DESCRIPTION: Drop `SHARD_STATE_TO_DELETE` and use the cleanup records
instead
Drops the shard state that is used to mark shards as orphaned. Now we
insert cleanup records into `pg_dist_cleanup` so "orphaned" shards will
be dropped either by maintenance daemon or internal cleanup calls. With
this PR, we make the "cleanup orphaned shards" functions to be no-op, as
they would not be needed anymore.
This PR includes some naming changes about placement functions. We don't
need functions that filter orphaned shards, as there will be no orphaned
shards anymore.
We will also be introducing a small script with this PR, for users with
orphaned shards. We'll basically delete the orphaned shard entries from
`pg_dist_placement` and insert cleanup records into `pg_dist_cleanup`
for each one of them, during Citus upgrade.
We also have a lot of flakiness fixes in this PR.
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
DESCRIPTION: Defers cleanup after a failure in shard move or split
We don't need to do a cleanup in case of failure on a shard transfer or
split anymore. Because,
* Maintenance daemon will clean them up anyway.
* We trigger a cleanup at the beginning of shard transfers/splits.
* The cleanup on failure logic also can fail sometimes and instead of
the original error, we throw the error that is raised by the cleanup
procedure, and it causes confusion.
DESCRIPTION: Cleanup the shard on the target node in case of a
failed/aborted shard move
Inserts a cleanup record for the moved shard placement on the target
node. If the move operation succeeds, the record will be deleted. If
not, it will remain there to be cleaned up later.
fixes: #6580
DESCRIPTION: Create replication artifacts with unique names
We're creating replication objects with generic names. This disallows us
to enable parallel shard moves, as two operations might use the same
objects. With this PR, we'll create below objects with operation
specific names, by appending OparationId to the names.
* Subscriptions
* Publications
* Replication Slots
* Users created for subscriptions
When using multiline strings, we occasionally forget to add a single
space at the end of the first line. When this line is concatenated with
the next one, the resulting string has a missing space.
DESCRIPTION: Extend cleanup process for replication artifacts
This PR adds new cleanup record types for:
* Subscriptions
* Replication slots
* Publications
* Users created for subscriptions
We add records for these object types, to `pg_dist_cleanup` during
creation phase. Once the operation is done, in case of success or
failure, we iterate those records and drop the objects. With this PR we
will not be dropping any of these objects during the operation. In
short, we will always be deferring the drop.
One thing that's worth mentioning is that we sort cleanup records before
processing (dropping) them, because of dependency relations among those
objects, e.g a subscription might depend on a publication. Therefore, we
always drop subscriptions before publications.
We have some renames in this PR:
* `TryDropOrphanedShards` -> `TryDropOrphanedResources`
* `DropOrphanedShardsForCleanup` -> `DropOrphanedResourcesForCleanup`
* `run_try_drop_marked_shards` -> `run_try_drop_marked_resources`
as these functions now process replication artifacts as well.
This PR drops function `DropAllLogicalReplicationLeftovers` and its all
usages, since now we rely on the deferring drop mechanism.
When debugging issues it's quite useful to see the originating gpid in
the application_name of a query on a worker. This already happens for
most queries, but not for queries created by the rebalancer or by
run_command_on_worker. This adds a gpid to those two application_names
too.
Note, that if the GPID of the new application_names is different than
the current GPID of the backend the backend will continue to keep
the old gpid as its actual GPID. This PR is just meant to make sure
that the application_name is as useful as it can be for users to
look at. Updating of gpids will be done in a follow-up PR, and
adding gpids to all internal connections will make this easier.
DESCRIPTION: Drops GUC defer_drop_after_shard_split
DESCRIPTION: Drops GUC defer_drop_after_shard_move
Drop GUCs and related parts from the code.
Delete tests that specifically added for the GUCs.
Keep tests that can be used without the GUCs.
Update test output changes.
The motivation for this PR is to have an "always deferring" mechanism.
These two GUCs provide an option to not deferring dropping objects
during a shard move/split, and dropping them immediately. With this PR,
we will be always deferring dropping orphaned shards and other types of
objects.
We will have a separate PR to extend the deferred cleanup operation, so
that we would create records for deferred drop, for Subscriptions,
Publications, Replication Slots etc. This will make us be able to keep
track of created objects that needs to be dropped, during a shard
move/split. We will have objects created specifically for the current
operation; and those objects will be dropped at the end.
