BEGIN/COMMIT transaction block or in a UDF calling another UDF.
(2) Prohibit/Limit the delegated function not to do a 2PC (or any work on a
remote connection).
(3) Have a safety net to ensure the (2) i.e. we should block the connections
from the delegated procedure or make sure that no 2PC happens on the node.
(4) Such delegated functions are restricted to use only the distributed argument
value.
Note: To limit the scope of the project we are considering only Functions(not
procedures) for the initial work.
DESCRIPTION: Introduce a new flag "force_delegation" in create_distributed_function(),
which will allow a function to be delegated in an explicit transaction block.
Fixes#3265
Once the function is delegated to the worker, on that node during the planning
distributed_planner()
TryToDelegateFunctionCall()
CheckDelegatedFunctionExecution()
EnableInForceDelegatedFuncExecution()
Save the distribution argument (Constant)
ExecutorStart()
CitusBeginScan()
IsShardKeyValueAllowed()
Ensure to not use non-distribution argument.
ExecutorRun()
AdaptiveExecutor()
StartDistributedExecution()
EnsureNoRemoteExecutionFromWorkers()
Ensure all the shards are local to the node in the remoteTaskList.
NonPushableInsertSelectExecScan()
InitializeCopyShardState()
EnsureNoRemoteExecutionFromWorkers()
Ensure all the shards are local to the node in the placementList.
This also fixes a minor issue: Properly handle expressions+parameters in distribution arguments
* Removed distributed dependency in columnar_metadata.c
* Changed columnar_debug.c so that it no longer needed distributed/tuplestore and made it return a record instead of a tuplestore
* removed distributed/commands.h dependency
* Made columnar_tableam.c dependency-free
* Fixed spacing for columnar_store_memory_stats function
* indentation fix
* fixed test failures
* Require superuser while activating a node
With this change, we require ActiveNode() (hence citus_add_node(),
citus_activate_node()) explicitly require for a superuser.
Before this commit, these functions were designed to work with
non-superuser roles with the relevent GRANTs given.
However, that is not a widely used way for calling the functions
above.
Due to possibility of non-super user calling the UDFs, they were
designed in a way that some commands were using some additional
short-lived superuser connections. That is:
(a) breaking transactional behavior (e.g., ROLLBACK
wouldn't fully rollback the whole transaction)
(b) Making it very complicated to reason about which
parts of the node activation goes over which connections,
and becoming vulnerable to deadlocks / visibility issues.
We prefer the background daemon to only sync node metadata. That's
why we move placement metadata changes from disable node to
activate node. With that, we can make sure that disable node
only changes node metadata, whereas activate node syncs all
the metadata changes. In essence, we already expect all
nodes to be up when a node is activated. So, this does not change
the behavior much.
Dropping sequences means we need to recreate
and hence losing the sequence.
With this commit, we keep the existing sequences
such that resyncing wouldn't drop the sequence.
We do that by breaking the dependency of the sequence
from the table.
Before this commit, Citus was triggering metadata syncing
in the background when a function is distributed. However,
with Citus 11, we expect all clusters to have metadata synced
enabled. So, we do not expect any nodes not to have the metadata.
This change:
(a) pro: simplifies the code and opens up possibilities
to simplify futher by reducing the scope of
bg worker to only sync node metadata
(b) pro: explicitly asks users to sync the metadata such that
any unforseen impact can be easily detected
(c) con: For distributed functions without distribution
argument, we do not necessarily require the metadata
sycned. However, for completeness and simplicity, we
do so.
With Citus 11, the default behavior is to sync the metadata.
However, partitioned tables created pre-Citus 11 might have
index names that are not compatiable with metadata syncing.
See https://github.com/citusdata/citus/issues/4962 for the
details.
With this commit, we record the existence of partitioned tables
such that we can fix it later if any exists.
With this commit, fix_partition_shard_index_names()
works significantly faster.
For example,
32 shards, 365 partitions, 5 indexes drop from ~120 seconds to ~44 seconds
32 shards, 1095 partitions, 5 indexes drop from ~600 seconds to ~265 seconds
`queryStringList` can be really long, because it may contain #partitions * #indexes entries.
Before this change, we were actually going through the executor where each command
in the query string triggers 1 round trip per entry in queryStringList.
The aim of this commit is to avoid the round-trips by creating a single query string.
I first simply tried sending `q1;q2;..;qn` . However, the executor is designed to
handle `q1;q2;..;qn` type of query executions via the infrastructure mentioned
above (e.g., by tracking the query indexes in the list and doing 1 statement
per round trip).
