This UDF returns a shard placement from cache given shard id and placement id. At the
moment it iterates over all shard placements of given shard by ShardPlacementList and
searches given placement id in that list, which is not a good solution performance-wise.
However, currently, this function will be used only when there is a failed transaction.
If a need arises we can optimize this function in the future.
So far router planner had encapsulated different functionality in
MultiRouterPlanCreate. Modifications always go through router, selects
sometimes. Modifications always error out if the query is unsupported,
selects return NULL. Especially the error handling is a problem for
the upcoming extension of prepared statement support.
Split MultiRouterPlanCreate into CreateRouterPlan and
CreateModifyPlan, and change them to not throw errors.
Instead errors are now reported by setting the new
MultiPlan->plannigError.
Callers of router planner functionality now have to throw errors
themselves if desired, but also can skip doing so.
This is a pre-requisite for expanding prepared statement support.
While touching all those lines, improve a number of error messages by
getting them closer to the postgres error message guidelines.
It can be useful, e.g. in the upcoming prepared statement support, to
be able to return an error from a function that is not raised
immediately, but can later be thrown. That allows e.g. to attempt to
plan a statment using different methods and to create good error
messages in each planner, but to only error out after all planners
have been run.
To enable that create support for deferred error messages that can be
created (supporting errorcode, message, detail, hint) in one function,
and then thrown in different place.
This change adds support for serial columns to be used with MX tables.
Prior to this change, sequences of serial columns were created in all
workers (for being able to create shards) but never used. With MX, we
need to set the sequences so that sequences in each worker create
unique values. This is done by setting the MINVALUE, MAXVALUE and
START values of the sequence.
With this change, we start to delete placement of reference tables at given worker node
after master_remove_node UDF call. We remove placement metadata at master node but we do
not drop actual shard from the worker node. There are two reasons for that decision,
first, it is not critical to DROP the shards in the workers because Citus will ignore them
as long as node is removed from cluster and if we add that node back to cluster we will
DROP and recreate all reference tables. Second, if node is unreachable, it becomes
complicated to cover failure cases and have a transaction support.
Enables use views within distributed queries.
User can create and use a view on distributed tables/queries
as he/she would use with regular queries.
After this change router queries will have full support for views,
insert into select queries will support reading from views, not
writing into. Outer joins would have a limited support, and would
error out at certain cases such as when a view is in the inner side
of the outer join.
Although PostgreSQL supports writing into views under certain circumstances.
We disallowed that for distributed views.
So far we've reloaded them frequently. Besides avoiding that cost -
noticeable for some workloads with large shard counts - it makes it
easier to add information to ShardPlacements that help us make
placement_connection.c colocation aware.
Doing so requires adding a mapping from shardId to the cache
entries. For that metadata_cache.c now maintains an additional
hashtable. That hashtable only references shard intervals in the
dist table cache.
Previously the function was getting too large. Thus this splits the
function into separate parts for looking up the cache entry and
building the cache contents.
With this change, we start to replicate all reference tables to the new node when new node
is added to the cluster with master_add_node command. We also update replication factor
of reference table's colocation group.
With this change we introduce new UDF, upgrade_to_reference_table, which can be used to
upgrade existing broadcast tables reference tables. For upgrading, we require that given
table contains only one shard.
Renamed FindShardIntervalIndex() to ShardIndex() and added binary search
capability. It used to assume that hash partition tables are always
uniformly distributed which is not true if upcoming tenant isolation
feature is applied. This commit also reduces code duplication.
* Add get_distribution_value_shardid UDF
With this UDF users can now map given distribution value to shard id. We mostly hide
shardids from users to prevent unnecessary complexity but some power users might need
to know about which entry/value is stored in which shard for maintanence purposes.
Signature of this UDF is as follows;
bigint get_distribution_value_shardid(table_name regclass, distribution_value anyelement)
With this commit, we implemented some basic features of reference tables.
To start with, a reference table is
* a distributed table whithout a distribution column defined on it
* the distributed table is single sharded
* and the shard is replicated to all nodes
Reference tables follows the same code-path with a single sharded
tables. Thus, broadcast JOINs are applicable to reference tables.
But, since the table is replicated to all nodes, table fetching is
not required any more.
Reference tables support the uniqueness constraints for any column.
Reference tables can be used in INSERT INTO .. SELECT queries with
the following rules:
* If a reference table is in the SELECT part of the query, it is
safe join with another reference table and/or hash partitioned
tables.
* If a reference table is in the INSERT part of the query, all
other participating tables should be reference tables.