We have an issue (a draft roadmap) for enabling parallel shard moves.
For details please see: https://github.com/citusdata/citus/issues/6437
To be able to test non-blocking shard moves we take an advisory lock, so
we can pause the shard move at an interesting moment. Originally this
was during the logical replication catch up phase. But when I added
tests for the rebalancer progress I moved this lock before the initial
data copy. This allowed testing of the rebalance progress, but
inadvertently made our non-blocking tests not actually test if we held
unintended locks during logical replication catch up.
This fixes that by creating two types of advisory locks, one before the
copy and one after. This causes the tests to actually test their
intended scenario again.
Furthermore it starts using one of these locks for blocking shard moves
too. Which allowed me to reduce the complexity of the rebalance progress
test suite quite a bit. It also allowed enabling some flaky tests again,
because this stopped them from being flaky. And finally it allowed
testing of rebalance progress for blocking shard copy operations as
well.
In passing it fixes a flaky test during parallel blocking shard moves by
ordering the output.
DESCRIPTION: Adds status column to get_rebalance_progress()
Introduces a new column named `status` for the function
`get_rebalance_progress()`. For each ongoing shard move, this column
will reveal information about that shard move operation's current
status.
For now, candidate status messages could be one of the below.
* Not Started
* Setting Up
* Copying Data
* Catching Up
* Creating Constraints
* Final Catchup
* Creating Foreign Keys
* Completing
* Completed
If an operation requires having coordinator in pg_dist_node and if that
is not the case, then we automatically add the coordinator into
pg_dist_node if user didn't add any worker nodes yet.
However, if user have already added some worker nodes before, we throw
an error. With this commit, we improve the error thrown in that case.
Closes#6423 based on the discussion made there.
PG15 introduced a function called ReplicationSlotName that causes
conflicts with our function with the same name. I solved this issue by
renaming our function to ReplicationSlotNameForNodeAndOwner
Relevant PG commit:
c3b5992b91
DESCRIPTION: Adds source_lsn and target_lsn fields into
get_rebalance_progress
Adding two fields named `source_lsn` and `target_lsn` to the function
`get_rebalance_progress`.
Target lsn data is fetched in `GetShardStatistics`, by expanding the
query sent to workers (joining with pg_subscription_rel and
pg_stat_subscription). Then put into the hashmap, for each shard.
Source lsn data is fetched in `BuildWorkerShardStatististicsHash`, in
the loop that iterate each node, by sending a pg_current_wal_lsn query
to each node. Then put into the hashmap, for each node.
In Split, Logical replication logic and ShardCleaner we call
`SendCommandListToWorkerOutsideTransaction` and
`SendOptionalCommandListToWorkerOutsideTransaction` frequently. This
opens new connection for each of those calls, even though we already
have a perfectly good connection lying around.
This PR adds two new APIs
`SendCommandListToWorkerOutsideTransactionWithConnection` and
`SendOptionalCommandListToWorkerOutsideTransactionWithConnection` that
allow sending a list of queries in a transaction over an existing
connection. We also update the callers (Split, ShardCleaner, Logical
Replication) to use these new APIs instead.
Co-authored-by: Nitish Upreti <niupre@microsoft.com>
Co-authored-by: Onder Kalaci <onderkalaci@gmail.com>
In Citus 11.1.0 we changed the order of doing the initial data copy and
the replica identity creation when doing a non blocking shard move. This
was done to try and increase the speed with which shard moves could be
done. But after doing more extensive performance testing this change
turned out to have a negative impact on the speed of moves on the setups
that I tested.
Looking at the resource usage metrics of the VMs the reason for this
seems to be that these shard moves were bottlenecked by disk bandwidth.
While creating replica identities in bulk after the initial copy will
reduce CPU usage a bit, it does require an additional sequence scan of
the just written data. So when a VM is bottlenecked on disk, it makes
sense to spend a little bit more CPU to avoid an additional scan. Since
PKs are usually simple indexes that don't require lots of CPU to update,
as opposed to e.g. GiST indexes.
This reverts the order change to avoid a regression on shard move speed
in these cases.
For future releases we might consider re-evaluating our index creation
order for other indexes too, and create "simple" indexes before the
copy.