One another option could have been to change the executor such that only track
the query index when `queryStringList` is provided not with queryString
including multiple `;`s . That is (a) more work (b) could cause weird edge
cases with failure handling (c) felt like coding a special case in to the executor
(cherry picked from commit 90928cfd74)
Fix function signature generation
Fix comment typo
Add test for worker_create_or_replace_object
Add test for recreating distributed functions with OUT/TABLE params
Add test for recreating distributed function that returns setof int
Fix test output
Fix comment
Simply applies
```SQL
SELECT textlike(command, citus.grep_remote_commands)
```
And, if returns true, the command is logged. Else, the log is ignored.
When citus.grep_remote_commands is empty string, all commands are
logged.
This UDF coordinates connectivity checks accross the whole cluster.
This UDF gets the list of active readable nodes in the cluster, and
coordinates all connectivity checks in sequential order.
The algorithm is:
for sourceNode in activeReadableWorkerList:
c = connectToNode(sourceNode)
for targetNode in activeReadableWorkerList:
result = c.execute(
"SELECT citus_check_connection_to_node(targetNode.name,
targetNode.port")
emit sourceNode.name,
sourceNode.port,
targetNode.name,
targetNode.port,
result
- result -> true -> connection attempt from source to target succeeded
- result -> false -> connection attempt from source to target failed
- result -> NULL -> connection attempt from the current node to source node failed
I suggest you use the following query to get an overview on the connectivity:
SELECT bool_and(COALESCE(result, false))
FROM citus_check_cluster_node_health();
Whenever this query returns false, there is a connectivity issue, check in detail.
We had 2 class definitions for CitusCacheManyConnectionsConfig, where
one of them was a copy of CitusSmallCopyBuffersConfig.
This commit leaves the intended class definition that configures caching
many connections, and removes the one that is a copy of another class
Before that PR we were updating citus.pg_dist_object metadata, which keeps
the metadata related to objects on Citus, only on the coordinator node. In
order to allow using those object from worker nodes (or erroring out with
proper error message) we've started to propagate that metedata to worker
nodes as well.
citus_check_connection_to_node runs a simple query on a remote node and
reports whether this attempt was successful.
This UDF will be used to make sure each worker node can connect to all
the worker nodes in the cluster.
parameters:
nodename: required
nodeport: optional (default: 5432)
return value:
boolean success
* Update broken link for upgrade tests
* Update src/test/regress/README.md
Co-authored-by: Nils Dijk <nils@citusdata.com>
Co-authored-by: Nils Dijk <nils@citusdata.com>
As of master branch, Citus does all the modifications to replicated tables
(e.g., reference tables and distributed tables with replication factor > 1),
via 2PC and avoids any shardstate=3. As a side-effect of those changes,
handling node failures for replicated tables change.
With this PR, when one (or multiple) node failures happen, the users would
see query errors on modifications. If the problem is intermitant, that's OK,
once the node failure(s) recover by themselves, the modification queries would
succeed. If the node failure(s) are permenant, the users should call
`SELECT citus_disable_node(...)` to disable the node. As soon as the node is
disabled, modification would start to succeed. However, now the old node gets
behind. It means that, when the node is up again, the placements should be
re-created on the node. First, use `SELECT citus_activate_node()`. Then, use
`SELECT replicate_table_shards(...)` to replicate the missing placements on
the re-activated node.
The checks for preventing to remove a node are very much reference
table centric. We are soon going to add the same checks for replicated
tables. So, make the checks generic such that:
(a) replicated tables fit naturally
(b) we can the same checks in `citus_disable_node`.
We do not use comments starting with # in spec files because it creates
errors from C preprocessor that expects directives after this character.
Instead use C style comments, i.e:
// single line comment
You can also use multiline comments as well
/*
* multi line comment
*/
Before this commit, we acquire the metadata locks on the reference
tables while removing/disabling a node on all the MX nodes.
Although it has some marginal benefits, such as a concurrent
modification during remove/disable node blocks, instead of erroring
out, the drawbacks seems worse. Both citus_remove_node and citus_disable_node
are not tolerant to multiple node failures.
With this commit, we relax the locks. The implication is that while
a node is removed/disabled, users might see query errors. On the
other hand, this change becomes removing/disabling nodes more
tolerant to multiple node failures.
When refactoring storage layer in #4907, we deleted the code that allows
overwriting a disk page previously written but not known by metadata.
Readers can see the change that introduced the code allows doing so in
commit a8da9acc63.
The reasoning was that; as of 10.2, we started aligning page
reservations (`AlignReservation`) for subsequent writes right after
allocating pages from disk. That means, even if writer transaction
fails, subsequent writes are guaranteed to allocate a new page and write
to there. For this reason, attempting to write to a page allocated
before is not possible for a columnar table that user created when using
v10.2.x.
