With this commit, we implemented some basic features of reference tables.
To start with, a reference table is
* a distributed table whithout a distribution column defined on it
* the distributed table is single sharded
* and the shard is replicated to all nodes
Reference tables follows the same code-path with a single sharded
tables. Thus, broadcast JOINs are applicable to reference tables.
But, since the table is replicated to all nodes, table fetching is
not required any more.
Reference tables support the uniqueness constraints for any column.
Reference tables can be used in INSERT INTO .. SELECT queries with
the following rules:
* If a reference table is in the SELECT part of the query, it is
safe join with another reference table and/or hash partitioned
tables.
* If a reference table is in the INSERT part of the query, all
other participating tables should be reference tables.
Reference tables follow the regular co-location structure. Since
all reference tables are single sharded and replicated to all nodes,
they are always co-located with each other.
Queries involving only reference tables always follows router planner
and executor.
Reference tables can have composite typed columns and there is no need
to create/define the necessary support functions.
All modification queries, master_* UDFs, EXPLAIN, DDLs, TRUNCATE,
sequences, transactions, COPY, schema support works on reference
tables as expected. Plus, all the pre-requisites associated with
distribution columns are dismissed.
We used to disable router planner and executor
when task executor is set to task-tracker.
This change enables router planning and execution
at all times regardless of task execution mode.
We are introducing a hidden flag enable_router_execution
to enable/disable router execution. Its default value is
true. User may disable router planning by setting it to false.
This commit fixes a bug when the SELECT target list includes a constant
value.
Previous behaviour of target list re-ordering:
* Iterate over the INSERT target list
* If it includes a Var, find the corresponding SELECT entry
and update its resno accordingly
* If it does not include a Var (which we only considered to be
DEFAULTs), generate a new SELECT target entry
* If the processed target entry count in SELECT target list is less
than the original SELECT target list (GROUP BY elements not included in
the SELECT target entry), add them in the SELECT target list and
update the resnos accordingly.
* However, this step was leading to add the CONST SELECT target entries
twice. The reason is that when CONST target list entries appear in the
SELECT target list, the INSERT target list doesn't include a Var. Instead,
it includes CONST as it does for DEFAULTs.
New behaviour of target list re-ordering:
* Iterate over the INSERT target list
* If it includes a Var, find the corresponding SELECT entry
and update its resno accordingly
* If it does not include a Var (which we consider to be
DEFAULTs and CONSTs on the SELECT), generate a new SELECT
target entry
* If any target entry remains on the SELECT target list which are resjunk,
(GROUP BY elements not included in the SELECT target entry), keep them
in the SELECT target list by updating the resnos.
Fixcitusdata/citus#886
The way postgres' explain hook is designed means that our hook is never
called during EXPLAIN EXECUTE. So, we special-case EXPLAIN EXECUTE by
catching it in the utility hook. We then replace the EXECUTE with the
original query and pass it back to Citus.
This commit adds INSERT INTO ... SELECT feature for distributed tables.
We implement INSERT INTO ... SELECT by pushing down the SELECT to
each shard. To compute that we use the router planner, by adding
an "uninstantiated" constraint that the partition column be equal to a
certain value. standard_planner() distributes that constraint to all
the tables where it knows how to push the restriction safely. An example
is that the tables that are connected via equi joins.
The router planner then iterates over the target table's shards,
for each we replace the "uninstantiated" restriction, with one that
PruneShardList() handles. Do so by replacing the partitioning qual
parameter added in multi_planner() with the current shard's
actual boundary values. Also, add the current shard's boundary values to the
top level subquery to ensure that even if the partitioning qual is
not distributed to all the tables, we never run the queries on the shards
that don't match with the current shard boundaries. Finally, perform the
normal shard pruning to decide on whether to push the query to the
current shard or not.
We do not support certain SQLs on the subquery, which are described/commented
on ErrorIfInsertSelectQueryNotSupported().
