* use adaptive executor even if task-tracker is set
* Update check-multi-mx tests for adaptive executor
Basically repartition joins are enabled where necessary. For parallel
tests max adaptive executor pool size is decresed to 2, otherwise we
would get too many clients error.
* Update limit_intermediate_size test
It seems that when we use adaptive executor instead of task tracker, we
exceed the intermediate result size less in the test. Therefore updated
the tests accordingly.
* Update multi_router_planner
It seems that there is one problem with multi_router_planner when we use
adaptive executor, we should fix the following error:
+ERROR: relation "authors_range_840010" does not exist
+CONTEXT: while executing command on localhost:57637
* update repartition join tests for check-multi
* update isolation tests for repartitioning
* Error out if shard_replication_factor > 1 with repartitioning
As we are removing the task tracker, we cannot switch to it if
shard_replication_factor > 1. In that case, we simply error out.
* Remove MULTI_EXECUTOR_TASK_TRACKER
* Remove multi_task_tracker_executor
Some utility methods are moved to task_execution_utils.c.
* Remove task tracker protocol methods
* Remove task_tracker.c methods
* remove unused methods from multi_server_executor
* fix style
* remove task tracker specific tests from worker_schedule
* comment out task tracker udf calls in tests
We were using task tracker udfs to test permissions in
multi_multiuser.sql. We should find some other way to test them, then we
should remove the commented out task tracker calls.
* remove task tracker test from follower schedule
* remove task tracker tests from multi mx schedule
* Remove task-tracker specific functions from worker functions
* remove multi task tracker extra schedule
* Remove unused methods from multi physical planner
* remove task_executor_type related things in tests
* remove LoadTuplesIntoTupleStore
* Do initial cleanup for repartition leftovers
During startup, task tracker would call TrackerCleanupJobDirectories and
TrackerCleanupJobSchemas to clean up leftover directories and job
schemas. With adaptive executor, while doing repartitions it is possible
to leak these things as well. We don't retry cleanups, so it is possible
to have leftover in case of errors.
TrackerCleanupJobDirectories is renamed as
RepartitionCleanupJobDirectories since it is repartition specific now,
however TrackerCleanupJobSchemas cannot be used currently because it is
task tracker specific. The thing is that this function is a no-op
currently.
We should add cleaning up intermediate schemas to DoInitialCleanup
method when that problem is solved(We might want to solve it in this PR
as well)
* Revert "remove task tracker tests from multi mx schedule"
This reverts commit 03ecc0a681.
* update multi mx repartition parallel tests
* not error with task_tracker_conninfo_cache_invalidate
* not run 4 repartition queries in parallel
It seems that when we run 4 repartition queries in parallel we get too
many clients error on CI even though we don't get it locally. Our guess
is that, it is because we open/close many connections without doing some
work and postgres has some delay to close the connections. Hence even
though connections are removed from the pg_stat_activity, they might
still not be closed. If the above assumption is correct, it is unlikely
for it to happen in practice because:
- There is some network latency in clusters, so this leaves some times
for connections to be able to close
- Repartition joins return some data and that also leaves some time for
connections to be fully closed.
As we don't get this error in our local, we currently assume that it is
not a bug. Ideally this wouldn't happen when we get rid of the
task-tracker repartition methods because they don't do any pruning and
might be opening more connections than necessary.
If this still gives us "too many clients" error, we can try to increase
the max_connections in our test suite(which is 100 by default).
Also there are different places where this error is given in postgres,
but adding some backtrace it seems that we get this from
ProcessStartupPacket. The backtraces can be found in this link:
https://circleci.com/gh/citusdata/citus/138702
* Set distributePlan->relationIdList when it is needed
It seems that we were setting the distributedPlan->relationIdList after
JobExecutorType is called, which would choose task-tracker if
replication factor > 1 and there is a repartition query. However, it
uses relationIdList to decide if the query has a repartition query, and
since it was not set yet, it would always think it is not a repartition
query and would choose adaptive executor when it should choose
task-tracker.
* use adaptive executor even with shard_replication_factor > 1
It seems that we were already using adaptive executor when
replication_factor > 1. So this commit removes the check.
* remove multi_resowner.c and deprecate some settings
* remove TaskExecution related leftovers
* change deprecated API error message
* not recursively plan single relatition repartition subquery
* recursively plan single relation repartition subquery
* test depreceated task tracker functions
* fix overlapping shard intervals in range-distributed test
* fix error message for citus_metadata_container
* drop task-tracker deprecated functions
* put the implemantation back to worker_cleanup_job_schema_cachesince citus cloud uses it
* drop some functions, add downgrade script
Some deprecated functions are dropped.
Downgrade script is added.
Some gucs are deprecated.
A new guc for repartition joins bucket size is added.