DESCRIPTION: Improve logging during shard split and resource cleanup
### DESCRIPTION
This PR makes logging improvements to Shard Split :
1. Update confusing logging to fix#6312
2. Added new `ereport(LOG` to make debugging easier as part of telemetry review.
DESCRIPTION: Show citus_copy_shard_placement progress in
get_rebalance_progress
When rebalancing to a new node that does not have reference tables yet
the rebalancer will first copy the reference tables to the nodes.
Depending on the size of the reference tables, this might take a long
time. However, there's no indication of what's happening at this stage
of the rebalance.
This PR improves this situation by also showing the progress of any
citus_copy_shard_placement calls when calling get_rebalance_progress.
DESCRIPTION: Add a rebalancer that uses background tasks for its
execution
Based on the baclground jobs and tasks introduced in #6296 we implement
a new rebalancer on top of the primitives of background execution. This
allows the user to initiate a rebalance and let Citus execute the long
running steps in the background until completion.
Users can invoke the new background rebalancer with `SELECT
citus_rebalance_start();`. It will output information on its job id and
how to track progress. Also it returns its job id for automation
purposes. If you simply want to wait till the rebalance is done you can
use `SELECT citus_rebalance_wait();`
A running rebalance can be canelled/stopped with `SELECT
citus_rebalance_stop();`.
The logical replication catchup part for shard splits and shard moves is
very similar. This abstracts most of that similarity away into a single
function. This also improves the logic for non blocking shard splits a
bit, by using faster foreign key creation. It also parallelizes index creation
which shard moves were already doing, but shard splits did not.
Previously we would create foreign keys to reference table in an extra
fast way at the end of a shard move. This uses that same logic to also
do it for foreign keys between distributed tables.
Fixes#6141
DESCRIPTION:
This PR adds support for 'Deferred Drop' and robust 'Shard Cleanup' for Splits.
Common Infrastructure
This PR introduces new common infrastructure so as any operation that wants robust cleanup of resources can register with the cleaner and have the resources cleaned appropriately based on a specified policy. 'Shard Split' is the first consumer using this new infrastructure.
Note : We only support adding 'shards' as resources to be cleaned-up right now but the framework will be extended to support other resources in future.
Deferred Drop for Split
Deferred Drop Support ensures that shards undergoing split are not dropped inline as part of operation but dropped later when no active read queries are running on shard. This helps with :
Avoids any potential deadlock scenarios that can cause long running Split operation to rollback.
Avoids Split operation blocking writes and then getting blocked (due to running queries on the shard) when trying to drop shards.
Deferred drop is the new default behavior going forward.
Shard Cleaner Extension
Shard Cleaner is a background task responsible for deferred drops in case of 'Move' operations.
The cleaner has been extended to ensure robust cleanup of shards (dummy shards and split children) in case of a failure based on the new infrastructure mentioned above. The cleaner also handles deferred drop for 'Splits'.
TESTING:
New test ''citus_split_shard_by_split_points_deferred_drop' to test deferred drop support.
New test 'failure_split_cleanup' to test shard cleanup with failures in different stages.
Update 'isolation_blocking_shard_split and isolation_non_blocking_shard_split' for deferred drop.
Added non-deferred drop version of existing tests : 'citus_split_shard_no_deferred_drop' and 'citus_non_blocking_splits_no_deferred_drop'
In commit 31faa88a4e I removed some features of the rebalance progress
monitor. I did this because the plan was to remove the foreground shard
rebalancer later in the PR that would add the background shard
rebalancer. So, I didn't want to spend time fixing something that we
would throw away anyway.
As it turns out we're not removing the foreground shard rebalancer after
all, so it made sens to fix the stuff that I broke. This PR does that.
For the most part this commit reverts the changes in commit 31faa88a4e.
It's not a full revert though, because it keeps the improved tests and
the changes to `citus_move_shard_placement`.
Added create_distributed_table_concurrently which is nonblocking variant of create_distributed_table.
It bases on the split API which takes advantage of logical replication to support nonblocking split operations.
Co-authored-by: Marco Slot <marco.slot@gmail.com>
Co-authored-by: aykutbozkurt <aykut.bozkurt1995@gmail.com>
We're in the processes of totally changing the shard rebalancer
experience and infrastructure. Soon the shard rebalancer will include
retries, crash recovery and support for running in the background.