We also added some locking on the router executor. When an INSERT/SELECT command
runs on a distributed table with replication factor >1, we need to ensure that
it sees the same result on each placement of a shard. So we added the ability
such that router executor takes exclusive locks on shards from which the SELECT
in an INSERT/SELECT reads in order to prevent concurrent changes. This is not a
very optimal solution, but it's simple and correct. The
citus.all_modifications_commutative can be used to avoid aggressive locking.
An INSERT/SELECT whose filters are known to exclude any ongoing writes can be
marked as commutative. See RequiresConsistentSnapshot() for the details.
We also moved the decison of whether the multiPlan should be executed on
the router executor or not to the planning phase. This allowed us to
integrate multi task router executor tasks to the router executor smoothly.
The necessity for this functionality comes from the fact that ruleutils.c is not supposed to be
used on "rewritten" queries (i.e. ones that have been passed through QueryRewrite()).
Query rewriting is the process in which views and such are expanded,
and, INSERT/UPDATE targetlists are reordered to match the physical order,
defaults etc. For the details of reordeing, see transformInsertRow().
Adds support for PostgreSQL 9.6 by copying in the requisite ruleutils
file and refactoring the out/readfuncs code to flexibly support the
old-style copy/pasted out/readfuncs (prior to 9.6) or use extensible
node APIs (in 9.6 and higher).
Most version-specific code within this change is only needed to set new
fields in the AggRef nodes we build for aggregations. Version-specific
test output files were added in certain cases, though in most they were
not necessary. Each such file begins by e.g. printing the major version
in order to clarify its purpose.
The comment atop citus_nodes.h details how to add support for new nodes
for when that becomes necessary.
This commit completes having support in Citus by adding having support for
real-time and task-tracker executors. Multiple tests are added to regression
tests to cover new supported queries with having support.
So far placements were assigned an Oid, but that was just used to track
insertion order. It also did so incompletely, as it was not preserved
across changes of the shard state. The behaviour around oid wraparound
was also not entirely as intended.
The newly introduced, explicitly assigned, IDs are preserved across
shard-state changes.
The prime goal of this change is not to improve ordering of task
assignment policies, but to make it easier to reference shards. The
newly introduced UpdateShardPlacementState() makes use of that, and so
will the in-progress connection and transaction management changes.
Related to #786
This change adds the `pg_dist_node` table that contains the information
about the workers in the cluster, replacing the previously used
`pg_worker_list.conf` file (or the one specified with `citus.worker_list_file`).
Upon update, `pg_worker_list.conf` file is read and `pg_dist_node` table is
populated with the file's content. After that, `pg_worker_list.conf` file
is renamed to `pg_worker_list.conf.obsolete`
For adding and removing nodes, the change also includes two new UDFs:
`master_add_node` and `master_remove_node`, which require superuser
permissions.
'citus.worker_list_file' guc is kept for update purposes but not used after the
update is finished.
count_agg_clause *adds* the cost of the aggregates to the state
variable, it doesn't reinitialize it. That is intentional, as it is used
to incrementally add costs in some places.
is now a `::regtype` using the qualified name of the column type,
not the column type OID which may differ between master/worker nodes.
Test coverage of a hash reparitition using a UDT as the join column.
Note that the UDFs `worker_hash_partition_table` and `worker_range_partition_table`
are unchanged, and rightly expect an OID for the column type; but the
planner code building the commands now allows for `::regtype` casting
to do its magic.
Fixescitusdata/citus#111.
This commit enables to create different worker and master temporary folders.
This change is important for citus-mx on task-tracker execution. In simple words,
on citus-mx, the worker could actually be reponsible for the master tasks as well.
Prior to this change, both master and worker logic on task-tracker executor was
accessing and using the same files for different purposes which was dangerous on
certain cases (i.e., when task_tracker_delay is low).