Reference tables follow the regular co-location structure. Since
all reference tables are single sharded and replicated to all nodes,
they are always co-located with each other.
Queries involving only reference tables always follows router planner
and executor.
Reference tables can have composite typed columns and there is no need
to create/define the necessary support functions.
All modification queries, master_* UDFs, EXPLAIN, DDLs, TRUNCATE,
sequences, transactions, COPY, schema support works on reference
tables as expected. Plus, all the pre-requisites associated with
distribution columns are dismissed.
This includes basic infrastructure for logging of commands sent to
remote/worker nodes. Note that this has no effect as of yet, since no
callers are converted to the new infrastructure.
Connections are tracked and released by integrating into postgres'
transaction handling. That allows to to use connections without having
to resort to having to disable interrupts or using PG_TRY/CATCH blocks
to avoid leaking connections.
This is intended to eventually replace multi_client_executor.c and
connection_cache.c, and to provide the basis of a centralized
transaction management.
The newly introduced transaction hook should, in the future, be the only
one in citus, to allow for proper ordering between operations. For now
this central handler is responsible for releasing connections and
resetting XactModificationLevel after a transaction.
In ErrorIfShardPlacementsNotColocated(), while checking if shards are colocated,
error out if matching shard intervals have different number of shard placements.
Added a new UDF, mark_tables_colocated(), to colocate tables with the same
configuration (shard count, shard replication count and distribution column type).
This forces prepared statements to be re-planned after changes of the
placement metadata. There's some locking issues remaining, but that's a
a separate task.
Also add regression tests verifying that invalidations take effect on
prepared statements.
This commit adds INSERT INTO ... SELECT feature for distributed tables.
We implement INSERT INTO ... SELECT by pushing down the SELECT to
each shard. To compute that we use the router planner, by adding
an "uninstantiated" constraint that the partition column be equal to a
certain value. standard_planner() distributes that constraint to all
the tables where it knows how to push the restriction safely. An example
is that the tables that are connected via equi joins.
The router planner then iterates over the target table's shards,
for each we replace the "uninstantiated" restriction, with one that
PruneShardList() handles. Do so by replacing the partitioning qual
parameter added in multi_planner() with the current shard's
actual boundary values. Also, add the current shard's boundary values to the
top level subquery to ensure that even if the partitioning qual is
not distributed to all the tables, we never run the queries on the shards
that don't match with the current shard boundaries. Finally, perform the
normal shard pruning to decide on whether to push the query to the
current shard or not.
We do not support certain SQLs on the subquery, which are described/commented
on ErrorIfInsertSelectQueryNotSupported().
We also added some locking on the router executor. When an INSERT/SELECT command
runs on a distributed table with replication factor >1, we need to ensure that
it sees the same result on each placement of a shard. So we added the ability
such that router executor takes exclusive locks on shards from which the SELECT
in an INSERT/SELECT reads in order to prevent concurrent changes. This is not a
very optimal solution, but it's simple and correct. The
citus.all_modifications_commutative can be used to avoid aggressive locking.
An INSERT/SELECT whose filters are known to exclude any ongoing writes can be
marked as commutative. See RequiresConsistentSnapshot() for the details.
We also moved the decison of whether the multiPlan should be executed on
the router executor or not to the planning phase. This allowed us to
integrate multi task router executor tasks to the router executor smoothly.
Between restart (running the new code) and ALTER EXTENSION citus
UPGRADE there was an inconsistency where we assumed that
pg_dist_partition had the repmodel column set. Now we give it a default
value if the column doesn't exist yet.
With this change, we now push down foreign key constraints created during CREATE TABLE
statements. We also start to send foreign constraints during shard move along with
other DDL statements
Adds support for PostgreSQL 9.6 by copying in the requisite ruleutils
file and refactoring the out/readfuncs code to flexibly support the
old-style copy/pasted out/readfuncs (prior to 9.6) or use extensible
node APIs (in 9.6 and higher).
Most version-specific code within this change is only needed to set new
fields in the AggRef nodes we build for aggregations. Version-specific
test output files were added in certain cases, though in most they were
not necessary. Each such file begins by e.g. printing the major version
in order to clarify its purpose.
The comment atop citus_nodes.h details how to add support for new nodes
for when that becomes necessary.
This commit completes having support in Citus by adding having support for
real-time and task-tracker executors. Multiple tests are added to regression
tests to cover new supported queries with having support.
This change adds the required infrastructure about metadata snapshot from MX
codebase into Citus, mainly metadata_sync.c file and master_metadata_snapshot UDF.
