It seems like our approach is way too restrictive and some places
are wrong. Now, we follow very similar approach to pg_stat_activity.
Some of the changes are pre-requsite for implementing citus_dist_stat_activity
via citus_stat_activity.
Clusters created pre-Citus 11 mostly didn't have metadata sync enabled.
For those clusters, we add a utility UDF which fixes some minor issues
and sync the necessary objects to the workers.
DESCRIPTION: Add GUC to control ddl creation behaviour in transactions
Historically we would _not_ propagate objects when we are in a transaction block. Creation of distributed tables would not always work in sequential mode, hence objects created in the same transaction as distributing a table that would use the just created object wouldn't work. The benefit was that the user could still benefit from parallelism.
Now that the creation of distributed tables is supported in sequential mode it would make sense for users to force transactional consistency of ddl commands for distributed tables. A transaction could switch more aggressively to sequential mode when creating new objects in a transaction.
We don't change the default behaviour just yet.
Also, many objects would not even propagate their creation when the transaction was already set to sequential, leaving the probability of a self deadlock. The new policy checks solve this discrepancy between objects as well.
The issue in question is caused when rebalance / replication call `FullShardPlacementList` which returns all shard placements (including those in disabled nodes with `citus_disable_node`). Eventually, `FindFillStateForPlacement` looks for the state across active workers and fails to find a state for the placements which are in the disabled workers causing a seg fault shortly after.
Approach:
* `ActivePlacementHash` was not using the status of the shard placement's node to determine if the node it is active. Initially, I just fixed that.
* Additionally, I refactored the code which handles active shards in replication / rebalance to:
* use a single function to determine if a shard placement is active.
* do the shard active shard filtering before calling `RebalancePlacementUpdates` and `ReplicationPlacementUpdates`, so test methods like `shard_placement_rebalance_array` and `shard_placement_replication_array` which have different shard placement active requirements can do their own filtering while using the same rebalance / replicate logic that `rebalance_table_shards` and `replicate_table_shards` use.
Fix#5664
CitusInitiatedBackend was a pre-mature implemenation of the whole
GlobalPID infrastructure. We used it to track whether any individual
query is triggered by Citus or not.
As of now, after GlobalPID is already in place, we don't need
CitusInitiatedBackend, in fact it could even be wrong.
#5685 introduced the resolution of dependencies for indices. This missed support for indices on partitioned tables. This change adds support for partitioned indices to the dependency resolution code.
It turns out `whereis` is incredibly slow on WSL2 (at least on my
machine):
```
$ time whereis diff
diff: /usr/bin/diff /usr/share/man/man1/diff.1.gz
real 0m0.408s
user 0m0.010s
sys 0m0.101s
```
This command is run by our custom `diff` script, which is run for every
test file that is run. So this adds lots of unnecessary runtime time to
tests.
This changes our custom `diff` script to only call `whereis` in the
strange case that `/usr/bin/diff` does not exist.
The impact of this small change on the total runtime of the tests on WSL
is huge. As an example the following command takes 18 seconds without
this change and 7 seconds with it:
```
make -C src/test/regress/ check-arbitrary-configs CONFIGS=PostgresConfig
```
(cherry picked from commit 4e93afd1f78854e1aaab63690c441b0b0598a82c)
(cherry picked from commit 0295fe2f5b)
(cherry picked from commit 878510725fab9cb6870b4504e0b1f055d7bbc68d)
Before this commit, dumping wait edges can only be used for
distributed deadlock detection purposes. With this commit,
we open the possibility that we can use it for any backend.
CREATE FUNCTION command together with it's dependencies.
If the function depends on any nondistributable object,
function will be created only locally. Parameterless
version of create_distributed_function becomes obsolete
with this change, it will deprecated from the code with a subsequent PR.
* When a worker tried to create a collation which had a dependency in the same worker node,
it would cause a deadlock, now it throws the correct "not a coordinator" error.
DESCRIPTION: Implement TEXT SEARCH CONFIGURATION propagation
The change adds support to Citus for propagating TEXT SEARCH CONFIGURATION objects. TSConfig objects cannot always be created in one create statement, and instead require a create statement followed by many alter statements to get turned into the object they should represent.
To support this we add functionality to the worker to create or replace objects based on a list of statements. When the lists of the local object and the remote object correspond 1:1 we skip the creation of the object and simply mark it distributed. This is especially important for TSConfig objects as initdb pre-populates databases with a dozen configurations (for many different languages).