Before this change, count on a distributed returned NULL if all shards
were pruned away, because on the master we replace with count(..) call
with a sum(..) call to sum the counts from the shards. However, sum
returns NULL when there are no rows, whereas count is expected to return
0.
In subquery pushdown, we allow outer joins if the join condition is on the
partition columns. WhereClauseList() used to return all join conditions including
outer joins. However, this has been changed with a commit related to outer join
support on regular queries. With this commit, we refactored ExtractFromExpressionWalker()
to return two lists of qualifiers. The first list is for inner join and filter
clauses and the second list is for outer join clauses. Therefore, we can also
use outer join clauses to check subquery pushdown prerequisites.
We remove schema name parameter from worker_fetch_foreign_file and
worker_fetch_regular_table functions. We now send schema name
concatanated with table name.
Fixes#676
We added old versions (i.e. without schema name) of worker_apply_shard_ddl_command,
worker_fetch_foreign_file and worker_fetch_regular_table back. During function call
of one of these functions, we set schema name as public schema and call the newer
version of the functions.
We can now support richer set of queries in router planner.
This allow us to support CTEs, joins, window function, subqueries
if they are known to be executed at a single worker with a single
task (all tables are filtered down to a single shard and a single
worker contains all table shards referenced in the query).
Fixes : #501
Fixes#555
Before this change, we were resolving HLL function and type Oid without qualified name.
Now we find the schema name where HLL objects are stored and generate qualified names for
each objects.
Similar fix is also applied for cstore_table_size function call.
Fixes#394
This change adds LIMIT/OFFSET support for non router-plannable
distributed queries.
In cases that we can push the LIMIT down, we add the OFFSET value to
that LIMIT in the worker queries. When a query with LIMIT x OFFSET y is issued,
the query is propagated to the workers as LIMIT (x+y) OFFSET 0, and on the
master table, the original LIMIT and OFFSET values are used. With this change,
we can use OFFSET wherever we can use LIMIT.
- Enables using VOLATILE functions (like nextval()) in INSERT queries
- Enables using STABLE functions (like now()) targetLists and joinTrees
UPDATE and INSERT can now contain non-immutable functions. INSERT can contain any kind of
expression, while UPDATE can contain any STABLE function, so long as a Var is not passed
into the STABLE function, even indirectly. UPDATE TagetEntry's can now also include Vars.
There's an exception, CASE/COALESCE statements may not contain mutable functions.
Functions calls in master_modify_multiple_shards are also evaluated.
It turns out some tests exercised this behavior, but removing it should
have no ill effects. Besides, both copy and INSERT disallow NULLs in a
table's partition column.
Fixes a bug where anti-joins on hash-partitioned distributed tables
would incorrectly prune shards early, result in incorrect results (test
included).
The old targetlist wasn't used so far, but the upcoming RETURNING
support relies on it.
This also allows to get rid of some crufty code in
multi_executor.c:multi_ExecutorStart(), which used the worker query's
targetlist instead of the main statement's (which didn't have one up to
now).
The targetlist contains TargetEntrys containing expressions, not
expressions directly. That didn't matter so far, but with the upcoming
RETURNING support, the targetlist is inspected to build a TupleDesc.
ExecCleanTypeFromTL hits an assert when looking at something that's not
a TargetEntry.
Mark the entry as resjunk, so it's not actually used.
For CITUS_RTE_RELATION type fragments, reloading shardIntervals from the
database is rather expensive. So store a pointer to the full shard
interval, instead of just the shard id. There's no new memory lifetime
hazards here, because we already passed a pointer to the shardInterval's
->shardId field around.
The plan time for the query in issue #607 goes from 2889 ms to 106 ms.
with this change.
By far the most expensive part of ShardIntervalsOverlap() is computing
the function to use to determine overlap. Luckily we already have that
computed and cached.
The plan time for the query in issue #607 goes from 8764 ms to 2889 ms
with this change.