So far placements were assigned an Oid, but that was just used to track
insertion order. It also did so incompletely, as it was not preserved
across changes of the shard state. The behaviour around oid wraparound
was also not entirely as intended.
The newly introduced, explicitly assigned, IDs are preserved across
shard-state changes.
The prime goal of this change is not to improve ordering of task
assignment policies, but to make it easier to reference shards. The
newly introduced UpdateShardPlacementState() makes use of that, and so
will the in-progress connection and transaction management changes.
Related to #786
This change adds the `pg_dist_node` table that contains the information
about the workers in the cluster, replacing the previously used
`pg_worker_list.conf` file (or the one specified with `citus.worker_list_file`).
Upon update, `pg_worker_list.conf` file is read and `pg_dist_node` table is
populated with the file's content. After that, `pg_worker_list.conf` file
is renamed to `pg_worker_list.conf.obsolete`
For adding and removing nodes, the change also includes two new UDFs:
`master_add_node` and `master_remove_node`, which require superuser
permissions.
'citus.worker_list_file' guc is kept for update purposes but not used after the
update is finished.
An interaction between ReraiseRemoteError and DML transaction support
causes segfaults:
* ReraiseRemoteError calls PurgeConnection, freeing a connection...
* That connection is still in the xactParticipantHash
At transaction end, the memory in the freed connection might happen to
pass the "is this connection OK?" check, causing us to try to send an
ABORT over that connection. By removing it from the transaction hash
before calling ReraiseRemoteError, we avoid this possibility.
Three changes here to get to true multi-statement, multi-relation DDL
transactions (same functionality pre-5.2, with benefits of atomicity):
1. Changed the multi-shard utility hook to always run (consistency
with router executor hook, removes ad-hoc "installed" boolean)
2. Change the global connection list in multi_shard_transaction to
instead be a hash; update related functions to operate on global
hash instead of local hash/global list
3. Remove check within DDL code to prevent subsequent DDL commands;
place unset/reset guard around call to ConnectToNode to permit
connecting to additional nodes after DDL transaction has begun
In addition, code has been added to raise an error if a ROLLBACK TO
SAVEPOINT is attempted (similar to router executor), and comprehensive
tests execute all multi-DDL scenarios (full success, user ROLLBACK, any
actual errors (say, duplicate index), partial failure (duplicate index
on one node but not others), partial COMMIT (one node fails), and 2PC
partial PREPARE (one node fails)). Interleavings with other commands
(DML, \copy) are similarly all covered.
To permit use with ZomboDB (https://github.com/zombodb/zombodb), two
changes were necessary:
1. Permit use of `tableoid` system column in queries
2. Extend relation names appearing in index expressions
The first is accomplished by simply changing the deparse logic to allow
system columns in queries destined for distributed tables. The latter
was slightly more complex, given that DDL extension currently occurs on
workers. But since indexes cannot reference tables other than the one
being indexed, it is safe to look for any relation reference ending in
a '*' character and extend their penultimate segments with a shard id.
This change also adds an error to prevent users from distributing any
relations using the WITH (OIDS) feature, which is unsupported.
Recent changes to DDL and transaction logic resulted in a "regression"
from the viewpoint of users. Previously, DDL commands were allowed in
multi-command transaction blocks, though they were not processed in any
actual transactional manner. We improved the atomicity of our DDL code,
but added a restriction that DDL commands themselves must not occur in
any BEGIN/END transaction block.
To give users back the original functionality (and improved atomicity)
we now keep track of whether a multi-command transaction has modified
data (DML) or schema (DDL). Interleaving the two modification types in
a single transaction is disallowed.
This first step simply permits a single DDL command in such a block,
admittedly an incomplete solution, but one which will permit us to add
full multi-DDL command support in a subsequent commit.
Text datums can't be directly accessed via the struct equivalence trick
used to access catalogs. That's because, as an optimization, they're
sometimes aligned to 1 byte ("text"'s alignment), and sometimes to 4
bytes. That depends on it being a short
varlena (cf. VARATT_NOT_PAD_BYTE) or not.
In the case at hand here, partkey became longer than 127 characters -
the boundary for short varlenas (cf. VARATT_CAN_MAKE_SHORT()). Thus it
became 4 byte/int aligned. Which lead to the direct struct access
accessing the wrong data.
The fix is simply to never access partkey that way - to enforce that,
hide partkey ehind the usual ifdef.
Fixes: #674
This adds support for SERIAL/BIGSERIAL column types. Because we now can
evaluate functions on the master (during execution), adding this is a
matter of ensuring the table creation step works properly.