These improvements come at a cost though, the way the
get_rebalance_progress UDF currently works is very hard to replicate
with this new structure. This is mostly because the old behaviour
doesn't really make sense anymore with this new infrastructure. A new
and better way to track the progress will be included as part of the new
infrastructure.
This PR is in preparation of the new code rebalancer experience.
It changes the get_rebalance_progress UDF to only display the moves that
are in progress at the moment, not the ones that happened in the past or
that are planned in the future. Another option would have been to
completely remove the current get_rebalance_progress functionality and
point people to the new way of tracking progress. But old blogposts
still reference the old UDF and users might have some automation on top
of it. Showing the progress of the current moves is fairly simple to
achieve, even with the new infrastructure.
So this PR is a kind of compromise: It doesn't have complete feature
parity with the old get_rebalance_progress, but the most common use
cases will still work.
There's also an advantage of the change: You can now see progress of
shard moves that were triggered by calling citus_move_shard_placement
manually. Instead of only being able to see progress of moves that were
initiated using get_rebalance_table_shards.
DESCRIPTION: Fix reference table lock contention
Dropping and creating reference tables unintentionally blocked on each other due to the use of an ExclusiveLock for both the Drop and conditionally copying existing reference tables to (new) nodes.
The patch does the following:
- Lower lock lever for dropping (reference) tables to `ShareLock` so they don't self conflict
- Treat reference tables and distributed tables equally and acquire the colocation lock when dropping any table that is in a colocation group
- Perform the precondition check for copying reference tables twice, first time with a lower lock that doesn't conflict with anything. Could have been a NoLock, however, in preparation for dropping a colocation group, it is an `AccessShareLock`
During normal operation the first check will always pass and we don't have to escalate that lock. Making it that we won't be blocked on adding and remove reference tables. Only after a node addition the first `create_reference_table` will still need to acquire an `ExclusiveLock` on the colocation group to perform the copy.
This is a refactoring PR that starts using our new hash table creation
helper function. It adds a few more macros for ease of use, because C
doesn't have default arguments. It also adds a macro to check if a
struct contains automatic padding bytes. No struct that is hashed using
tag_hash should have automatic padding bytes, because those bytes are
undefined and thus using them to create a hash will result in undefined
behaviour (usually a random hash).
**Intro**
This adds support to Citus to change the CPU priority values of
backends. This is created with two main usecases in mind:
1. Users might want to run the logical replication part of the shard moves
or shard splits at a higher speed than they would do by themselves.
This might cause some small loss of DB performance for their regular
queries, but this is often worth it. During high load it's very possible
that the logical replication WAL sender is not able to keep up with the
WAL that is generated. This is especially a big problem when the
machine is close to running out of disk when doing a rebalance.
2. Users might have certain long running queries that they don't impact
their regular workload too much.
**Be very careful!!!**
Using CPU priorities to control scheduling can be helpful in some cases
to control which processes are getting more CPU time than others.
However, due to an issue called "[priority inversion][1]" it's possible that
using CPU priorities together with the many locks that are used within
Postgres cause the exact opposite behavior of what you intended. This
is why this PR only allows the PG superuser to change the CPU priority
of its own processes. Currently it's not recommended to set `citus.cpu_priority`
directly. Currently the only recommended interface for users is the setting
called `citus.cpu_priority_for_logical_replication_senders`. This setting
controls CPU priority for a very limited set of processes (the logical
replication senders). So, the dangers of priority inversion are also limited
with when using it for this usecase.
**Background**
Before reading the rest it's important to understand some basic
background regarding process CPU priorities, because they are a bit
counter intuitive. A lower priority value, means that the process will
be scheduled more and whatever it's doing will thus complete faster. The
default priority for processes is 0. Valid values are from -20 to 19
inclusive. On Linux a larger difference between values of two processes
will result in a bigger difference in percentage of scheduling.
**Handling the usecases**
Usecase 1 can be achieved by setting `citus.cpu_priority_for_logical_replication_senders`
to the priority value that you want it to have. It's necessary to set
this both on the workers and the coordinator. Example:
```
citus.cpu_priority_for_logical_replication_senders = -10
```
Usecase 2 can with this PR be achieved by running the following as
superuser. Note that this is only possible as superuser currently
due to the dangers mentioned in the "Be very carefull!!!" section.