However, since the older versions of columnar doesn't do that, following
example scenario can still result in writing to such disk page, even if
user now upgraded to v10.2.x. This is because, when upgrading storage to
2.0 (`ColumnarStorageUpdateIfNeeded`), we calculate `reservedOffset` of
the metapage based on the highest used address known by stripe
metadata (`GetHighestUsedAddressAndId`). However, stripe metadata
doesn't have entries for aborted writes. As a result, highest used
address would be computed by ignoring pages that are allocated but not
used.
- User attempts writing to columnar table on Citus v10.0x/v10.1x.
- Write operation fails for some reason.
- User upgrades Citus to v10.2.x.
- When attempting to write to same columnar table, they hit to "attempt
to write columnar data .." error since write operation done in the
older version of columnar already allocated that page, and now we are
overwriting it.
For this reason, with this commit, we re-do the change done in
a8da9acc63.
And for the reasons given above, it wasn't possible to add a test for
this commit via usual code-paths. For this reason, added a UDF only for
testing purposes so that we can reproduce the exact scenario in our
regression test suite.
During pg upgrades, we have seen that it is not guaranteed that a
columnar table will be created after metadata objects got created.
Prior to changes done in this commit, we had such a dependency
relationship in `pg_depend`:
```
columnar_table ----> columnarAM ----> citus extension
^ ^
| |
columnar.storage_id_seq -------------------- |
|
columnar.stripe -------------------------------
```
Since `pg_upgrade` just knows to follow topological sort of the objects
when creating database dump, above dependency graph doesn't imply that
`columnar_table` should be created before metadata objects such as
`columnar.storage_id_seq` and `columnar.stripe` are created.
For this reason, with this commit we add new records to `pg_depend` to
make columnarAM depending on all rel objects living in `columnar`
schema. That way, `pg_upgrade` will know it needs to create those before
creating `columnarAM`, and similarly, before creating any tables using
`columnarAM`.
Note that in addition to inserting those records via installation script,
we also do the same in `citus_finish_pg_upgrade()`. This is because,
`pg_upgrade` rebuilds catalog tables in the new cluster and that means,
we must insert them in the new cluster too.
- [x] Add some more regression test coverage
- [x] Make sure returning works fine in case of
local execution + remote execution
(task->partiallyLocalOrRemote works as expected, already added tests)
- [x] Implement locking properly (and add isolation tests)
- [x] We do #shardcount round-trips on `SerializeNonCommutativeWrites`.
We made it a single round-trip.
- [x] Acquire locks for subselects on the workers & add isolation tests
- [x] Add a GUC to prevent modification from the workers, hence increase the
coordinator-only throughput
- The performance slightly drops (~%15), unless
`citus.allow_modifications_from_workers_to_replicated_tables`
is set to false
Drop extension might cascade to columnar.options before dropping a
columnar table. In that case, we were getting below error when opening
columnar.options to delete records for the columnar table that we are
about to drop.: "ERROR: could not open relation with OID 0".
I somehow reproduced this bug easily when upgrading pg, that is why
adding added the test to after_pg_upgrade_schedule.
We recently introduced a set of patches to 10.2, and introduced 10.2-4
migration version. This migration version only resides on `release-10.2`
branch, and is missing on our default branch. This creates a problem
because we do not have a valid migration path from 10.2 to latest 11.0.
To remedy this issue, I copied the relevant migration files from
`release-10.2` branch, and renamed some of our migration files on
default branch to make sure we have a linear upgrade path.
Before this commit, we required the user to be owner of the shard/table
in order to call lock_shard_resources.
However, that is too restrictive. We can have users with GRANTS
to the table who are not owners of the tables/shards.
With this commit, we allow such patterns.
* Refactor some checks in citus local tables
* all existing citus local tables are auto converted after upgrade
* Update warning messages in CreateCitusLocalTable
* Hide notice msg for auto converting local tables
* Hide hint msg
Co-authored-by: Ahmet Gedemenli <afgedemenli@gmail.com>
This PR is fixing 2 separate issues related to the local run of citus upgrade tests.
d3e7c825ab fixes the issue that, with our new testing infrastructure, we moved/renamed some of existing folders. This created a problem for local runs of citus upgrade tests since some paths were sensitive to such changes. This commit tries to make it more generic so that this issue is less likely to happen in the future, while also fixing the current issue.
93de6b60c3 we are fixing an issue that a new environment variable was added for citus upgrade tests, which is defined in the CI. 0cb51f8c37/.circleci/config.yml (L294)
This environment variable wasn't set in our local runs hence it would create problems. Instead of defining this environment variable in the local run, we change the citus_upgrade run command to use an existing env variable, which is now also set in the CI.
We fixed some crashes a while back that would only occur in cases where
the value of a distribution column would have result in a high or a very
low hash value. This adds a regression test for those crashes.
This test starts passing because of PR #4508, to be precise commit:
24e60b44a1
When I undo that commit this newly added test starts failing. This adds
this test to make sure we don't regress on this again.