Add failing tests, make changes to avoid crashes at least
Fix HAVING subquery pushdown ignoring reference table only subqueries,
also include HAVING in recursive planning
Given that we have a function IsDistributedTable which includes reference tables,
it seems best to have IsDistributedTableRTE & QueryContainsDistributedTableRTE
reflect that they do not include reference tables in their check
Similarly SublinkList's name should reflect that it only scans WHERE
contain_agg_clause asserts that we don't have SubLinks,
use contain_aggs_of_level as suggested by pg sourcecode
DESCRIPTION: Replace the query planner for the coordinator part with the postgres planner
Closes#2761
Citus had a simple rule based planner for the query executed on the query coordinator. This planner grew over time with the addigion of SQL support till it was getting close to the functionality of the postgres planner. Except the code was brittle and its complexity rose which made it hard to add new SQL support.
Given its resemblance with the postgres planner it was a long outstanding wish to replace our hand crafted planner with the well supported postgres planner. This patch replaces our planner with a call to postgres' planner.
Due to the functionality of the postgres planner we needed to support both projections and filters/quals on the citus custom scan node. When a sort operation is planned above the custom scan it might require fields to be reordered in the custom scan before returning the tuple (projection). The postgres planner assumes every custom scan node implements projections. Because we controlled the plan that was created we prevented reordering in the custom scan and never had implemented it before.
A same optimisation applies to having clauses that could have been where clauses. Instead of applying the filter as a having on the aggregate it will push it down into the plan which could reach a custom scan node.
For both filters and projections we have implemented them when tuples are read from the tuple store. If no projections or filters are required it will directly return the tuple from the tuple store. Otherwise it will loop tuples from the tuple store through the filter and projection until a tuple is found and returned.
Besides filters being pushed down a side effect of having quals that could have been a where clause is that a call to read intermediate result could be called before the first tuple is fetched from the custom scan. This failed because the intermediate result would only be pulled to the coordinator on the first tuple fetch. To overcome this problem we do run the distributed subplans now before we run the postgres executor. This ensures the intermediate result is present on the coordinator in time. We do account for total time instrumentation by removing the instrumentation before handing control to the psotgres executor and update the timings our self.
For future SQL support it is enough to create a valid query structure for the part of the query to be executed on the query coordinating node. As a utility we do serialise and print the query at debug level4 for engineers to inspect what kind of query is being planned on the query coordinator.
DESCRIPTION: Fix unnecessary repartition on joins with more than 4 tables
In 9.1 we have introduced support for all CH-benCHmark queries by widening our definitions of joins to include joins with expressions in them. This had the undesired side effect of Q5 regressing on its plan by implementing a repartition join.
It turned out this regression was not directly related to widening of the join clause, nor the schema employed by CH-benCHmark. Instead it had to do with 4 or more tables being joined in a chain. A chain meaning:
```sql
SELECT * FROM a,b,c,d WHERE a.part = b.part AND b.part = c.part AND ....
```
Due to how our join order planner was implemented it would only keep track of 1 of the partition columns when comparing if the join could be executed locally. This manifested in a join chain of 4 tables to _always_ be executed as a repartition join. 3 tables joined in a chain would have the middle table shared by the two outer tables causing the local join possibility to be found.
With this patch we keep a unique list (or set) of all partition columns participating in the join. When a candidate table is checked for a possibility to execute a local join it will check if there is any partition column in that set that matches an equality join clause on the partition column of the candidate table.
By taking into account all partition columns in the left relation it will now find the local join path on >= 4 tables joined in a chain.
fixes: #3276
In plain words, each distributed plan pulls the necessary intermediate
results to the worker nodes that the plan hits. This is primarily useful
in three ways.
(i) If the distributed plan that uses intermediate
result(s) is a router query, then the intermediate results are only
broadcasted to a single node.
(ii) If a distributed plan consists of only intermediate results, which
is not uncommon, the intermediate results are broadcasted to a single
node only.
(iii) If a distributed query hits a sub-set of the shards in multiple
workers, the intermediate results will be broadcasted to the relevant
node(s).
The final item (iii) becomes crucial for append/range distributed
tables where typically the distributed queries hit a small subset of
shards/workers.
To do this, for each query that Citus creates a distributed plan, we keep
track of the subPlans used in the queryTree, and save it in the distributed
plan. Just before Citus executes each subPlan, Citus first keeps track of
every worker node that the distributed plan hits, and marks every subPlan
should be broadcasted to these nodes. Later, for each subPlan which is a
distributed plan, Citus does this operation recursively since these
distributed plans may access to different subPlans, and those have to be
recorded as well.
DESCRIPTION: Expression in reference join
Fixed: #2582
This patch allows arbitrary expressions in the join clause when joining to a reference table. An example of such joins could be found in CHbenCHmark queries 7, 8, 9 and 11; `mod((s_w_id * s_i_id),10000) = su_suppkey` and `ascii(substr(c_state,1,1)) = n2.n_nationkey`. Since the join is on a reference table these queries are able to be pushed down to the workers.
To implement these queries we will widen the `IsJoinClause` predicate to not check if the expressions are a type `Var` after stripping the implicit coerciens. Instead we define a join clause when the `Var`'s in a clause come from more than 1 table.
This allows more clauses to pass into the logical planner's `MultiNodeTree(...)` planning function. To compensate for this we tighten down the `LocalJoin`, `SinglePartitionJoin` and `DualPartitionJoin` to check for direct column references when planning. This allows the planner to work with arbitrary join expressions on reference tables.
This is necassery to support Q20 of the CHbenCHmark: #2582.
To summarize the fix: The subquery is converted into an INNER JOIN on a
table. This fixes the issue, since an INNER JOIN on a table is already
supported by the repartion planner.