* order by a test to fix flappiness
* Not append empty task in ExtractLocalAndRemoteTasks
ExtractLocalAndRemoteTasks extracts the local and remote tasks. If we do
not have a local task the localTaskPlacementList will be NIL, in this
case we should not append anything to local tasks. Previously we would
first check if a task contains a single placement or not, now we first
check if there is any local task before doing anything.
* fix copy of node task
Task node has task query, which might contain a list of strings in its
fields. We were using postgres copyObject for these lists. Postgres
assumes that each element of list will be a node type. If it is not a
node type it will error.
As a solution to that, a new macro is introduced to copy a list of
strings.
Add failing tests, make changes to avoid crashes at least
Fix HAVING subquery pushdown ignoring reference table only subqueries,
also include HAVING in recursive planning
Given that we have a function IsDistributedTable which includes reference tables,
it seems best to have IsDistributedTableRTE & QueryContainsDistributedTableRTE
reflect that they do not include reference tables in their check
Similarly SublinkList's name should reflect that it only scans WHERE
contain_agg_clause asserts that we don't have SubLinks,
use contain_aggs_of_level as suggested by pg sourcecode
Semmle reported quite some places where we use a value that could be NULL. Most of these are not actually a real issue, but better to be on the safe side with these things and make the static analysis happy.
Deparsing and parsing a query can be heavy on CPU. When locally executing
the query we don't need to do this in theory most of the time.
This PR is the first step in allowing to skip deparsing and parsing
the query in these cases, by lazily creating the query string and
storing the query in the task. Future commits will make use of this and
not deparse and parse the query anymore, but use the one from the task
directly.
* Remove unused executor codes
All of the codes of real-time executor. Some functions
in router executor still remains there because there
are common functions. We'll move them to accurate places
in the follow-up commits.
* Move GUCs to transaction mngnt and remove unused struct
* Update test output
* Get rid of references of real-time executor from code
* Warn if real-time executor is picked
* Remove lots of unused connection codes
* Removed unused code for connection restrictions
Real-time and router executors cannot handle re-using of the existing
connections within a transaction block.
Adaptive executor and COPY can re-use the connections. So, there is no
reason to keep the code around for applying the restrictions in the
placement connection logic.
DESCRIPTION: Distribute Types to worker nodes
When to propagate
==============
There are two logical moments that types could be distributed to the worker nodes
- When they get used ( just in time distribution )
- When they get created ( proactive distribution )
The just in time distribution follows the model used by how schema's get created right before we are going to create a table in that schema, for types this would be when the table uses a type as its column.
The proactive distribution is suitable for situations where it is benificial to have the type on the worker nodes directly. They can later on be used in queries where an intermediate result gets created with a cast to this type.
Just in time creation is always the last resort, you cannot create a distributed table before the type gets created. A good example use case is; you have an existing postgres server that needs to scale out. By adding the citus extension, add some nodes to the cluster, and distribute the table. The type got created before citus existed. There was no moment where citus could have propagated the creation of a type.
Proactive is almost always a good option. Types are not resource intensive objects, there is no performance overhead of having 100's of types. If you want to use them in a query to represent an intermediate result (which happens in our test suite) they just work.
There is however a moment when proactive type distribution is not beneficial; in transactions where the type is used in a distributed table.
Lets assume the following transaction:
```sql
BEGIN;
CREATE TYPE tt1 AS (a int, b int);
CREATE TABLE t1 AS (a int PRIMARY KEY, b tt1);
SELECT create_distributed_table('t1', 'a');
\copy t1 FROM bigdata.csv
```
Types are node scoped objects; meaning the type exists once per worker. Shards however have best performance when they are created over their own connection. For the type to be visible on all connections it needs to be created and committed before we try to create the shards. Here the just in time situation is most beneficial and follows how we create schema's on the workers. Outside of a transaction block we will just use 1 connection to propagate the creation.
How propagation works
=================
Just in time
-----------
Just in time propagation hooks into the infrastructure introduced in #2882. It adds types as a supported object in `SupportedDependencyByCitus`. This will make sure that any object being distributed by citus that depends on types will now cascade into types. When types are depending them self on other objects they will get created first.
Creation later works by getting the ddl commands to create the object by its `ObjectAddress` in `GetDependencyCreateDDLCommands` which will dispatch types to `CreateTypeDDLCommandsIdempotent`.
For the correct walking of the graph we follow array types, when later asked for the ddl commands for array types we return `NIL` (empty list) which makes that the object will not be recorded as distributed, (its an internal type, dependant on the user type).
Proactive distribution
---------------------
When the user creates a type (composite or enum) we will have a hook running in `multi_ProcessUtility` after the command has been applied locally. Running after running locally makes that we already have an `ObjectAddress` for the type. This is required to mark the type as being distributed.
Keeping the type up to date
====================
For types that are recorded in `pg_dist_object` (eg. `IsObjectDistributed` returns true for the `ObjectAddress`) we will intercept the utility commands that alter the type.
- `AlterTableStmt` with `relkind` set to `OBJECT_TYPE` encapsulate changes to the fields of a composite type.