To accomplish this, I've added some logic to detect sequences owned by
a table (i.e. those related to its columns). Simply creating a sequence
and using it in a default value is insufficient; users who do so must
ensure the sequence is owned by the column using it.
Fortunately, this is exactly what SERIAL and BIGSERIAL do, which is the
use case we're targeting with this feature. While testing this, I found
that worker_apply_shard_ddl_command actually adds shard identifiers to
sequence names, though I found no places that use or test this path. I
removed that code so that sequence names are not mutated and will match
those used by a SERIAL default value expression.
Our use of the new-to-9.5 CREATE SEQUENCE IF NOT EXISTS syntax means we
are dropping support for 9.4 (which is being done regardless, but makes
this change simpler). I've removed 9.4 from the Travis build matrix.
Some edge cases are possible in ALTER SEQUENCE, COPY FROM (on workers),
and CREATE SEQUENCE OWNED BY. I've added errors for each so that users
understand when and why certain operations are prohibited.
Allows the use of modification commands (INSERT/UPDATE/DELETE) within
transaction blocks (delimited by BEGIN and ROLLBACK/COMMIT), so long as
all modifications hit a subset of nodes involved in the first such com-
mand in the transaction. This does not circumvent the requirement that
each individual modification command must still target a single shard.
For instance, after sending BEGIN, a user might INSERT some rows to a
shard replicated on two nodes. Subsequent modifications can hit other
shards, so long as they are on one or both of these nodes.
SAVEPOINTs are supported, though if the user actually attempts to send
a ROLLBACK command that specifies a SAVEPOINT they will receive an
ERROR at the end of the topmost transaction.
Placements are only marked inactive if at least one replica succeeds
in a transaction where others fail. Non-atomic behavior is possible if
the shard targeted by the initial modification within a transaction has
a higher replication factor than another shard within the same block
and a node with the latter shard has a failure during the COMMIT phase.
Other methods of denoting transaction blocks (multi-statement commands
sent all at once and functions written in e.g. PL/pgSQL or other such
languages) are not presently supported; their treatment remains the
same as before.
Fixes#555
Before this change, we were resolving HLL function and type Oid without qualified name.
Now we find the schema name where HLL objects are stored and generate qualified names for
each objects.
Similar fix is also applied for cstore_table_size function call.
Fixes#215Fixes#267Fixes#502Fixes#556Fixes#557Fixes#560Fixes#568Fixes#623Fixes#624
With this change we schema-prefix table names, operator names and composite types.
Fixes#513
This change modifies the DDL Propagation logic so that DDL queries
are propagated via 2-Phase Commit protocol. This way, failures during
the execution of distributed DDL commands will not leave the table in
an intermediate state and the pending prepared transactions can be
commited manually.
DDL commands are not allowed inside other transaction blocks or functions.
DDL commands are performed with 2PC regardless of the value of
`citus.multi_shard_commit_protocol` parameter.
The workflow of the successful case is this:
1. Open individual connections to all shard placements and send `BEGIN`
2. Send `SELECT worker_apply_shard_ddl_command(<shardId>, <DDL Command>)`
to all connections, one by one, in a serial manner.
3. Send `PREPARE TRANSCATION <transaction_id>` to all connections.
4. Sedn `COMMIT` to all connections.
Failure cases:
- If a worker problem occurs before sending of all DDL commands is finished, then
all changes are rolled back.
- If a worker problem occurs after all DDL commands are sent but not after
`PREPARE TRANSACTION` commands are finished, then all changes are rolled back.
However, if a worker node is failed, then the prepared transactions in that worker
should be rolled back manually.
- If a worker problem occurs during `COMMIT PREPARED` statements are being sent,
then the prepared transactions on the failed workers should be commited manually.
- If master fails before the first 'PREPARE TRANSACTION' is sent, then nothing is
changed on workers.
- If master fails during `PREPARE TRANSACTION` commands are being sent, then the
prepared transactions on workers should be rolled back manually.
- If master fails during `COMMIT PREPARED` or `ROLLBACK PREPARED` commands are being
sent, then the remaining prepared transactions on the workers should be handled manually.
This change also helps with #480, since failed DDL changes no longer mark
failed placements as inactive.
- Enables using VOLATILE functions (like nextval()) in INSERT queries
- Enables using STABLE functions (like now()) targetLists and joinTrees
UPDATE and INSERT can now contain non-immutable functions. INSERT can contain any kind of
expression, while UPDATE can contain any STABLE function, so long as a Var is not passed
into the STABLE function, even indirectly. UPDATE TagetEntry's can now also include Vars.
There's an exception, CASE/COALESCE statements may not contain mutable functions.