And although this is possible it's **NOT** recommended:
```sql
ALTER USER background_job_user SET citus.cpu_priority = 5;
```
**OS configuration**
To actually make these settings work well it's important to run Postgres
with more a more permissive value for the 'nice' resource limit than
Linux will do by default. By default Linux will not allow a process to
set its priority lower than it currently is, even if it was lower when
the process originally started. This capability is necessary to reset
the CPU priority to its original value after a transaction finishes.
Depending on how you run Postgres this needs to be done in one of two
ways:
If you use systemd to start Postgres all you have to do is add a line
like this to the systemd service file:
```conf
LimitNice=+0 # the + is important, otherwise its interpreted incorrectly as 20
```
If that's not the case you'll have to configure `/etc/security/limits.conf`
like so, assuming that you are running Postgres as the `postgres` OS user:
```
postgres soft nice 0
postgres hard nice 0
```
Finally you'd have add the following line to `/etc/pam.d/common-session`
```
session required pam_limits.so
```
These settings would allow to change the priority back after setting it
to a higher value.
However, to actually allow you to set priorities even lower than the
default priority value you would need to change the values in the
config to something lower than 0. So for example:
```conf
LimitNice=-10
```
or
```
postgres soft nice -10
postgres hard nice -10
```
If you use WSL2 you'll likely have to do another thing. You have to
open a new shell, because when PAM is only used during login, and
WSL2 doesn't actually log you in. You can force a login like this:
```
sudo su $USER --shell /bin/bash
```
Source: https://stackoverflow.com/a/68322992/2570866
[1]: https://en.wikipedia.org/wiki/Priority_inversion
When introducing non-blocking shard split functionality it was based
heavily on the non-blocking shard moves. However, differences between
usage was slightly to big to be able to reuse the existing functions
easily. So, most logical replication code was simply copied to dedicated
shard split functions and modified for that purpose.
This PR tries to create a more generic logical replication
infrastructure that can be used by both shard splits and shard moves.
There's probably more code sharing possible in the future, but I believe
this is at least a good start and addresses the lowest hanging fruit.
This also adds a CreateSimpleHash function that makes creating the
most common type of hashmap common.
DESCRIPTION: Use faster custom copy logic for non-blocking shard moves
Non-blocking shard moves consist of two main phases:
1. Initial data copy
2. Catchup phase
This changes the first of these phases significantly. Previously we used the
copy logic provided by postgres subscriptions. This meant we didn't have
to implement it ourselves, but it came with the downside of little control.
When implementing shard splits we needed more control to even make it
work, so we implemented our own logic for copying data between nodes.
This PR starts using that logic for non-blocking shard moves. Doing so
has four main advantages:
1. It uses COPY in binary format when possible, which is cheaper to encode
and decode. Furthermore it very often results in less data that needs to
be sent over the network.
2. It allows us to create the primary key (or other replica identity) after doing
the initial data copy. This should give some speed up over the total run,
because creating an index is bulk is much faster than incrementally building it.
3. It doesn't require a replication slot per parallel copy. Increasing the maximum
number of replication slots uses resources in postgres, even if they are not used.
So reducing the number of replication slots that shard moves need is nice.
4. Logical replication table_sync workers are slow to start up, so if lots of shards
need to be copied that can make it quite slow. This can happen easily when
combining Postgres partitioning with Citus.
The new shard copy code that was created for shard splits has some
advantages over the old shard copy code. The old code was using
worker_append_table_to_shard, which wrote to disk twice. And it also
didn't use binary copy when that was possible. Both of these issues
were fixed in the new copy code. This PR starts using this new copy
logic also for shard moves, not just for shard splits.
On my local machine I created a single shard table like this.
```sql
set citus.shard_count = 1;
create table t(id bigint, a bigint);
select create_distributed_table('t', 'id');
INSERT into t(id, a) SELECT i, i from generate_series(1, 100000000) i;
```
I then turned `fsync` off to make sure I wasn't bottlenecked by disk.
Finally I moved this shard between nodes with `citus_move_shard_placement`
with `block_writes`.
Before this PR a move took ~127s, after this PR it took only ~38s. So for this
small test this resulted in spending ~70% less time.
