At configuration reload, we free all "global" (i.e. GUC-set) connection
parameters, but these may still have live references in the connection
parameters hash. By marking the entries as invalid, we can ensure they
will not be used after free.
Having DATA-segment string literals made blindly freeing the keywords/
values difficult, so I've switched to allocating all in the provided
context; because of this (and with the knowledge of the end point of
the global parameters), we can safely pfree non-global parameters when
we come across an invalid connection parameter entry.
Before this commit, shardPlacements were identified with shardId, nodeName
and nodeport. Instead of using nodeName and nodePort, we now use nodeId
since it apparently has performance benefits in several places in the
code.
Make sure that intermediate results use a connection that is
not associated with any placement. That is useful in two ways:
- More complex queries can be executed with CTEs
- Safely use the same connections when there is a foreign key
to reference table from a distributed table, which needs to
use the same connection for modifications since the reference
table might cascade to the distributed table.
To support more flexible (i.e. not at compile-time) specification of
libpq connection parameters, this change adds a new GUC, node_conninfo,
which must be a space-separated string of key-value pairs suitable for
parsing by libpq's connection establishment methods.
To avoid rebuilding and parsing these values at connection time, this
change also adds a cache in front of the configuration params to permit
immediate use of any previously-calculated parameters.
- changes in ruleutils_11.c is reflected
- vacuum statement api change is handled. We now allow
multi-table vacuum commands.
- some other function header changes are reflected
- api conflicts between PG11 and earlier versions
are handled by adding shims in version_compat.h
- various regression tests are fixed due output and
functionality in PG1
- no change is made to support new features in PG11
they need to be handled by new commit
Without this change we crash on Windows with COPYing into a table with
62 shards, and we ERROR when COPYing into a table with >62 shards:
ERROR: WaitForMutipleObjects() failed: error code 87
This commit checks the connection status right after any IO happens
on the socket.
This is necessary since before this commit we didn't pass any information
to the higher level functions whether we're done with the connection
(e.g., no IO required anymore) or an errors happened during the IO.
VLAs aren't supported by Visual Studio.
- Remove all existing instances of VLAs.
- Add a flag, -Werror=vla, which makes gcc refuse to compile if we add
VLAs in the future.
We shouldn't return in middle of a PG_TRY() block because if we do, we won't reset PG_exception_stack, and later when a re-throw tries to jump to the jump-point which was active in this PG_TRY() block, it seg-faults.
We used to return in middle of PG_TRY() block in WaitForConnections() where we checked for cancellations. Whenever cancellations were caught here, Citus crashed. And example was reported by @onderkalaci at #1903.
Postgres provides OS agnosting formatting macros for
formatting 64 bit numbers. Replaced %ld %lu with
INT64_FORMAT and UINT64_FORMAT respectively.
Also found some incorrect usages of formatting
flags and fixed them.
We sent multiple commands to worker when starting a transaction.
Previously we only checked the result of the first command that
is transaction 'BEGIN' which always succeeds. Any failure on
following commands were not checked.
With this commit, we make sure all command results are checked.
If there is any error we report the first error found.
When a NULL connection is provided to PQerrorMessage(), the
returned error message is a static text. Modifying that static
text, which doesn't necessarly be in a writeable memory, is
dangreous and might cause a segfault.
This commit adds distributed transaction id infrastructure in
the scope of distributed deadlock detection.
In general, the distributed transaction id consists of a tuple
in the form of: `(databaseId, initiatorNodeIdentifier, transactionId,
timestamp)`.
Briefly, we add a shared memory block on each node, which holds some
information per backend (i.e., an array `BackendData backends[MaxBackends]`).
Later, on each coordinated transaction, Citus sends
`SELECT assign_distributed_transaction_id()` right after `BEGIN`.
For that backend on the worker, the distributed transaction id is set to
the values assigned via the function call.
The aim of the above is to correlate the transactions on the coordinator
to the transactions on the worker nodes.