- `DropStmt` with removeType set to `OBJECT_TYPE` encapsulate `DROP TYPE`.
- `AlterEnumStmt` encapsulates changes to enum values.
Enum types can not be changed transactionally. When the execution on a worker fails a warning will be shown to the user the propagation was incomplete due to worker communication failure. An idempotent command is shown for the user to re-execute when the worker communication is fixed.
Keeping types up to date is done via the executor. Before the statement is executed locally we create a plan on how to apply it on the workers. This plan is executed after we have applied the statement locally.
All changes to types need to be done in the same transaction for types that have already been distributed and will fail with an error if parallel queries have already been executed in the same transaction. Much like foreign keys to reference tables.
- All the schema creations on the workers will now be via superuser connections
- If a shard is being repaired or a shard is replicated, we will create the
schema only in the relevant worker; and in all the other cases where a schema
creation is needed, we will block operations until we ensure the schema exists
in all the workers
The feature is only intended for getting consistent outputs for the regression tests.
RETURNING does not have any ordering gurantees and with unified executor, the ordering
of query executions on the shards are also becoming unpredictable. Thus, we're enforcing
ordering when a GUC is set.
We implicitly add an `ORDER BY` something equivalent of
`
RETURNING expr1, expr2, .. ,exprN
ORDER BY expr1, expr2, .. ,exprN
`
As described in the code comments as well, this is probably not the most
performant approach we could implement. However, since we're only
targeting regression tests, I don't see any issues with that. If we
decide to expand this to a feature to users, we should revisit the
implementation and improve the performance.
After this commit large_table_shard_count wont be used to
check whether broadcast join, which is renamed as reference
join, can be applied. Reference join can only be applied over
reference tables.
PostgreSQL implements support for several relation kinds in a single
statement, such as in the AlterTableStmt case, which supports both tables
and indexes and more (see ATExecSetRelOptions in PostgreSQL source code file
src/backend/commands/tablecmds.c for an example of that).
As a consequence, this patch implements support for setting and resetting
storage parameters on both relation kinds.
Citus sometimes have regressions around non-default schema support, meaning
not public and not in the search_path, per @marcocitus. This patch changes
some regression tests to use a non-default schema in order to cover more
cases.
The implementation was already mostly in place, but the code was protected
by a principled check against the operation. Turns out there's a nasty
concurrency bug though with long identifier names, much as in #1664.
To prevent deadlocks from happening, we could either review the DDL
transaction management in shards and placements, or we can simply reject
names with (NAMEDATALEN - 1) chars or more — that's because of the
PostgreSQL array types being created with a one-char prefix: '_'.
With this commit, we relax the restrictions put on the reference
tables with subquery pushdown.
We did three notable improvements:
1) Relax equi-join restrictions
Previously, we always expected that the non-reference tables are
equi joined with reference tables on the partition key of the
non-reference table.
With this commit, we allow any column of non-reference tables
joined using non-equi joins as well.
2) Relax OUTER JOIN restrictions
Previously Citus errored out if any reference table exists at
any point of the outer part of an outer join. For instance,
See the below sketch where (h) denotes a hash distributed relation,
(r) denotes a reference table, (L) denotes LEFT JOIN and
(I) denotes INNER JOIN.
(L)
/ \
(I) h
/ \
r h
Before this commit Citus would error out since a reference table
appears on the left most part of an left join. However, that was
too restrictive so that we only error out if the reference table
is directly below and in the outer part of an outer join.
3) Bug fixes
We've done some minor bugfixes in the existing implementation.
With this PR, Citus starts to support all possible ways to create
distributed partitioned tables. These are;
- Distributing already created partitioning hierarchy
- CREATE TABLE ... PARTITION OF a distributed_table
- ALTER TABLE distributed_table ATTACH PARTITION non_distributed_table
- ALTER TABLE distributed_table ATTACH PARTITION distributed_table
We also support DETACHing partitions from partitioned tables and propogating
TRUNCATE and DDL commands to distributed partitioned tables.
This PR also refactors some parts of distributed table creation logic.
Adds support for PostgreSQL 10 by copying in the requisite ruleutils
and updating all API usages to conform with changes in PostgreSQL 10.
Most changes are fairly minor but they are numerous. One particular
obstacle was the change in \d behavior in PostgreSQL 10's psql; I had
to add SQL implementations (views, mostly) to mimic the pre-10 output.
Add a second implementation of INSERT INTO distributed_table SELECT ... that is used if
the query cannot be pushed down. The basic idea is to execute the SELECT query separately
and pass the results into the distributed table using a CopyDestReceiver, which is also
used for COPY and create_distributed_table. When planning the SELECT, we go through
planner hooks again, which means the SELECT can also be a distributed query.
EXPLAIN is supported, but EXPLAIN ANALYZE is not because preventing double execution was
a lot more complicated in this case.