And I also tried the same test for a table that contained large strings:
```sql
set citus.shard_count = 1;
create table t(id bigint, a bigint, content text);
select create_distributed_table('t', 'id');
INSERT into t(id, a, content) SELECT i, i, 'aunethautnehoautnheaotnuhetnohueoutnehotnuhetncouhaeohuaeochgrhgd.athbetndairgexdbuhaobulrhdbaetoausnetohuracehousncaoehuesousnaceohuenacouhancoexdaseohusnaetobuetnoduhasneouhaceohusnaoetcuhmsnaetohuacoeuhebtokteaoshetouhsanetouhaoug.lcuahesonuthaseauhcoerhuaoecuh.lg;rcydabsnetabuesabhenth' from generate_series(1, 20000000) i;
```
It turns out that create_distributed_table
and citus_move/copy_shard_placement does not
work well concurrently.
To fix that, we need to acquire a lock, which
sounds like a good use of colocation lock.
However, the current usage of colocation lock is
limited to higher level UDFs like rebalance_table_shards
etc. Those usage of lock is still useful, but
we cannot acquire the same lock on citus_move_shard_placement
etc. because the coordinator connects to itself to acquire
the lock. Hence, the high level UDF blocks itself.
To fix that, we use one more colocation lock, with the placements
are the main objects to consider.
DESCRIPTION:
This PR extends support for Partitioned and Columnar tables in blocking 'citus_split_shard_by_split_points' workflow.
Columnar Support : No special handling required. Just removing checks that fails split for columnar table and adding test coverage.
Partitioned Table Support :
Skip copying of parent table as they are empty, The partitions contain data and are treated as co-located shards that will be copied separately.
Attach partitions to parent on destination after inserting new shard metadata and before creating foreign key constraints.
MISC:
Fix Bug #4949 where Blocking shard moves fails if there is a foreign key between partitioned distributed tables (from child to parent).
TEST:
Added new test 'citus_split_shards_columnar_partitioned' for splitting 'partitioned' and 'columnar + partitioned' table.
Added new test 'shard_move_constraints_blocking' to add coverage for shard move bug fix.
Updated test 'citus_split_shard_by_split_points_negative' to allow columnar and partitioned table.
* Remove if conditions with PG_VERSION_NUM < 13
* Remove server_above_twelve(&eleven) checks from tests
* Fix tests
* Remove pg12 and pg11 alternative test output files
* Remove pg12 specific normalization rules
* Some more if conditions in the code
* Change RemoteCollationIdExpression and some pg12/pg13 comments
* Remove some more normalization rules
* Blocking split setup
* Add missing type
* Missing API from Metadata Sync
* Shard Split e2e code
* Worker Split Copy DestReceiver skeleton
* Basic destreceiver code
* worker_split_copy UDF
* UDF calling
* Split points are text
* Isolate Tenant and Split Shard Unification
* Fixing executor and misc
* Reindent code
* Fixing UDF definitions
* Hello World Local Copy works
* Remote copy hello world works
* Local and Remote binary test
* Fixing text local copy and adding tests
* Hello World shard split works
* Negative tests
* Blocking Split workflow works
* Refactor
* Bug fix
* Reindent
* Cleaning up and adding comments
* Basic test for shard split workflow
* ReIndent
* Circle CI integration
* Removing include causing circle-ci build failure
* Remove SplitCopyDestReceiver and use PartitionedResultDestReceiver
* Add support for citus.enable_binary_protocol
* Reindent
* Fix build break
* Update Test
* Cleanup on catch
* Addressing open comments
* Update downgrade script and quote schema/table in COPY statement
* Fix metadata sync issue. Update regression test
* Isolation test and bug fix
* Add Isolation test, fix foreign constraint deadlock issue
* Misc code review comments
* Test name needing to be quoted
* Refactor code from review comments
* Explaining shardGroupSplitIntervalListList
* Fix upgrade & downgrade
* Fix broken test
* Test fix Round 2
* Fixing bug and modifying test appropriately
* Fully qualify copy udf name. Run Reindent
* Address PR comments
* Fix null handling when creating AuxiliaryStructures
* Ensure local copy is triggered in tests
* Limit max shards that can be created with split
* Test failure fix
* Remove split_mode and use shard_transfer_mode instead'
* Fix test failure
* Fix test failure
* Fixing permission issue when splitting non-superuser owned tables
* Fix test expected output
* Remove extra space
* Fix test
* attempt to fix test
* Addressing Marco's PR comment
* Only clean shards created by workflow
* Remove from merge
* Update test
This PR makes all of the features open source that were previously only
available in Citus Enterprise.
