DESCRIPTION: Fixes deadlock with transaction recovery that is possible
during Citus upgrades.
Fixes#7875.
This commit addresses two interrelated deadlock issues uncovered during Citus
upgrades:
1. Local Deadlock:
- **Problem:**
In `RecoverWorkerTransactions()`, a new connection is created for each worker
node to perform transaction recovery by locking the
`pg_dist_transaction` catalog table until the end of the transaction. When
`RecoverTwoPhaseCommits()` calls this function for each worker node, the order
of acquiring locks on `pg_dist_authinfo` and `pg_dist_transaction` can alternate.
This reversal can lead to a deadlock if any concurrent process requires locks on
these tables.
- **Fix:**
Pre-establish all worker node connections upfront so that
`RecoverWorkerTransactions()` operates with a single, consistent connection.
This ensures that locks on `pg_dist_authinfo` and `pg_dist_transaction` are always
acquired in the correct order, thereby preventing the local deadlock.
2. Distributed Deadlock:
- **Problem:**
After resolving the local deadlock, a distributed deadlock issue emerges. The
maintenance daemon calls `RecoverWorkerTransactions()` on each worker node—
including the local node—which leads to a complex locking sequence:
- A RowExclusiveLock is taken on the `pg_dist_transaction` table in
`RecoverWorkerTransactions()`.
- An update extension then tries to acquire an AccessExclusiveLock on the same
table, getting blocked by the RowExclusiveLock.
- A subsequent query (e.g., a SELECT on `pg_prepared_xacts`) issued using a
separate connection on the local node gets blocked due to locks held during a
call to `BuildCitusTableCacheEntry()`.
- The maintenance daemon waits for this query, resulting in a circular wait and
stalling the entire cluster.
- **Fix:**
Avoid cache lookups for internal PostgreSQL tables by implementing an early bailout
for relation IDs below `FirstNormalObjectId` (system objects). This eliminates
unnecessary calls to `BuildCitusTableCache`, reducing lock contention and mitigating
the distributed deadlock.
Furthermore, this optimization improves performance in fast
connect→query_catalog→disconnect cycles by eliminating redundant
cache creation and lookups.
3. Also reverts the commit that disabled the relevant test cases.
As of this commit, after recovering the remote transactions, now we release the lock
on pg_dist_transaction while closing it to avoid deadlocks that might occur because
of trying to acquire a lock on pg_dist_authinfo while holding a lock on
pg_dist_transaction. Such a scenario can only cause a deadlock if another transaction
is trying to acquire a strong lock on pg_dist_transaction while holding a lock on
pg_dist_authinfo. As of today, we (implicitly) acquire a strong lock on
pg_dist_transaction only when upgrading Citus to 11.3-1 and this happens when creating
a REPLICA IDENTITY on pg_dist_transaction.
And regardless of the code-path we are in, it should be okay to release the lock there
because all we do after that point is to abort the prepared transactions that are not
part of an in-progress distributed transaction and releasing the lock before doing so
should be just fine.
This also changes the blocking behavior between citus_create_restore_point and the
transaction recovery code-path in the sense that now citus_create_restore_point doesn't
until transaction recovery completes aborting the prepared transactions that are not
part of an in-progress distributed transaction. However, this should be fine because
even before this was possible, e.g., if transaction recovery fails to open a remote
connection to a node.
This is prep work for successful compilation with PG17
PG17added foreach_ptr, foreach_int and foreach_oid macros
Relevant PG commit
14dd0f27d7cd56ffae9ecdbe324965073d01a9ff
14dd0f27d7
We already have these macros, but they are different with the
PG17 ones because our macros take a DECLARED variable, whereas
the PG16 macros declare a locally-scoped loop variable themselves.
Hence I am renaming our macros to foreach_declared_
I am separating this into its own PR since it touches many files. The
main compilation PR is https://github.com/citusdata/citus/pull/7699
Fixes https://github.com/citusdata/citus/issues/7536.
Note to reviewer:
Before this commit, the following results in an assertion failure when
executed locally and this won't be the case anymore:
```console
make -C src/test/regress/ check-citus-upgrade-local citus-old-version=v10.2.0
```
Note that this doesn't happen on CI as we don't enable assertions there.
---------
Co-authored-by: Jelte Fennema-Nio <jelte.fennema@microsoft.com>
DESCRIPTION: Adds support for 2PC from non-Citus main databases
This PR only adds support for `CREATE USER` queries, other queries need
to be added. But it should be simple because this PR creates the
underlying structure.
Citus main database is the database where the Citus extension is
created. A non-main database is all the other databases that are in the
same node with a Citus main database.
When a `CREATE USER` query is run on a non-main database we:
1. Run `start_management_transaction` on the main database. This
function saves the outer transaction's xid (the non-main database
query's transaction id) and marks the current query as main db command.
2. Run `execute_command_on_remote_nodes_as_user("CREATE USER
<username>", <username to run the command>)` on the main database. This
function creates the users in the rest of the cluster by running the
query on the other nodes. The user on the current node is created by the
query on the outer, non-main db, query to make sure consequent commands
in the same transaction can see this user.
3. Run `mark_object_distributed` on the main database. This function
adds the user to `pg_dist_object` in all of the nodes, including the
current one.
