Some Copy related functions copied from Postgres had support for both old and new protocols
Postgres removed support for old version so we remove it too
Relevant PG commit:
3174d69fb96a66173224e60ec7053b988d5ed4d9
New macros: standard_ProcessUtility_compat, ProcessUtility_compat, ColumnarProcessUtility_compat, PrevProcessUtilityHook_compat
The functions now have a new bool parameter: readOnlyTree
These new macros give us the ability to use this new parameter for PG14 and it doesn't give the parameter for previous versions
In multi_ProcessUtility and ColumnarProcessUtility, before doing anything else, we check if readOnlyTree parameter is true and create a copy of pstmt
Existing readOnlyTree parameters are set to false since we already handle the read only case at multi_ProcessUtility and ColumnarProcessUtility
Relevant PG commit:
7c337b6b527b7052e6a751f966d5734c56f668b5
This function was copied from Postgres but it is not static at PG14
So we keep the definition only for previous versions
Relevant PG commit:
c532d15dddff14b01fe9ef1d465013cb8ef186df
CopyState struct is divided into parts and one of them is CopyFromState
This macro uses the appropriate one for PG versions
Relevant PG commit:
c532d15dddff14b01fe9ef1d465013cb8ef186df
In ReindexStmt concurrent field is moved to options and then options are converted to params list.
This macro uses previous fields for previous versions and the new params list with a new function named IsReindexWithParam for PG14
Relevant PG commits:
844c05abc3f1c1703bf17cf44ab66351ed9711d2
b5913f6120792465f4394b93c15c2e2ac0c08376
VacOptTernaryValue enum is renamed to VacOptValue.
In the enum there were three values, VACOPT_TERNARY_DEFAULT, VACOPT_TERNARY_DISABLED, and VACOPT_TERNARY_ENABLED
Now there are four values VACOPTVALUE_UNSPECIFIED, VACOPTVALUE_AUTO, VACOPTVALUE_DISABLED, and VACOPTVALUE_ENABLED
New macros are VacOptValue_compat, VACOPTVALUE_UNSPECIFIED_COMPAT, VACOPTVALUE_DISABLED_COMPAT, and VACOPTVALUE_ENABLED_COMPAT
The VACOPTVALUE_UNSPECIFIED_COMPAT matches VACOPT_TERNARY_DEFAULT and VACOPTVALUE_UNSPECIFIED. And there are no macro for VACOPTVALUE_AUTO.
Relevant PG commit:
3499df0dee8c4ea51d264a674df5b5e31991319a
New macros: FuncnameGetCandidates_compat and expand_function_arguments_compat
The functions (the ones without _compat) now have a new bool include_out_arguments parameter
These new macros give us the ability to use this new parameter for PG14 and it doesn't give the parameter for previous versions
Existing include_out_arguments parameters are set to 'false' to keep current behavior
Relevant PG commit:
e56bce5d43789cce95d099554ae9593ada92b3b7
stats function now have a new bool print_to_stderr parameter
This new macro gives us the ability to use this new parameter for PG14 and it doesn't give the parameter for previous versions
Existing print_to_stderr parameter is set to true to keep current behavior
Relevant PG commit:
43620e328617c1f41a2a54c8cee01723064e3ffa
getObjectTypeDescription and getObjectIdentity functions now have a new bool missing_ok parameter
These new macros give us the ability to use this new parameter for PG14 and they don't give the parameter for previous versions
Currently all missing_ok parameters are set to false to keep current behavior
Relevant PG commit:
2a10fdc4307a667883f7a3369cb93a721ade9680
The STATUS_WAITING define is removed and an enum with PROC_WAIT_STATUS_WAITING is added instead
This macro uses appropriate one
Relevant PG commit:
a513f1dfbf2c29a51b0f7cbd5913ce2d2ee452c5
AlterTableStmt's relkind field is changed into objtype
New AlterTableStmtObjType macro uses the appropriate one
Relevant PG commit:
cc35d8933a211d9965eb1c1d2749a903d5735db2
The logging of the amount of ignored moves crashed when no distributed
tables existed in a cluster. This also fixes in passing that the logging
of ignored moves logs the correct number of ignored moves if there
exist multiple colocation groups and all are rebalanced at the same time.
`tcp_user_timeout` is the awesome relatively unknown big brother of the
TCP keepalive related options. Instead of depending on keepalives being
sent, this determines that a socket is dead by waiting at most N seconds
for an ack of data that it has sent. It's exposed in libpq starting from
PG12.