Features that this adds:
1. Non blocking shard moves/shard rebalancer
(`citus.logical_replication_timeout`)
2. Propagation of CREATE/DROP/ALTER ROLE statements
3. Propagation of GRANT statements
4. Propagation of CLUSTER statements
5. Propagation of ALTER DATABASE ... OWNER TO ...
6. Optimization for COPY when loading JSON to avoid double parsing of
the JSON object (`citus.skip_jsonb_validation_in_copy`)
7. Support for row level security
8. Support for `pg_dist_authinfo`, which allows storing different
authentication options for different users, e.g. you can store
passwords or certificates here.
9. Support for `pg_dist_poolinfo`, which allows using connection poolers
in between coordinator and workers
10. Tracking distributed query execution times using
citus_stat_statements (`citus.stat_statements_max`,
`citus.stat_statements_purge_interval`,
`citus.stat_statements_track`). This is disabled by default.
11. Blocking tenant_isolation
12. Support for `sslkey` and `sslcert` in `citus.node_conninfo`
Columnar: support relation options with ALTER TABLE.
Use ALTER TABLE ... SET/RESET to specify relation options rather than
alter_columnar_table_set() and alter_columnar_table_reset().
Not only is this more ergonomic, but it also allows better integration
because it can be treated like DDL on a regular table. For instance,
citus can use its own ProcessUtility_hook to distribute the new
settings to the shards.
DESCRIPTION: Columnar: support relation options with ALTER TABLE.
First worker node has a special meaning for modifications on the replicated tables
It is used to acquire a remote lock, such that the modifications are serialized.
With this commit, we make sure that we do not let any distributed query to see a
different 'first worker node' while first worker node is disabled.
Note that, maybe implicitly mentioned above, when first worker node is disabled,
the first worker node changes, that's why we have to handle the situation.
* Separate build of citus.so and citus_columnar.so.
Because columnar code is statically-linked to both modules, it doesn't
make sense to load them both at once.
A subsequent commit will make the modules entirely separate and allow
loading them both simultaneously.
Author: Yanwen Jin
* Separate citus and citus_columnar modules.
Now the modules are independent. Columnar can be loaded by itself, or
along with citus.
Co-authored-by: Jeff Davis <jefdavi@microsoft.com>
The issue in question is caused when rebalance / replication call `FullShardPlacementList` which returns all shard placements (including those in disabled nodes with `citus_disable_node`). Eventually, `FindFillStateForPlacement` looks for the state across active workers and fails to find a state for the placements which are in the disabled workers causing a seg fault shortly after.
Approach:
* `ActivePlacementHash` was not using the status of the shard placement's node to determine if the node it is active. Initially, I just fixed that.
* Additionally, I refactored the code which handles active shards in replication / rebalance to:
* use a single function to determine if a shard placement is active.
* do the shard active shard filtering before calling `RebalancePlacementUpdates` and `ReplicationPlacementUpdates`, so test methods like `shard_placement_rebalance_array` and `shard_placement_replication_array` which have different shard placement active requirements can do their own filtering while using the same rebalance / replicate logic that `rebalance_table_shards` and `replicate_table_shards` use.
Fix#5664
With this commit, rebalancer backends are identified by application_name = citus_rebalancer
and the regular internal backends are identified by application_name = citus_internal
With this commit we've started to propagate sequences and shell
tables within the object dependency resolution. So, ensuring any
dependencies for any object will consider shell tables and sequences
as well. Separate logics for both shell tables and sequences have
been removed.
Since both shell tables and sequences logic were implemented as a
part of the metadata handling before that logic, we were propagating
them while syncing table metadata. With this commit we've divided
metadata (which means anything except shards thereafter) syncing
logic into multiple parts and implemented it either as a part of
ActivateNode. You can check the functions called in ActivateNode
to check definition of different metadata.
Definitions of start_metadata_sync_to_node and citus_activate_node
have also been updated. citus_activate_node will basically create
an active node with all metadata and reference table shards.
start_metadata_sync_to_node will be same with citus_activate_node
except replicating reference tables. stop_metadata_sync_to_node
will remove all the metadata. All of those UDFs need to be called
by superuser.
