* explicitly return false if transaction connected to local node
* not set TransactionConnectedToLocalGroup if we are writing to a file
We use TransactionConnectedToLocalGroup to prevent local execution from
happening as that might cause visibility problems. As files are visible
to all transactions, we shouldn't set this variable if we are writing to
a file.
For shardplacements, we were setting nodeid, nodename, nodeport and
nodegroup manually. This makes it very error prone, and it seems that we
already forgot to set some of them. This would mean that they would have
their default values, e.g group id would be 0 when its group id is not
0.
So the implication is that we would have inconsistent worker metadata.
A new method is introduced, and we call the method to set those fields
now, so that as long as we call this method, we won't be setting
inconsistent metadata.
It probably makes sense to have a struct for these fields. We already
have NodeMetadata but it doesn't have nodename or nodeport. So that
could be done over another refactor to make things simpler.
ExecuteTaskListExtended is the common method for different codepaths,
and instead of writing separate local execution logics in different
codepaths, it makes more sense to have the logic here. We still need to
do some refactoring, this is an initial step.
After this commit, we can run create shard commands locally. There is a
special case with shard creation commands. A create shard command might
have a concatenated query string, however local execution did not know
how to execute a task with multiple query strings. This is also
implemented in this commit. We go over each query in the concatenated
query string and plan/execute them one by one.
A more clean solution to this would be to make sure that each task has a
single query. We currently cannot do that because we need to ensure the
task dependencies. However, it would make sense to do that at some point
and it would simplify the code a lot.
In PostgreSQL, user defaults for config parameters can be changed by
ALTER ROLE .. SET statements. We wish to propagate those defaults
accross the Citus cluster so that the behaviour will be similar in
different workers.
The defaults can either be set in a specific database, or the whole
cluster, similarly they can be set for a single role or all roles.
We propagate the ALTER ROLE .. SET if all the conditions below are met:
- The query affects the current database, or all databases
- The user is already created in worker nodes
Sometimes we have concatenated query strings for a task. However,
when we want to find each query string, it is not a trivial task.
Therefore, it makes sense to store this in task so that when we need
each query string we can easily get it.
If two tables have the same distribution column type, we implicitly
colocate them. This is useful since colocation has a big performance
impact in most applications.
When a table is rebalanced, all of the colocated tables are also
rebalanced. If table A and table B are colocated and we want to
rebalance table A, table B will also be rebalanced. We need replica
identity so that logical replication can replicate updates and deletes
during rebalancing. If table B does not have a replica identity we
error out.
A solution to this is to introduce a UDF so that colocation can be
updated. The remaining tables in the colocation group will stay
colocated. For example if table A, B and C are colocated and after
updating table B's colocations, table A and table C stay colocated.
The "updating colocation" step does not move any data around, it only
updated pg_dist_partition and pg_dist_colocation tables. Specifically it
creates a new colocation group for the table and updates the entry in
pg_dist_partition while invalidating any cache.
We have special logic to copy into intermediate results and we use a
custom format for that, "result" copy format. Postgres internally does
not know this format and if we use this locally it will error saying
that it does not know this format.
Files are visible to all transactions, which means that we can use any
connection to access files. In order to use the existing logic, it makes
sense that in case we have intermediate results, which means we will
write the results to a file, we preserve the same behavior, which is
opening connections to localhost. Therefore if we have intermediate
results we return false in ShouldExecuteCopyLocally.
We can use local copy in INSERT..SELECT, so the check that disables
local execution is removed.
Also a test for local copy where the data size >
LOCAL_COPY_FLUSH_THRESHOLD is added.
use local execution with insert..select
If current transaction is connected to local group we should not use
local copy, because we might not see some of the changes that are made
over the connection to the local group.
A copy will be executed locally if
- Local execution is enabled and current transaction accessed a local placement
- Local execution is enabled and we are inside a transaction block.
So even if local execution is enabled but we are not in a transaction block, the copy will not be run locally.
This will not run locally:
```
COPY distributed_table FROM STDIN;
....
