So far router planner had encapsulated different functionality in
MultiRouterPlanCreate. Modifications always go through router, selects
sometimes. Modifications always error out if the query is unsupported,
selects return NULL. Especially the error handling is a problem for
the upcoming extension of prepared statement support.
Split MultiRouterPlanCreate into CreateRouterPlan and
CreateModifyPlan, and change them to not throw errors.
Instead errors are now reported by setting the new
MultiPlan->plannigError.
Callers of router planner functionality now have to throw errors
themselves if desired, but also can skip doing so.
This is a pre-requisite for expanding prepared statement support.
While touching all those lines, improve a number of error messages by
getting them closer to the postgres error message guidelines.
We used to disable router planner and executor
when task executor is set to task-tracker.
This change enables router planning and execution
at all times regardless of task execution mode.
We are introducing a hidden flag enable_router_execution
to enable/disable router execution. Its default value is
true. User may disable router planning by setting it to false.
Fixcitusdata/citus#886
The way postgres' explain hook is designed means that our hook is never
called during EXPLAIN EXECUTE. So, we special-case EXPLAIN EXECUTE by
catching it in the utility hook. We then replace the EXECUTE with the
original query and pass it back to Citus.
This commit adds INSERT INTO ... SELECT feature for distributed tables.
We implement INSERT INTO ... SELECT by pushing down the SELECT to
each shard. To compute that we use the router planner, by adding
an "uninstantiated" constraint that the partition column be equal to a
certain value. standard_planner() distributes that constraint to all
the tables where it knows how to push the restriction safely. An example
is that the tables that are connected via equi joins.
The router planner then iterates over the target table's shards,
for each we replace the "uninstantiated" restriction, with one that
PruneShardList() handles. Do so by replacing the partitioning qual
parameter added in multi_planner() with the current shard's
actual boundary values. Also, add the current shard's boundary values to the
top level subquery to ensure that even if the partitioning qual is
not distributed to all the tables, we never run the queries on the shards
that don't match with the current shard boundaries. Finally, perform the
normal shard pruning to decide on whether to push the query to the
current shard or not.
We do not support certain SQLs on the subquery, which are described/commented
on ErrorIfInsertSelectQueryNotSupported().
We also added some locking on the router executor. When an INSERT/SELECT command
runs on a distributed table with replication factor >1, we need to ensure that
it sees the same result on each placement of a shard. So we added the ability
such that router executor takes exclusive locks on shards from which the SELECT
in an INSERT/SELECT reads in order to prevent concurrent changes. This is not a
very optimal solution, but it's simple and correct. The
citus.all_modifications_commutative can be used to avoid aggressive locking.
An INSERT/SELECT whose filters are known to exclude any ongoing writes can be
marked as commutative. See RequiresConsistentSnapshot() for the details.
We also moved the decison of whether the multiPlan should be executed on
the router executor or not to the planning phase. This allowed us to
integrate multi task router executor tasks to the router executor smoothly.
The necessity for this functionality comes from the fact that ruleutils.c is not supposed to be
used on "rewritten" queries (i.e. ones that have been passed through QueryRewrite()).
Query rewriting is the process in which views and such are expanded,
and, INSERT/UPDATE targetlists are reordered to match the physical order,
defaults etc. For the details of reordeing, see transformInsertRow().
We can now support richer set of queries in router planner.
This allow us to support CTEs, joins, window function, subqueries
if they are known to be executed at a single worker with a single
task (all tables are filtered down to a single shard and a single
worker contains all table shards referenced in the query).
Fixes : #501
Fixes#10
This change creates a new UDF: master_modify_multiple_shards
Parameters:
modify_query: A simple DELETE or UPDATE query as a string.
The UDF is similar to the existing master_apply_delete_command UDF.
Basically, given the modify query, it prunes the shard list, re-constructs
the query for each shard and sends the query to the placements.
Depending on the value of citus.multi_shard_commit_protocol, the commit
can be done in one-phase or two-phase manner.
Limitations:
* It cannot be called inside a transaction block
* It only be called with simple operator expressions (like Single Shard Modify)
Sample Usage:
```
SELECT master_modify_multiple_shards(
'DELETE FROM customer_delete_protocol WHERE c_custkey > 500 AND c_custkey < 500');
```
- non-router plannable queries can be executed
by router executor if they satisfy the criteria
- router executor is removed from configuration,
now task executor can not be set to router
- removed some tests that error out for router executor