DESCRIPTION: Fix a segfault caused by use after free in ConnectionsPlacementHash
Fix a segfault caused by retaining data in any of the hashmaps making up the Placement Connection Management.
We have seen production systems segfault due to random data referenced from ConnectionPlacementHash.
On investigation we found that the backends segfaulting on this had OOM errors closely prior to the segfault.
It has shown there are at least 15 places where an allocation can OOM that would cause ConnectionPlacementHash to retain pointers to memory from contexts that are subsequently freed. This would reproduce the segfault we have observed in production.
Conditions for these allocations are:
- allocated after first call to `AssociatePlacementWithShard`: https://github.com/citusdata/citus/blob/v10.0.3/src/backend/distributed/connection/placement_connection.c#L880-L881
- allocated before `StartNodeUserDatabaseConnection`: https://github.com/citusdata/citus/blob/v10.0.3/src/backend/distributed/connection/connection_management.c#L291
At least 15 points of memory allocation (which could fail) are between the callsites of both in a primary key lookup on a reference table - where we have seen an OOM cause a segfault moments later.
Instead of leaving any references in ConnectionPlacementHash, ConnectionShardHash and ColocatedPlacementsHash that could retain any pointers that are freed due to the TopTransactionContext being reset we clear all these hashes irregardless of the state of CurrentCoordinatedTransactionState.
Downside is that on any transaction abort we will now iterate through 4 hashmaps and clear their contents. Given that they are either already empty, which should cause a quick iteration, or non-empty, causing segfaults in subsequent executions, this overhead seems reasonable.
A better solution would be to move the creation of these hashmaps so they would live in the TopTransactionContext themself, assuming their contents would never outlive a transaction. This needs more investigation and is an involved refactor Hence fixing this quickly here.
- Add support for CRETE INDEX ... ON ONLY: Before that commit we were not sending "ONLY" option to the worker nodes at all. With this commit, "ONLY" parameter will be sent to the worker nodes if it is necessary. (#4938)
- Add support for ALTER INDEX ... ATTACH PARTITION: Attach child_index to parent_index by creating same inheritance on shard level in addition to table level. (#4980)
* Synchronize hasmetadata flag on mx workers
* Switch to sequential execution
* Add test
* Use SetWorkerColumn
* Add test for stop_sync
* Remove usage of UpdateHasmetadataOnWorkersWithMetadata
* Remove MarkNodeMetadataSynced
* Fix test for metadatasynced
* Remove MarkNodeMetadataSynced
* Style
* Remove MarkNodeHasMetadata
* Remove UpdateDistNodeBoolAttr
* Refactor SetWorkerColumn
* Use SetWorkerColumnLocalOnly when setting up dependencies
* Use SetWorkerColumnLocalOnly in TriggerSyncMetadataToPrimaryNodes
* Style
* Make update command generator functions static
* Set metadatasynced before syncing
* Call SetWorkerColumn only if the sync is successful
* Try to sync all nodes
* Fix indexno
* Update metadatasynced locally first
* Break if a node fails to sync metadata
* Send worker commands optional
* Style & Rebase
* Add raiseOnError param to SetWorkerColumn
* Style
* Set metadatasynced for all metadata nodes
* Style
* Introduce SetWorkerColumnOptional
* Polish
* Style
* Dont send set command to not synced metadata nodes
* Style
* Polish
* Add test for stop_sync
* Add test for shouldhaveshards
* Add test for isactive flag
* Sort by placementid in the function verify_metadata
* Cover edge cases for failing nodes
* Add comments
* Add nodeport to isactive test
* Add warning if metadata out of sync
* Update warning message
In short, add wrappers around Postgres' AddWaitEventToSet() and
ModifyWaitEvent().
AddWaitEventToSet()/ModifyWaitEvent*() may throw hard errors. For
example, when the underlying socket for a connection is closed by
the remote server and already reflected by the OS, however
Citus hasn't had a chance to get this information. In that case,
if replication factor is >1, Citus can failover to other nodes
for executing the query. Even if replication factor = 1, Citus
can give much nicer errors.
So CitusAddWaitEventSetToSet()/CitusModifyWaitEvent() simply puts
AddWaitEventToSet()/ModifyWaitEvent() into a PG_TRY/PG_CATCH block
in order to catch any hard errors, and returns this information to
the caller.
As we use the current user to sync the metadata to the nodes
with #5105 (and many other PRs), there is no reason that
prevents us to use the coordinated transaction for metadata syncing.