```
This will run locally:
```
SET citus.enable_local_execution to 'on';
BEGIN;
COPY distributed_table FROM STDIN;
COMMIT;
....
```
.
There are 3 ways to do a copy in postgres programmatically:
- from a file
- from a program
- from a callback function
I have chosen to implement it with a callback function, which means that we write the rows of copy from a callback function to the output buffer, which is used to insert tuples into the actual table.
For each shard id, we have a buffer that keeps the current rows to be written, we perform the actual copy operation either when:
- copy buffer for the given shard id reaches to a threshold, which is currently 512KB
- we reach to the end of the copy
The buffer size is debatable(512KB). At a given time, we might allocate (local placement * buffer size) memory at most.
The local copy uses the same copy format as remote copy, which means that we serialize the data in the same format as remote copy and send it locally.
There was also the option to use ExecSimpleRelationInsert to insert
slots one by one, which would avoid the extra
serialization/deserialization but doing some benchmarks it seems that
using buffers are significantly better in terms of the performance.
You can see this comment for more details: https://github.com/citusdata/citus/pull/3557#discussion_r389499054
* reimplement ExecuteUtilityTaskListWithoutResults for local utility command execution
* introduce new functions for local execution of utility commands
* change ErrorIfTransactionAccessedPlacementsLocally logic for local utility command execution
* enable local execution for TRUNCATE command on distributed & reference tables
* update existing tests for local utility command execution
* enable local execution for DDL commands on distributed & reference tables
* enable local execution for DROP command on distributed & reference tables
* add normalization rules for cascaded commands
* add new tests for local utility command execution
Calling ErrorIfUnsupportedConstraint was still giving errors on Semmle. This
makes sure that we check for NULL at runtime. This way we can safely ignore all
errors created by this function.
DESCRIPTION: satisfy static analysis tool for a nullptr dereference
During the static analysis project on the codebase this code has been flagged as having the potential for a null pointer dereference. Funnily enough the author had already made a comment of it in the code this was not possible due to us setting the schema name before we pass in the statement. If we want to reuse this code in a later setting this comment might not always apply and we could actually run into null pointer dereference.
This patch changes a bit of the code around to first of all make sure there is no NULL pointer dereference in this code anymore.
Secondly we allow for better deparsing by setting and adhering to the `if_not_exists` flag on the statement.
And finally add support for all syntax described in the documentation of postgres (FROM was missing).
Makees VacuumTaskList function even with other TaskList creator functions.
Also, previously we were generating per-shard vacuum command strings via
unconventional usage of StringInfo struct (setting the stringInfo->len field
manually) which could cause unexepected memory errors (that I cannot foresee now).
If the generated column does not come at the end of the column list,
columnNameList doesn't line up with the column indexes. Seek past
CREATE TABLE test_table (
test_id int PRIMARY KEY,
gen_n int GENERATED ALWAYS AS (1) STORED,
created_at TIMESTAMPTZ NOT NULL DEFAULT now()
);
SELECT create_distributed_table('test_table', 'test_id');
Would raise ERROR: cannot cast 23 to 1184
Semmle reported quite some places where we use a value that could be NULL. Most of these are not actually a real issue, but better to be on the safe side with these things and make the static analysis happy.
- Stop the daemon when citus extension is dropped
- Bail on maintenance daemon startup if myDbData is started with a non-zero pid
- Stop maintenance daemon from spawning itself
- Don't use postgres die, just wrap proc_exit(0)
- Assert(myDbData->workerPid == MyProcPid)
The two issues were that multiple daemons could be running for a database,
or that a daemon would be leftover after DROP EXTENSION citus
Mark existing objects that are not included in distributed object infrastructure
in older versions of Citus (but now should be) as distributed, after updating
Citus successfully.
* Update shardPlacement->nodeId to uint
As the source of the shardPlacement->nodeId is always workerNode->nodeId,
and that is uint32.
We had this hack because of: 0ea4e52df5 (r266421409)
And, that is gone with: 90056f7d3c (diff-c532177d74c72d3f0e7cd10e448ab3c6L1123)
So, we're safe to do it now.