Functions calls in master_modify_multiple_shards are also evaluated.
The only way we re-raise an error is if the raiseError flag is true, so
might as well purge connection in that block rather than independently
checking errorLevel.
There's not a ton of documentation about what CONTEXT lines should look
like, but this seems like the most dominant pattern. Similarly, users
should expect lowercase, non-period strings.
Fixes#10
This change creates a new UDF: master_modify_multiple_shards
Parameters:
modify_query: A simple DELETE or UPDATE query as a string.
The UDF is similar to the existing master_apply_delete_command UDF.
Basically, given the modify query, it prunes the shard list, re-constructs
the query for each shard and sends the query to the placements.
Depending on the value of citus.multi_shard_commit_protocol, the commit
can be done in one-phase or two-phase manner.
Limitations:
* It cannot be called inside a transaction block
* It only be called with simple operator expressions (like Single Shard Modify)
Sample Usage:
```
SELECT master_modify_multiple_shards(
'DELETE FROM customer_delete_protocol WHERE c_custkey > 500 AND c_custkey < 500');
```
This change renames the distributed transaction manager parameter from
citus.copy_transaction_manager to citus.multi_shard_commit_protocol.
Distributed transaction manager has been used only by the COPY on hash
partitioned tables but it can be used by upcoming features so, we needed
to rename so that its name do not contain a reference to COPY.
The change also includes renames like transaction_manager_options to
commit_protocol_options and TRANSACTION_MANAGER_1PC to COMMIT_PROTOCOL_1PC.
With this change, declaration of MultiShardCommitProtocol (was
CopyTransactionManager) is moved from multi_copy.c to multi_transaction.c.
Previously several commands, amongst them commands like
master_create_distributed_table(), were allowed for everyone. That's not
good: Even though citus currently requires superuser permissions, we
shouldn't allow non-superusers to perform actions as sensitive as making
a table distributed.
There's no checks on the worker_* functions, as these usually just punt
the action to underlying postgres functionality, which then perform the
necessary checks.
So far we've always used libpq defaults when connecting to workers; bar
special environment variables being set that'll always be the user that
started the server. That's not desirable because it prevents using
users with fewer privileges.
Thus change the various APIs creating connections to workers to always
use usernames. That means:
1) MultiClientConnect() needs to, optionally, accept a username
2) GetOrEstablishConnection(), including the underlying cache, need to
use the current user as part of the connection cache key. That way
connections for separate users are distinct, and we always use one
with the correct authorization.
3) The task tracker needs to keep track of the username associated with
a task, so it can use it when establishing connections outside the
originating session.
This commit adds a fast shard pruning path for INSERTs on
hash-partitioned tables. The rationale behind this change is
that if there exists a sorted shard interval array, a single
index lookup on the array allows us to find the corresponding
shard interval. As mentioned above, we need a sorted
(wrt shardminvalue) shard interval array. Thus, this commit
updates shardIntervalArray to sortedShardIntervalArray in the
metadata cache. Then uses the low-level API that is defined in
multi_copy to handle the fast shard pruning.
The performance impact of this change is more apparent as more
shards exist for a distributed table. Previous implementation
was relying on linear search through the shard intervals. However,
this commit relies on constant lookup time on shard interval
array. Thus, the shard pruning becomes less dependent on the
shard count.
When we notice that pg_dist_partition is being invalidated we assume
that the citus extension is being dropped and drop state such as
extensionLoaded and the cached oids of all the metadata tables.
This frees the user from needing to reconnect after running DROP
EXTENSION, so we also no longer send a warning message.
Prior to this change, performing a SELECT query without a target
list caused backend to crash.
Sample Query: SELECT FROM github_events; (without any * before FROM)
PostgreSQL:
```
--
(39599 rows)
```
Citus:
```
server closed the connection unexpectedly
This probably means the server terminated abnormally
before or while processing the request.
The connection to the server was lost. Attempting reset: Failed.
!>
```
The problem was an unnecessary Assert on column list in
SetRangeTblExtraData(citus_nodefuncs.c)
Though Citus' Task struct has a shardId field, it doesn't have the same
semantics as the one previously used in pg_shard code. The analogous
field in the Citus Task is anchorShardId. I've also added an argument
check to the relevant locking function to catch future locking attempts
which pass an invalid argument.
All citusdb references in
- extension, binary names
- file headers
- all configuration name prefixes
- error/warning messages
- some functions names
- regression tests
are changed to be citus.
The postgres_fdw extension has an extern function with an identical
signature, which can cause problems when both extensions are loaded.
A simple rename can fix this for now (this is the only function with)
such a conflict.