This commit also renames few functions to reflect their actual
implementation.
Before this commit, creating a partition after a DROP column
on the parent (position before dist. key) was leading to
partition to have the wrong distribution column.
update_distributed_table_colocation can be called by the relation
owner, and internally it updates pg_dist_partition. With this
commit, update_distributed_table_colocation uses an internal
UDF to access pg_dist_partition.
As a result, this operation can now be done by regular users
on MX.
* Fix UNION not being pushdown
Postgres optimizes column fields that are not needed in the output. We
were relying on these fields to understand if it is safe to push down a
union query.
This fix looks at the parse query, which has the original column fields
to detect if it is safe to push down a union query.
* Add more tests
* Simplify code and make it more robust
* Process varlevelsup > 0 in FindReferencedTableColumn
* Only look for outers vars in union path
* Add more comments
* Remove UNION ALL specific logic for pulling up childvars
The progress monitor wouldn't actually update the size of the shard on
the target node when using "block_writes" as the `shard_transfer_mode`.
The reason for this is that the CREATE TABLE part of the shard creation
would only be committed once all data was moved as well. This caused
our size calculation to always return 0, since the table did not exist
yet in the session that the progress monitor used.
This is fixed by first committing creation of the table, and only then
starting the actual data copy.
The test output changes slightly. Apparently splitting this up in two
transactions instead of one, increases the table size after the copy by
about 40kB. The additional size used doesn't increase when with the
amount of data in the table is larger (it stays ~40kB per shard). So
this small change in test output is not considered an actual problem.
These two options were not included when creating the sequences on the
workers as part of metadata syncing.
The missing `data_type` part of the definition made finding the cause
of #5126 harder than necessary, because of confusing errors.
Before this commit, we always synced the metadata with superuser.
However, that creates various edge cases such as visibility errors
or self distributed deadlocks or complicates user access checks.
Instead, with this commit, we use the current user to sync the metadata.
Note that, `start_metadata_sync_to_node` still requires super user
because accessing certain metadata (like pg_dist_node) always require
superuser (e.g., the current user should be a superuser).
However, metadata syncing operations regarding the distributed
tables can now be done with regular users, as long as the user
is the owner of the table. A table owner can still insert non-sense
metadata, however it'd only affect its own table. So, we cannot do
anything about that.
This happens only when we have a "<" or "<=" filter on distribution
column of a range distributed table and that filter falls in between
two shards.
When the filter falls in between two shards:
If the filter is ">" or ">=", then UpperShardBoundary was
returning "upperBoundIndex - 1", where upperBoundIndex is
exclusive shard index used during binary seach.
This is expected since upperBoundIndex is an exclusive
index.
If the filter is "<" or "<=", then LowerShardBoundary was
returning "lowerBoundIndex + 1", where lowerBoundIndex is
inclusive shard index used during binary seach.
On the other hand, since lowerBoundIndex is an inclusive
index, we should just return lowerBoundIndex instead of
doing "+ 1". Before this commit, we were missing leftmost
shard in such queries.
* Remove useless conditional branches
The branch that we delete from UpperShardBoundary was obviously useless.
The other one in LowerShardBoundary became useless after we remove "+ 1"
from there.
This indeed is another proof of what & how we are fixing with this pr.
* Improve comments and add more
* Add some tests for upper bound calculation too
* Add parameter to cleanup metadata
* Set clear metadata default to true
* Add test for clearing metadata
* Separate test file for start/stop metadata syncing
* Fix stop_sync bug for secondary nodes
* Use PreventInTransactionBlock
* DRemovedebuggiing logs
* Remove relation not found logs from mx test
* Revert localGroupId when doing stop_sync
* Move metadata sync test to mx schedule
* Add test with name that needs to be quoted
* Add test for views and matviews
* Add test for distributed table with custom type
* Add comments to test
* Add test with stats, indexes and constraints
* Fix matview test
* Add test for dropped column
* Add notice messages to stop_metadata_sync
* Add coordinator check to stop metadat sync
* Revert local_group_id only if clearMetadata is true
* Add a final check to see the metadata is sane
* Remove the drop verbosity in test
* Remove table description tests from sync test
* Add stop sync to coordinator test
* Change the order in stop_sync
* Add test for hybrid (columnar+heap) partitioned table
* Change error to notice for stop sync to coordinator
* Sync at the end of the test to prevent any failures
* Add test case in a transaction block
* Remove relation not found tests
Ignore orphaned shards in more places
Only use active shard placements in RouterInsertTaskList
Use IncludingOrphanedPlacements in some more places
Fix comment
Add tests
The name and comment of this function did not indicate that it only
really could detect locally accessible citus local tables. This fixes
that, while also cleaning up the function a bit.