* Relax the restrictions on using the local execution
Previously, whenever any local execution happens, we disabled further
commands to do any remote queries. The basic motivation for doing that
is to prevent any accesses in the same transaction block to access the
same placements over multiple sessions: one is local session the other
is remote session to the same placement.
However, the current implementation does not distinguish local accesses
being to a placement or not. For example, we could have local accesses
that only touches intermediate results. In that case, we should not
implement the same restrictions as they become useless.
So, this is a pre-requisite for executing the intermediate result only
queries locally.
* Update the error messages
As the underlying implementation has changed, reflect it in the error
messages.
* Keep track of connections to local node
With this commit, we're adding infrastructure to track if any connection
to the same local host is done or not.
The main motivation for doing this is that we've previously were more
conservative about not choosing local execution. Simply, we disallowed
local execution if any connection to any remote node is done. However,
if we want to use local execution for intermediate result only queries,
this'd be annoying because we expect all queries to touch remote node
before the final query.
Note that this approach is still limiting in Citus MX case, but for now
we can ignore that.
* Formalize the concept of Local Node
Also some minor refactoring while creating the dummy placement
* Write intermediate results locally when the results are only needed locally
Before this commit, Citus used to always broadcast all the intermediate
results to remote nodes. However, it is possible to skip pushing
the results to remote nodes always.
There are two notable cases for doing that:
(a) When the query consists of only intermediate results
(b) When the query is a zero shard query
In both of the above cases, we don't need to access any data on the shards. So,
it is a valuable optimization to skip pushing the results to remote nodes.
The pattern mentioned in (a) is actually a common patterns that Citus users
use in practice. For example, if you have the following query:
WITH cte_1 AS (...), cte_2 AS (....), ... cte_n (...)
SELECT ... FROM cte_1 JOIN cte_2 .... JOIN cte_n ...;
The final query could be operating only on intermediate results. With this patch,
the intermediate results of the ctes are not unnecessarily pushed to remote
nodes.
* Add specific regression tests
As there are edge cases in Citus MX and with round-robin policy,
use the same queries on those cases as well.
* Fix failure tests
By forcing not to use local execution for intermediate results since
all the tests expects the results to be pushed remotely.
* Fix flaky test
* Apply code-review feedback
Mostly style changes
* Limit the max value of pg_dist_node_seq to reserve for internal use
Deparsing and parsing a query can be heavy on CPU. When locally executing
the query we don't need to do this in theory most of the time.
This PR is the first step in allowing to skip deparsing and parsing
the query in these cases, by lazily creating the query string and
storing the query in the task. Future commits will make use of this and
not deparse and parse the query anymore, but use the one from the task
directly.
DESCRIPTION: Fixes a problem when adding a new node due to tables referenced in a functions body
Fixes#3378
It was reported that `master_add_node` would fail if a distributed function has a table name referenced in its declare section of the body. By default postgres validates the body of a function on creation. This is not a problem in the normal case as tables are replicated to the workers when we distribute functions.
However when a new node is added we first create dependencies on the workers before we try to create any tables, and the original tables get created out of bound when the metadata gets synced to the new node. This causes the function body validator to raise an error the table is not on the worker.
To mitigate this issue we set `check_function_bodies` to `off` right before we are creating the function.
The added test shows this does resolve the issue. (issue can be reproduced on the commit without the fix)
In two places I've made code more straight forward by using ROUTINE in our own codegen
Two changes which may seem extraneous:
AppendFunctionName was updated to not use pg_get_function_identity_arguments.
This is because that function includes ORDER BY when printing an aggregate like my_rank.
While ALTER AGGREGATE my_rank(x "any" ORDER BY y "any") is accepted by postgres,
ALTER ROUTINE my_rank(x "any" ORDER BY y "any") is not.
Tests were updated to use macaddr over integer. Using integer is flaky, our logic
could sometimes end up on tables like users_table. I originally wanted to use money,
but money isn't hashable.