When the user creates a new TSConfig based on the copy of an existing configuration there is no direct link to the object copied from. Since there is no link we can't simply rely on propagating the dependencies to the worker and send a qualified
We check for metadata consistency across the cluster in the test
isolation_metadata_sync_vs_all. However, some earlier tests in
enterprise repo leave invalid pg_dist_node entries in the worker nodes
that have Oid values for already dropped role objects.
To remedy that, I suggest that we move the test to earlier in the
schedule, thereby making the tests pass for the time being. We should
later introduce metadata checking either in a new isolation test or by
moving this test later in the schedule. However, we should do that after
we fix the underlying issue.
DESCRIPTION: Prevent Citus table functions from being called on shards
The operations that guard against using shards are:
* Create Local Table
* Create distributed table (which affects reference table creation as well).
* I used a `ErrorIfRaltionIsKnownShard` instead of `ErrorIfIllegallyChangingKnownShard`.
`ErrorIfIllegallyChangingKnownShard` allows the operation if `citus.enable_manual_changes_to_shards`,
but I am not sure if it ever makes sense to create a distributed, reference, or citus local table out of a shard.
I tried to go over the code to identify other UDF-s where shards could be illegaly changed, but I could not find any other.
My knowledge of the codebase is not solid enough for me to say for sure.
Fixes#5610
This commit introduces several test cases for concurrent operations that
change metadata, and a concurrent metadata sync operation.
The overall structure is as follows:
- Session#1 starts metadata syncing in a transaction block
- Session#2 does an operation that change metadata
- Both sessions are committed
- Another session checks whether the metadata are the same accross all
nodes in the cluster.
* Break the dependency to CitusInitiatedBackend infrastructure
With this change, we start to show non-distributed backends as well
in citus_dist_stat_activity. I think that
(a) it is essential for making citus_lock_waits to work for blocked
on DDL commands.
(b) it is more expected from the user's perspective. The name of
the view is a little inconsistent now (e.g., citus_dist_stat_activity)
but we are already planning to improve the names with followup
PRs.
Also, we have global pids assigned, the CitusInitiatedBackend
becomes obsolete.
With https://github.com/citusdata/citus/pull/5657, Citus uses
a fixed application_name while connecting to remote nodes
for internal purposes.
It means that we cannot allow users to override it via
citus.node_conninfo.
Implement #5649
Allow create_distributed_function() on functions owned by extensions
1) Only update pg_dist_object, and do not propagate CREATE FUNCTION.
2) Ensure corresponding extension is in pg_dist_object.
3) Verify if dependencies exist on the function they should resolve to the extension.
4) Impact on node-scaling: We build a list of ddl commands based on all objects in
pg_dist_object. We need to omit the ddl's for the extension-function, as it
will get propagated by the virtue of the extension creation.
5) Extra checks for functions coming from extensions, to not propagate changes
via ddl commands, even though the function is marked as distributed in pg_dist_object
If the expression is simple, such as, SELECT function() or PEFORM function()
in PL/PgSQL code, PL engine does a simple expression evaluation which can't
interpret the Citus CustomScan Node. Code checks for simple expressions when
executing an UDF but missed the DO-Block scenario, this commit fixes it.
Removed dependency for EnsureTableOwner. Also removed pg_fini() and columnar_tableam_finish() Still need to remove CheckCitusVersion dependency to make Columnar_tableam.h dependency free from Citus.
Previously, we were wrapping targetlist nodes with Vars that reference
to the result of the worker query, if the node itself is not `Const` or
not a `Param`. Indeed, we should not do that unless the node itself is
a `Var` node or contains a `Var` within it (e.g.: `OpExpr(Var(column_a) > 2)`).
Otherwise, when worker query returns empty result set, then combine
query exec would crash since the `Var` would be pointing to an empty
tuple slot, which is not desirable for the node-executor methods.
Replaces citus.enable_object_propagation with citus.enable_metadata_sync
Also, within Citus 11 release cycle, we added citus.enable_metadata_sync_by_default,
that is also replaced with citus.enable_metadata_sync.
In essence, when citus.enable_metadata_sync is set to true, all the objects
and the metadata is send to the remote node.
We strongly advice that the users never changes the value of
this GUC.
With this commit, rebalancer backends are identified by application_name = citus_rebalancer
and the regular internal backends are identified by application_name = citus_internal
With this commit we've started to propagate sequences and shell
tables within the object dependency resolution. So, ensuring any
dependencies for any object will consider shell tables and sequences
as well. Separate logics for both shell tables and sequences have
been removed.
