DESCRIPTION: Support ALTER TABLE .. ADD PRIMARY KEY ... command
Before processing
> **ALTER TABLE ... ADD PRIMARY KEY ...**
command
1. Create a primary key name to use as the constraint name.
2. Change the **ALTER TABLE ... ADD PRIMARY KEY ...** command to into
**ALTER TABLE ... ADD CONSTRAINT \<constraint name> PRIMARY KEY ...**
form.
This is the only form we can specify a name for a primary key. If we run
ALTER TABLE .. ADD PRIMARY KEY, postgres
would create a constraint name internally in its own scheme. But the
problem is that we need to create constraint names
for shards in our own scheme which is \<constraint name>_\<shardid>.
Hence we need to create a name and send it to workers so that the
workers can append the shardid.
4. Run the changed command on the coordinator to make sure we are using
the same constraint name across the board.
5. Send the changed command to workers such that it is executed for the
main table as well as for the shards.
Fixes#6515.
One of our arbitrary config tests would sometimes fail like this in CI:
```diff
su_nationkey,
cust_nation,
l_year;
- supp_nation | cust_nation | l_year | revenue
----------------------------------------------------------------------
- 9 | C | 2008 | 3.00
-(1 row)
-
+ERROR: cannot connect to localhost:10212 to fetch intermediate results
+CONTEXT: while executing command on localhost:10211
```
When looking at the logs it seems like we were running out of
connections:
```
2022-08-23 14:03:52.856 UTC [28122] FATAL: sorry, too many clients already
2022-08-23 14:03:52.860 UTC [21027] ERROR: cannot connect to localhost:10212 to fetch intermediate results
```
This happened with `CitusThreeWorkersManyShards` config. This test on
purpose tries to push the limits of Citus quite far. And the
`ch_benchmarks_1` test is also run in parallel with a few more ones. So
it's not too weird that it ran out of connections. This doubles the
connection limit in the arbitrary config tests to hopefully not hit this
error again.
Example of failed test: https://app.circleci.com/pipelines/github/citusdata/citus/26365/workflows/7a1b5688-85cc-4bc3-ade5-9bd1d83cd0ed/jobs/747908/parallel-runs/1
We have fsync enabled for regular tests already in `pg_regress_multi.pl`.
This does the same for the arbitrary config tests.
On my machine this changes the runtime from the following command from
~37 to ~25 seconds:
```bash
make -C src/test/regress/ check-arbitrary-configs CONFIGS=CitusDefaultClusterConfig
```
(cherry picked from commit 4e93afd1f78854e1aaab63690c441b0b0598a82c)
(cherry picked from commit 0295fe2f5b)
(cherry picked from commit 878510725fab9cb6870b4504e0b1f055d7bbc68d)
We had 2 class definitions for CitusCacheManyConnectionsConfig, where
one of them was a copy of CitusSmallCopyBuffersConfig.
This commit leaves the intended class definition that configures caching
many connections, and removes the one that is a copy of another class
- [x] Add some more regression test coverage
- [x] Make sure returning works fine in case of
local execution + remote execution
(task->partiallyLocalOrRemote works as expected, already added tests)
- [x] Implement locking properly (and add isolation tests)
- [x] We do #shardcount round-trips on `SerializeNonCommutativeWrites`.
We made it a single round-trip.
- [x] Acquire locks for subselects on the workers & add isolation tests
- [x] Add a GUC to prevent modification from the workers, hence increase the
coordinator-only throughput
- The performance slightly drops (~%15), unless
`citus.allow_modifications_from_workers_to_replicated_tables`
is set to false
To run tests in parallel use:
```bash
make check-arbitrary-configs parallel=4
```
To run tests sequentially use:
```bash
make check-arbitrary-configs parallel=1
```
To run only some configs:
```bash
make check-arbitrary-base CONFIGS=CitusSingleNodeClusterConfig,CitusSmallSharedPoolSizeConfig
```
To run only some test files with some config:
```bash
make check-arbitrary-base CONFIGS=CitusSingleNodeClusterConfig EXTRA_TESTS=dropped_columns_1
```
To get a deterministic run, you can give the random's seed:
```bash
make check-arbitrary-configs parallel=4 seed=12312
```
The `seed` will be in the output of the run.
In our regular regression tests, we can see all the details about either planning or execution but this means
we need to run the same query under different configs/cluster setups again and again, which is not really maintanable.
When we don't care about the internals of how planning/execution is done but the correctness, especially with different configs
this infrastructure can be used.
With `check-arbitrary-configs` target, the following happens:
- a bunch of configs are loaded, which are defined in `config.py`. These configs have different settings such as different shard count, different citus settings, postgres settings, worker amount, or different metadata.
- For each config, a separate data directory is created for tests in `tmp_citus_test` with the config's name.
- For each config, `create_schedule` is run on the coordinator to setup the necessary tables.
- For each config, `sql_schedule` is run. `sql_schedule` is run on the coordinator if it is a non-mx cluster. And if it is mx, it is either run on the coordinator or a random worker.
- Tests results are checked if they match with the expected.
When tests results don't match, you can see the regression diffs in a config's datadir, such as `tmp_citus_tests/dataCitusSingleNodeClusterConfig`.
We also have a PostgresConfig which runs all the test suite with Postgres.
By default configs use regular user, but we have a config to run as a superuser as well.
So the infrastructure tests:
- Postgres vs Citus
- Mx vs Non-Mx
- Superuser vs regular user
- Arbitrary Citus configs
When you want to add a new test, you can add the create statements to `create_schedule` and add the sql queries to `sql_schedule`.
If you are adding Citus UDFs that should be a NO-OP for Postgres, make sure to override the UDFs in `postgres.sql`.
You can add your new config to `config.py`. Make sure to extend either `CitusDefaultClusterConfig` or `CitusMXBaseClusterConfig`.
On the CI, upon a failure, all logfiles will be uploaded as artifacts, so you can check the artifacts tab.
All the regressions will be shown as part of the job on CI.
In your local, you can check the regression diffs in config's datadirs as in `tmp_citus_tests/dataCitusSingleNodeClusterConfig`.