collations for hash distributed tables
CoPartitionedTables: don't compare unequal types
* Improve extension command propagation tests
* patch for hardcoded citus extension name
(cherry picked from commit 0bb3dbac0afabda10e8928f9c17eda048dc4361a)
Prevent Citus extension being distributed
Because that could prevent doing rolling upgrades, where users may
prefer to upgrade the version on the coordinator but not the workers.
There could be some other edge cases, so I'd prefer to keep Citus
extension outside the picture for now.
With this commit, we're slightly changing the dependency traversal
logic to enable extension propagation.
The main idea is to "follow" the extension dependencies, but do not
"apply" them.
Since some extension dependencies are base types, and base types
could have circular dependencies, we implement a logic to prevent
revisiting an already visited object.