DESCRIPTION: Add a rebalancer that uses background tasks for its
execution
Based on the baclground jobs and tasks introduced in #6296 we implement
a new rebalancer on top of the primitives of background execution. This
allows the user to initiate a rebalance and let Citus execute the long
running steps in the background until completion.
Users can invoke the new background rebalancer with `SELECT
citus_rebalance_start();`. It will output information on its job id and
how to track progress. Also it returns its job id for automation
purposes. If you simply want to wait till the rebalance is done you can
use `SELECT citus_rebalance_wait();`
A running rebalance can be canelled/stopped with `SELECT
citus_rebalance_stop();`.
DESCRIPTION: Fix reference table lock contention
Dropping and creating reference tables unintentionally blocked on each other due to the use of an ExclusiveLock for both the Drop and conditionally copying existing reference tables to (new) nodes.
The patch does the following:
- Lower lock lever for dropping (reference) tables to `ShareLock` so they don't self conflict
- Treat reference tables and distributed tables equally and acquire the colocation lock when dropping any table that is in a colocation group
- Perform the precondition check for copying reference tables twice, first time with a lower lock that doesn't conflict with anything. Could have been a NoLock, however, in preparation for dropping a colocation group, it is an `AccessShareLock`
During normal operation the first check will always pass and we don't have to escalate that lock. Making it that we won't be blocked on adding and remove reference tables. Only after a node addition the first `create_reference_table` will still need to acquire an `ExclusiveLock` on the colocation group to perform the copy.
With this commit we've started to propagate sequences and shell
tables within the object dependency resolution. So, ensuring any
dependencies for any object will consider shell tables and sequences
as well. Separate logics for both shell tables and sequences have
been removed.
Since both shell tables and sequences logic were implemented as a
part of the metadata handling before that logic, we were propagating
them while syncing table metadata. With this commit we've divided
metadata (which means anything except shards thereafter) syncing
logic into multiple parts and implemented it either as a part of
ActivateNode. You can check the functions called in ActivateNode
to check definition of different metadata.
Definitions of start_metadata_sync_to_node and citus_activate_node
have also been updated. citus_activate_node will basically create
an active node with all metadata and reference table shards.
start_metadata_sync_to_node will be same with citus_activate_node
except replicating reference tables. stop_metadata_sync_to_node
will remove all the metadata. All of those UDFs need to be called
by superuser.
We prefer the background daemon to only sync node metadata. That's
why we move placement metadata changes from disable node to
activate node. With that, we can make sure that disable node
only changes node metadata, whereas activate node syncs all
the metadata changes. In essence, we already expect all
nodes to be up when a node is activated. So, this does not change
the behavior much.
As of master branch, Citus does all the modifications to replicated tables
(e.g., reference tables and distributed tables with replication factor > 1),
via 2PC and avoids any shardstate=3. As a side-effect of those changes,
handling node failures for replicated tables change.
With this PR, when one (or multiple) node failures happen, the users would
see query errors on modifications. If the problem is intermitant, that's OK,
once the node failure(s) recover by themselves, the modification queries would
succeed. If the node failure(s) are permenant, the users should call
`SELECT citus_disable_node(...)` to disable the node. As soon as the node is
disabled, modification would start to succeed. However, now the old node gets
behind. It means that, when the node is up again, the placements should be
re-created on the node. First, use `SELECT citus_activate_node()`. Then, use
`SELECT replicate_table_shards(...)` to replicate the missing placements on
the re-activated node.
Introduce table entry utility functions
Citus table cache entry utilities are introduced so that we can easily
extend existing functionality with minimum changes, specifically changes
to these functions. For example IsNonDistributedTableCacheEntry can be
extended for citus local tables without the need to scan the whole
codebase and update each relevant part.
* Introduce utility functions to find the type of tables
A table type can be a reference table, a hash/range/append distributed
table. Utility methods are created so that we don't have to worry about
how a table is considered as a reference table etc. This also makes it
easy to extend the table types.
* Add IsCitusTableType utilities
* Rename IsCacheEntryCitusTableType -> IsCitusTableTypeCacheEntry
* Change citus table types in some checks
This is an improvement over #2512.
This adds the boolean shouldhaveshards column to pg_dist_node. When it's false, create_distributed_table for new collocation groups will not create shards on that node. Reference tables will still be created on nodes where it is false.
- master_add_node enforces that there is only one primary per group
- there's also a trigger on pg_dist_node to prevent multiple primaries
per group
- functions in metadata cache only return primary nodes
- Rename ActiveWorkerNodeList -> ActivePrimaryNodeList
- Rename WorkerGetLive{Node->Group}Count()
- Refactor WorkerGetRandomCandidateNode
- master_remove_node only complains about active shard placements if the
node being removed is a primary.
- master_remove_node only deletes all reference table placements in the
group if the node being removed is the primary.
- Rename {Node->NodeGroup}HasShardPlacements, this reflects the behavior it
already had.
- Rename DeleteAllReferenceTablePlacementsFrom{Node->NodeGroup}. This also
reflects the behavior it already had, but the new signature forces the
caller to pass in a groupId
- Rename {WorkerGetLiveGroup->ActivePrimaryNode}Count
This commit is intended to be a base for supporting declarative partitioning
on distributed tables. Here we add the following utility functions and their
unit tests:
* Very basic functions including differnentiating partitioned tables and
partitions, listing the partitions
* Generating the PARTITION BY (expr) and adding this to the DDL events
of partitioned tables
* Ability to generate text representations of the ranges for partitions
* Ability to generate the `ALTER TABLE parent_table ATTACH PARTITION
partition_table FOR VALUES value_range`
* Ability to apply add shard ids to the above command using
`worker_apply_inter_shard_ddl_command()`
* Ability to generate `ALTER TABLE parent_table DETACH PARTITION`
With this change we add an option to add a node without replicating all reference
tables to that node. If a node is added with this option, we mark the node as
inactive and no queries will sent to that node.
We also added two new UDFs;
- master_activate_node(host, port):
- marks node as active and replicates all reference tables to that node
- master_add_inactive_node(host, port):
- only adds node to pg_dist_node
With this change, we start to delete placement of reference tables at given worker node
after master_remove_node UDF call. We remove placement metadata at master node but we do
not drop actual shard from the worker node. There are two reasons for that decision,
first, it is not critical to DROP the shards in the workers because Citus will ignore them
as long as node is removed from cluster and if we add that node back to cluster we will
DROP and recreate all reference tables. Second, if node is unreachable, it becomes
complicated to cover failure cases and have a transaction support.
With this change, we start to replicate all reference tables to the new node when new node
is added to the cluster with master_add_node command. We also update replication factor
of reference table's colocation group.
With this change we introduce new UDF, upgrade_to_reference_table, which can be used to
upgrade existing broadcast tables reference tables. For upgrading, we require that given
table contains only one shard.