This PR also implements transaction recovery for the queries from
non-main databases.
This change adds a script to programatically group all includes in a
specific order. The script was used as a one time invocation to group
and sort all includes throught our formatted code. The grouping is as
follows:
- System includes (eg. `#include<...>`)
- Postgres.h (eg. `#include "postgres.h"`)
- Toplevel imports from postgres, not contained in a directory (eg.
`#include "miscadmin.h"`)
- General postgres includes (eg . `#include "nodes/..."`)
- Toplevel citus includes, not contained in a directory (eg. `#include
"citus_verion.h"`)
- Columnar includes (eg. `#include "columnar/..."`)
- Distributed includes (eg. `#include "distributed/..."`)
Because it is quite hard to understand the difference between toplevel
citus includes and toplevel postgres includes it hardcodes the list of
toplevel citus includes. In the same manner it assumes anything not
prefixed with `columnar/` or `distributed/` as a postgres include.
The sorting/grouping is enforced by CI. Since we do so with our own
script there are not changes required in our uncrustify configuration.
* Not take ShareUpdateExlusiveLock on pg_dist_transaction
We were taking ShareUpdateExlusiveLock on pg_dist_transaction during
recovery to prevent multiple recoveries happening concurrenly. VACUUM(
not FULL) also takes ShareUpdateExclusiveLock, and they can conflict. It
seems that VACUUM will skip the table if there is a conflicting lock
already taken unless it is doing the vacuum to prevent id wraparound, in
which case there can be a deadlock. I guess the deadlock happens if:
- VACUUM takes a lock on pg_dist_transaction and is done for id
wraparound problem
- The transaction in the maintenance tries to take a lock but
cannot as that conflicts with the lock acquired by VACUUM
- The transaction in the maintenance daemon has a very old xid hence
VACUUM cannot proceed.
If we take a row exclusive lock in transaction recovery then it wouldn't
conflict with VACUUM hence it could proceed so the deadlock would be
resolved. To prevent concurrent transaction recoveries happening, an
advisory lock is taken with ShareUpdateExlusiveLock as before.
* Use CITUS_OPERATIONS tag
CMDTAG_SELECT exists in PG12 hence defining a MACRO such as
CMDTAG_SELECT -> "SELECT" is not possible. I chose CMDTAG_SELECT_COMPAT
because with the COMPAT suffix it is explicit that it maps to different
things in different versions and also has a less chance of mapping
something irrevelant. For example if we used SELECT as a macro, then it
would map every SELECT to whatever it is mapping to, which might have
unexpected/undesired behaviour.
With PG13 heap_* (heap_open, heap_close etc) are replaced with table_*
(table_open, table_close etc).
It is better to use the new table access methods in the codebase and
define the macros for the previous versions as we can easily remove the
macro without having to change the codebase when we drop the support for
the old version.
Commits that introduced this change on Postgres:
f25968c49697db673f6cd2a07b3f7626779f1827
e0c4ec07284db817e1f8d9adfb3fffc952252db0
4b21acf522d751ba5b6679df391d5121b6c4a35f
Command to see relevant commits on Postgres side:
git log --all --grep="heap_open"
- changes in ruleutils_11.c is reflected
- vacuum statement api change is handled. We now allow
multi-table vacuum commands.
- some other function header changes are reflected
- api conflicts between PG11 and earlier versions
are handled by adding shims in version_compat.h
- various regression tests are fixed due output and
functionality in PG1
- no change is made to support new features in PG11
they need to be handled by new commit
- master_add_node enforces that there is only one primary per group
- there's also a trigger on pg_dist_node to prevent multiple primaries
per group
- functions in metadata cache only return primary nodes
- Rename ActiveWorkerNodeList -> ActivePrimaryNodeList
- Rename WorkerGetLive{Node->Group}Count()
- Refactor WorkerGetRandomCandidateNode
- master_remove_node only complains about active shard placements if the
node being removed is a primary.
- master_remove_node only deletes all reference table placements in the
group if the node being removed is the primary.
- Rename {Node->NodeGroup}HasShardPlacements, this reflects the behavior it
already had.
- Rename DeleteAllReferenceTablePlacementsFrom{Node->NodeGroup}. This also
reflects the behavior it already had, but the new signature forces the
caller to pass in a groupId
- Rename {WorkerGetLiveGroup->ActivePrimaryNode}Count
Adds support for PostgreSQL 10 by copying in the requisite ruleutils
and updating all API usages to conform with changes in PostgreSQL 10.
Most changes are fairly minor but they are numerous. One particular
obstacle was the change in \d behavior in PostgreSQL 10's psql; I had
to add SQL implementations (views, mostly) to mimic the pre-10 output.
With this change we add an option to add a node without replicating all reference
tables to that node. If a node is added with this option, we mark the node as
inactive and no queries will sent to that node.
We also added two new UDFs;
- master_activate_node(host, port):
- marks node as active and replicates all reference tables to that node
- master_add_inactive_node(host, port):
- only adds node to pg_dist_node
A small refactor which pulls some code out of `RecoverWorkerTransactions`
and into `remote_commands.c`. This code block currently only occurs in
`RecoverWorkerTransactions` but will be useful to other functions
shortly.
Unfortunately we couldn't call it `ExecuteRemoteCommand`, that name was
already taken.