* Alter seq type when we first use the seq in a dist table
* Don't allow type changes when seq is used in dist table
* ALTER SEQUENCE propagation
* Tests for ALTER SEQUENCE propagation
* Relocate AlterSequenceType and ensure dependencies for sequence
* Support for citus local tables, and other fixes
* Final formatting
With the previous version of this check we would disallow distributed
tables that did not have a colocationid, to have a foreign key to a
reference table. This fixes that, since there's no reason to disallow
that.
Originally ReplicateShardToNode was meant for
`upgrade_to_reference_table`, which required handling of existing inactive
placements. These days `upgrade_to_reference_table` is deprecated and
cannot be used anymore. Now that we have SHARD_STATE_TO_DELETE too, this
left over code seemed error prone. So this removes support for
activating inactive reference table placemements, since these should not
be possible. If it finds a non active reference table placement anyway
it now errors out.
This also removes a few outdated comments related to `upgrade_to_refeference_table`.
Moving shards of reference tables was possible in at least one case:
```sql
select citus_disable_node('localhost', 9702);
create table r(x int);
select create_reference_table('r');
set citus.replicate_reference_tables_on_activate = off;
select citus_activate_node('localhost', 9702);
select citus_move_shard_placement(102008, 'localhost', 9701, 'localhost', 9702);
```
This would then remove the reference table shard on the source, causing
all kinds of issues. This fixes that by disallowing all shard moves
except for shards of distributed tables.
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
The first and main issue was that we were putting absolute pointers into
shared memory for the `steps` field of the `ProgressMonitorData`. This
pointer was being overwritten every time a process requested the monitor
steps, which is the only reason why this even worked in the first place.
To quote a part of a relevant stack overflow answer:
> First of all, putting absolute pointers in shared memory segments is
> terrible terible idea - those pointers would only be valid in the
> process that filled in their values. Shared memory segments are not
> guaranteed to attach at the same virtual address in every process.
> On the contrary - they attach where the system deems it possible when
> `shmaddr == NULL` is specified on call to `shmat()`
Source: https://stackoverflow.com/a/10781921/2570866
In this case a race condition occurred when a second process overwrote
the pointer in between the first process its write and read of the steps
field.
This issue is fixed by not storing the pointer in shared memory anymore.
Instead we now calculate it's position every time we need it.
The second race condition I have not been able to trigger, but I found
it while investigating this. This issue was that we published the handle
of the shared memory segment, before we initialized the data in the
steps. This means that during initialization of the data, a call to
`get_rebalance_progress()` could read partial data in an unsynchronized
manner.
With local query caching, we try to avoid deparse/parse stages as the
operation is too costly.
However, we can do deparse/parse operations once per cached queries, right
before we put the plan into the cache. With that, we avoid edge
cases like (4239) or (5038).
In a sense, we are making the local plan caching behave similar for non-cached
local/remote queries, by forcing to deparse the query once.
A shard move would fail if there was an orphaned version of the shard on
the target node. With this change before actually fail, we try to clean
up orphaned shards to see if that fixes the issue.
Sometimes the background daemon doesn't cleanup orphaned shards quickly
enough. It's useful to have a UDF to trigger this removal when needed.
We already had a UDF like this but it was only used during testing. This
exposes that UDF to users. As a safety measure it cannot be run in a
transaction, because that would cause the background daemon to stop
cleaning up shards while this transaction is running.
* Add user-defined sequence support for MX
* Remove default part when propagating to workers
* Fix ALTER TABLE with sequences for mx tables
* Clean up and add tests
* Propagate DROP SEQUENCE
* Removing function parts
* Propagate ALTER SEQUENCE
* Change sequence type before propagation & cleanup
* Revert "Propagate ALTER SEQUENCE"
This reverts commit 2bef64c5a29f4e7224a7f43b43b88e0133c65159.
* Ensure sequence is not used in a different column with different type
* Insert select tests
* Propagate rename sequence stmt
* Fix issue with group ID cache invalidation
* Add ALTER TABLE ALTER COLUMN TYPE .. precaution
* Fix attnum inconsistency and add various tests
* Add ALTER SEQUENCE precaution
* Remove Citus hook
* More tests
Co-authored-by: Marco Slot <marco.slot@gmail.com>