Previously INSERT .. SELECT planner were pushing down some queries that should not be pushed down due to wrong colocation checks. It was checking whether one of the table in SELECT part and target table are colocated. But now, we check colocation for all tables in SELECT part and the target table.
Another problem with INSERT .. SELECT planner was that some queries, which is valid to be pushed down, were not pushed down due to unnecessary checks which are currently supported. e.g. UNION check. As solution, we reused the pushdown planner checks for INSERT .. SELECT planner.
DESCRIPTION: Fixes a bug that causes incorrectly pushing down some
INSERT .. SELECT queries that we shouldn't
DESCRIPTION: Prevents unnecessarily pulling the data into coordinator
for some INSERT .. SELECT queries
DESCRIPTION: Drops support for pushing down INSERT .. SELECT with append
table as target
Fixes#6749.
Fixes#1428.
Fixes#6920.
---------
Co-authored-by: aykutbozkurt <aykut.bozkurt1995@gmail.com>
* Add support for dist insert select by selecting from a reference
table.
This was the only pushable insert .. select case that
#6773 didn't cover.
* For the cases where we insert into a Citus table but the INSERT ..
SELECT
query cannot be pushed down, allow pull-to-coordinator when possible.
Remove the checks that we had at the very beginning of
CreateInsertSelectPlanInternal so that we can try insert .. select via
pull-to-coordinator for the cases where we cannot push-down the insert
.. select query. What we support via pull-to-coordinator is still
limited due to lacking of logical planner support for SELECT queries,
but this commit at least allows using pull-to-coordinator for the cases
where the select query can be planned via router planner, without
limiting ourselves to restrictive top-level checks.
Also introduce some additional restrictions into
CreateDistributedInsertSelectPlan for the cases it was missing to check
for null-shard-key tables. Indeed, it would make more sense to have
those checks for distributed tables in general, via separate PRs against
main branch. See https://github.com/citusdata/citus/pull/6817.
* Add support for inserting into a Postgres table.
Enable router planner and a limited version of INSERT .. SELECT planner
for the queries that reference colocated null shard key tables.
* SELECT / UPDATE / DELETE / MERGE is supported as long as it's a router
query.
* INSERT .. SELECT is supported as long as it only references colocated
null shard key tables.
Note that this is not only limited to distributed INSERT .. SELECT but
also
covers a limited set of query types that require pull-to-coordinator,
e.g.,
due to LIMIT clause, generate_series() etc. ...
(Ideally distributed INSERT .. SELECT could handle such queries too,
e.g.,
when we're only referencing tables that don't have a shard key, but
today
this is not the case. See
https://github.com/citusdata/citus/pull/6773#discussion_r1140130562.
With this PR, we allow creating distributed tables with without
specifying a shard key via create_distributed_table(). Here are the
the important details about those tables:
* Specifying `shard_count` is not allowed because it is assumed to be 1.
* We mostly call such tables as "null shard-key" table in code /
comments.
* To avoid doing a breaking layout change in create_distributed_table();
instead of throwing an error, it will inform the user that
`distribution_type`
param is ignored unless it's explicitly set to NULL or 'h'.
* `colocate_with` param allows colocating such null shard-key tables to
each other.
* We define this table type, i.e., NULL_SHARD_KEY_TABLE, as a subclass
of
DISTRIBUTED_TABLE because we mostly want to treat them as distributed
tables in terms of SQL / DDL / operation support.
* Metadata for such tables look like:
- distribution method => DISTRIBUTE_BY_NONE
- replication model => REPLICATION_MODEL_STREAMING
- colocation id => **!=** INVALID_COLOCATION_ID (distinguishes from
Citus local tables)
* We assign colocation groups for such tables to different nodes in a
round-robin fashion based on the modulo of "colocation id".
Note that this PR doesn't care about DDL (except CREATE TABLE) / SQL /
operation (i.e., Citus UDFs) support for such tables but adds a
preliminary
API.
Recursive planner should handle all the tree from bottom to top at
single pass. i.e. It should have already recursively planned all
required parts in its first pass. Otherwise, this means we have bug at
recursive planner, which needs to be handled. We add a check here and
return error.
DESCRIPTION: Fixes wrong results by throwing error in case recursive
planner multipass the query.
We found 3 different cases which causes recursive planner passes the
query multiple times.
1. Sublink in WHERE clause is planned at second pass after we
recursively planned a distributed table at the first pass. Fixed by PR
#6657.