Split distributed/version_compat.h into dependency-free
pg_version_compat.h, and the original which still has
dependencies. The original doesn't have much purpose, but until other
files have better discipline about including the correct header files,
then it's still needed.
Also make distributed/listutils.h dependency-free. Should be moved
outside of 'distributed' subdirectory, but that will cause significant
code churn, so leave for another cleanup patch.
Now both files can be included in columnar without creating a
dependency on citus.
This UDF coordinates connectivity checks accross the whole cluster.
This UDF gets the list of active readable nodes in the cluster, and
coordinates all connectivity checks in sequential order.
The algorithm is:
for sourceNode in activeReadableWorkerList:
c = connectToNode(sourceNode)
for targetNode in activeReadableWorkerList:
result = c.execute(
"SELECT citus_check_connection_to_node(targetNode.name,
targetNode.port")
emit sourceNode.name,
sourceNode.port,
targetNode.name,
targetNode.port,
result
- result -> true -> connection attempt from source to target succeeded
- result -> false -> connection attempt from source to target failed
- result -> NULL -> connection attempt from the current node to source node failed
I suggest you use the following query to get an overview on the connectivity:
SELECT bool_and(COALESCE(result, false))
FROM citus_check_cluster_node_health();
Whenever this query returns false, there is a connectivity issue, check in detail.
PostgreSQL does not need calling this function since 7.4 release, and it
is a NOOP.
For more details, check PostgreSQL commit below :
commit dd04e958c8b03c0f0512497651678c7816af3198
Author: Tom Lane <tgl@sss.pgh.pa.us>
Date: Sun Mar 9 03:34:10 2003 +0000
tuplestore_donestoring() isn't needed anymore, but provide a no-op
macro definition so as not to create compatibility problems.
diff --git a/src/include/utils/tuplestore.h b/src/include/utils/tuplestore.h
index b46babacd1..76fe9fb428 100644
--- a/src/include/utils/tuplestore.h
+++ b/src/include/utils/tuplestore.h
@@ -17,7 +17,7 @@
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
- * $Id: tuplestore.h,v 1.8 2003/03/09 02:19:13 tgl Exp $
+ * $Id: tuplestore.h,v 1.9 2003/03/09 03:34:10 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@@ -41,6 +41,9 @@ extern Tuplestorestate *tuplestore_begin_heap(bool randomAccess,
extern void tuplestore_puttuple(Tuplestorestate *state, void *tuple);
+/* tuplestore_donestoring() used to be required, but is no longer used */
+#define tuplestore_donestoring(state) ((void) 0)
+
/* backwards scan is only allowed if randomAccess was specified 'true' */
extern void *tuplestore_gettuple(Tuplestorestate *state, bool forward,
bool *should_free);
citus_check_connection_to_node runs a simple query on a remote node and
reports whether this attempt was successful.
This UDF will be used to make sure each worker node can connect to all
the worker nodes in the cluster.
parameters:
nodename: required
nodeport: optional (default: 5432)
return value:
boolean success
In the past, we allowed users to manually switch to 1PC
(e.g., one phase commit). However, with this commit, we
don't. All multi-shard modifications are done via 2PC.
The logging of the amount of ignored moves crashed when no distributed
tables existed in a cluster. This also fixes in passing that the logging
of ignored moves logs the correct number of ignored moves if there
exist multiple colocation groups and all are rebalanced at the same time.
As we use the current user to sync the metadata to the nodes
with #5105 (and many other PRs), there is no reason that
prevents us to use the coordinated transaction for metadata syncing.
This commit also renames few functions to reflect their actual
implementation.
The progress monitor wouldn't actually update the size of the shard on
the target node when using "block_writes" as the `shard_transfer_mode`.
The reason for this is that the CREATE TABLE part of the shard creation
would only be committed once all data was moved as well. This caused
our size calculation to always return 0, since the table did not exist
yet in the session that the progress monitor used.
This is fixed by first committing creation of the table, and only then
starting the actual data copy.
The test output changes slightly. Apparently splitting this up in two
transactions instead of one, increases the table size after the copy by
about 40kB. The additional size used doesn't increase when with the
amount of data in the table is larger (it stays ~40kB per shard). So
this small change in test output is not considered an actual problem.