The way this replacement is happening.:
1. Postgres replaces `col in (subquery)` with a SEMI JOIN (subquery) on col = subquery_result
2. If this subquery is simple enough Postgres will replace it with a
regular read from a table
3. If the subquery returns unique results (e.g. a primary key) Postgres
will convert the SEMI JOIN into an INNER JOIN during the planning. It
will not change this in the rewritten query though.
4. We check if Postgres sends us any SEMI JOINs during its join order
planning, if it doesn't we replace all SEMI JOINs in the rewritten
query with INNER JOIN (which we already support).
We've changed the logic for pulling RTE_RELATIONs in #3109 and
non-colocated subquery joins and partitioned tables.
@onurctirtir found this steps where I traced back and found the issues.
While looking into it in more detail, we decided to expand the list in a
way that the callers get all the relevant RTE_RELATIONs RELKIND_RELATION,
RELKIND_PARTITIONED_TABLE, RELKIND_FOREIGN_TABLE and RELKIND_MATVIEW.
These are all relation kinds that Citus planner is aware of.
Areas for further optimization:
- Don't save subquery results to a local file on the coordinator when the subquery is not in the having clause
- Push the the HAVING with subquery to the workers if there's a group by on the distribution column
- Don't push down the results to the workers when we don't push down the HAVING clause, only the coordinator needs it
Fixes#520Fixes#756Closes#2047
Do it in two ways (a) re-use the rte list as much as possible instead of
re-calculating over and over again (b) Limit the recursion to the relevant
parts of the query tree
* Change worker_hash_partition_table() such that the
divergence between Citus planner's hashing and
worker_hash_partition_table() becomes the same.
* Rename single partitioning to single range partitioning.
* Add single hash repartitioning. Basically, logical planner
treats single hash and range partitioning almost equally.
Physical planner, on the other hand, treats single hash and
dual hash repartitioning almost equally (except for JoinPruning).
* Add a new GUC to enable this feature
- changes in ruleutils_11.c is reflected
- vacuum statement api change is handled. We now allow
multi-table vacuum commands.
- some other function header changes are reflected
- api conflicts between PG11 and earlier versions
are handled by adding shims in version_compat.h
- various regression tests are fixed due output and
functionality in PG1
- no change is made to support new features in PG11
they need to be handled by new commit
After this commit large_table_shard_count wont be used to
check whether broadcast join, which is renamed as reference
join, can be applied. Reference join can only be applied over
reference tables.
This is the first of series of window function work.
We can now support window functions that can be pushed down to workers.
Window function must have distribution column in the partition clause
to be pushed down.
With #1804 (and related PRs), Citus gained the ability to
plan subqueries that are not safe to pushdown.
There are two high-level requirements for pushing down subqueries:
* Individual subqueries that require a merge step (i.e., GROUP BY
on non-distribution key, or LIMIT in the subquery etc). We've
handled such subqueries via #1876.
* Combination of subqueries that are not joined on distribution keys.
This commit aims to recursively plan some of such subqueries to make
the whole query safe to pushdown.
The main logic behind non colocated subquery joins is that we pick
an anchor range table entry and check for distribution key equality
of any other subqueries in the given query. If for a given subquery,
we cannot find distribution key equality with the anchor rte, we
recursively plan that subquery.
We also used a hacky solution for picking relations as the anchor range
table entries. The hack is that we wrap them into a subquery. This is only
necessary since some of the attribute equivalance checks are based on
queries rather than range table entries.
clause is not supported
This change allows unsupported clauses to go through query pushdown
planner instead of erroring out as we already do for non-outer joins.
We used to error out if the join clause includes filters like
t1.a < t2.a even if other filter like t1.key = t2.key exists.
Recently we lifted that restriction in subquery planning by
not lifting that restriction and focusing on equivalance classes
provided by postgres.
This checkin forwards previously erroring out real-time queries
due to join clauses to subquery planner and let it handle the
join even if the query does not have a subquery.
We are now pushing down queries that do not have any
subqueries in it. Error message looked misleading, changed to a more descriptive one.
With this commit, Citus recursively plans subqueries that
are not safe to pushdown, in other words, requires a merge
step.
The algorithm is simple: Recursively traverse the query from bottom
up (i.e., bottom meaning the leaf queries). On each level, check
whether the query is safe to pushdown (or a single repartition
subquery). If the answer is yes, do not touch that subquery. If the
answer is no, plan the subquery seperately (i.e., create a subPlan
for it) and replace the subquery with a call to
`read_intermediate_results(planId, subPlanId)`. During the the
execution, run the subPlans first, and make them avaliable to the
next query executions.
Some of the queries hat this change allows us:
* Subqueries with LIMIT
* Subqueries with GROUP BY/DISTINCT on non-partition keys
* Subqueries involving re-partition joins, router queries
* Mixed usage of subqueries and CTEs (i.e., use CTEs in
subqueries as well). Nested subqueries as long as we
support the subquery inside the nested subquery.
* Subqueries with local tables (i.e., those subqueries
has the limitation that they have to be leaf subqueries)
* VIEWs on the distributed tables just works (i.e., the
limitations mentioned below still applies to views)
Some of the queries that is still NOT supported:
* Corrolated subqueries that are not safe to pushdown
* Window function on non-partition keys
* Recursively planned subqueries or CTEs on the outer
side of an outer join
* Only recursively planned subqueries and CTEs in the FROM
(i.e., not any distributed tables in the FROM) and subqueries
in WHERE clause
* Subquery joins that are not on the partition columns (i.e., each
subquery is individually joined on partition keys but not the upper
level subquery.)
* Any limitation that logical planner applies such as aggregate
distincts (except for count) when GROUP BY is on non-partition key,
or array_agg with ORDER BY