2. Local-distributed joins are recursively planned at both the first and
the second pass. Issue #6659.
3. Some parts of the query is considered to be noncolocated at the
second pass as we do not generate attribute equivalances between
nondistributed and distributed tables. Issue #6653
We've had custom versions of Postgres its `foreach` macro which with a
hidden ListCell for quite some time now. People like these custom
macros, because they are easier to use and require less boilerplate.
This adds similar custom versions of Postgres its `forboth` macro. Now
you don't need ListCells anymore when looping over two lists at the same
time.
* Fix UNION not being pushdown
Postgres optimizes column fields that are not needed in the output. We
were relying on these fields to understand if it is safe to push down a
union query.
This fix looks at the parse query, which has the original column fields
to detect if it is safe to push down a union query.
* Add more tests
* Simplify code and make it more robust
* Process varlevelsup > 0 in FindReferencedTableColumn
* Only look for outers vars in union path
* Add more comments
* Remove UNION ALL specific logic for pulling up childvars
Baseinfo also has pushed down filters etc, so it makes more sense to use
BaseRestrictInfo to determine what columns have constant equality
filters.
Also RteIdentity is used for removing conversion candidates instead of
rteIndex.
Introduce table entry utility functions
Citus table cache entry utilities are introduced so that we can easily
extend existing functionality with minimum changes, specifically changes
to these functions. For example IsNonDistributedTableCacheEntry can be
extended for citus local tables without the need to scan the whole
codebase and update each relevant part.
* Introduce utility functions to find the type of tables
A table type can be a reference table, a hash/range/append distributed
table. Utility methods are created so that we don't have to worry about
how a table is considered as a reference table etc. This also makes it
easy to extend the table types.
* Add IsCitusTableType utilities
* Rename IsCacheEntryCitusTableType -> IsCitusTableTypeCacheEntry
* Change citus table types in some checks
FindNodeCheck is not clear about what the function is doing. They are
renamed to FindNodeMatchingCheckFunctionXXX. Also for choosing elements in these
functions, CheckNodeFunc type is introduced.
The codebase is updated to use varattnosync and varnosyn and we defined
the macros for older versions. This way we can just remove the macros
when we drop an older version.
The error message when index has opclassopts is improved and the commit
from postgres side is also included for future reference.
Also some minor style related changes are applied.
As the new planner and pg_plan_query_compat methods expect the query
string as well, macros are defined to be compatible in different
versions of postgres.
Relevant commit on Postgres:
6aba63ef3e606db71beb596210dd95fa73c44ce2
Command on Postgres:
git log --all --grep="pg_plan_query"
With PG13 heap_* (heap_open, heap_close etc) are replaced with table_*
(table_open, table_close etc).
It is better to use the new table access methods in the codebase and
define the macros for the previous versions as we can easily remove the
macro without having to change the codebase when we drop the support for
the old version.
Commits that introduced this change on Postgres:
f25968c49697db673f6cd2a07b3f7626779f1827
e0c4ec07284db817e1f8d9adfb3fffc952252db0
4b21acf522d751ba5b6679df391d5121b6c4a35f
Command to see relevant commits on Postgres side:
git log --all --grep="heap_open"
Static analysis found some issues where we used the result from
ExtractResultRelationRTE, without checking that it wasn't NULL. It seems
like in all these cases it can never actually be NULL, since we have checked
before that it isn't a SELECT query. So, this PR is mostly to make static
analysis happy (and protect a bit against future changes of the code).
This is so we don't need to calculate it twice in
insert_select_executor.c and multi_explain.c, which can
cause discrepancy if an update in one of them is not
reflected in the other site.
* Insert select with master query
* Use relid to set custom_scan_tlist varno
* Reviews
* Fixes null check
Co-authored-by: Marco Slot <marco.slot@gmail.com>
SELECT_TASK is renamed to READ_TASK as a SELECT with modifying CTEs will be a MODIFYING_TASK
RouterInsertJob: Assert originalQuery->commandType == CMD_INSERT
CreateModifyPlan: Assert originalQuery->commandType != CMD_SELECT
Remove unused function IsModifyDistributedPlan
DistributedExecution, ExecutionParams, DistributedPlan: Rename hasReturning to expectResults
SELECTs set expectResults to true
Rename CreateSingleTaskRouterPlan to CreateSingleTaskRouterSelectPlan