Since both shell tables and sequences logic were implemented as a
part of the metadata handling before that logic, we were propagating
them while syncing table metadata. With this commit we've divided
metadata (which means anything except shards thereafter) syncing
logic into multiple parts and implemented it either as a part of
ActivateNode. You can check the functions called in ActivateNode
to check definition of different metadata.
Definitions of start_metadata_sync_to_node and citus_activate_node
have also been updated. citus_activate_node will basically create
an active node with all metadata and reference table shards.
start_metadata_sync_to_node will be same with citus_activate_node
except replicating reference tables. stop_metadata_sync_to_node
will remove all the metadata. All of those UDFs need to be called
by superuser.
With https://github.com/citusdata/citus/pull/2780, we allow
COPY to use any number of connections that the executor used
in a tx block.
Meaning that, while COPYing data to the shards, create_distributed_table
could allow sequential mode.
We fall back to local execution if we cannot establish any more
connections to local node. However, we should not do that for the
commands that we don't know how to execute locally (or we know we
shouldn't execute locally). To fix that, we take localExecutionSupported
take into account in CanFailoverPlacementExecutionToLocalExecution too.
Moreover, we also prompt a more accurate hint message to inform user
about whether the execution is failed because local execution is
disabled by them, or because local execution wasn't possible for given
command.
BEGIN/COMMIT transaction block or in a UDF calling another UDF.
(2) Prohibit/Limit the delegated function not to do a 2PC (or any work on a
remote connection).
(3) Have a safety net to ensure the (2) i.e. we should block the connections
from the delegated procedure or make sure that no 2PC happens on the node.
(4) Such delegated functions are restricted to use only the distributed argument
value.
Note: To limit the scope of the project we are considering only Functions(not
procedures) for the initial work.
DESCRIPTION: Introduce a new flag "force_delegation" in create_distributed_function(),
which will allow a function to be delegated in an explicit transaction block.
Fixes#3265
Once the function is delegated to the worker, on that node during the planning
distributed_planner()
TryToDelegateFunctionCall()
CheckDelegatedFunctionExecution()
EnableInForceDelegatedFuncExecution()
Save the distribution argument (Constant)
ExecutorStart()
CitusBeginScan()
IsShardKeyValueAllowed()
Ensure to not use non-distribution argument.
ExecutorRun()
AdaptiveExecutor()
StartDistributedExecution()
EnsureNoRemoteExecutionFromWorkers()
Ensure all the shards are local to the node in the remoteTaskList.
NonPushableInsertSelectExecScan()
InitializeCopyShardState()
EnsureNoRemoteExecutionFromWorkers()
Ensure all the shards are local to the node in the placementList.
This also fixes a minor issue: Properly handle expressions+parameters in distribution arguments
* Removed distributed dependency in columnar_metadata.c
* Changed columnar_debug.c so that it no longer needed distributed/tuplestore and made it return a record instead of a tuplestore
* removed distributed/commands.h dependency
* Made columnar_tableam.c dependency-free
* Fixed spacing for columnar_store_memory_stats function
* indentation fix
* fixed test failures
* Require superuser while activating a node
With this change, we require ActiveNode() (hence citus_add_node(),
citus_activate_node()) explicitly require for a superuser.
Before this commit, these functions were designed to work with
non-superuser roles with the relevent GRANTs given.
However, that is not a widely used way for calling the functions
above.
Due to possibility of non-super user calling the UDFs, they were
designed in a way that some commands were using some additional
short-lived superuser connections. That is:
(a) breaking transactional behavior (e.g., ROLLBACK
wouldn't fully rollback the whole transaction)
(b) Making it very complicated to reason about which
parts of the node activation goes over which connections,
and becoming vulnerable to deadlocks / visibility issues.
We prefer the background daemon to only sync node metadata. That's
why we move placement metadata changes from disable node to
activate node. With that, we can make sure that disable node
only changes node metadata, whereas activate node syncs all
the metadata changes. In essence, we already expect all
nodes to be up when a node is activated. So, this does not change
the behavior much.
Dropping sequences means we need to recreate
and hence losing the sequence.
With this commit, we keep the existing sequences
such that resyncing wouldn't drop the sequence.
We do that by breaking the dependency of the sequence
from the table.
Before this commit, Citus was triggering metadata syncing
in the background when a function is distributed. However,
with Citus 11, we expect all clusters to have metadata synced
enabled. So, we do not expect any nodes not to have the metadata.
This change:
(a) pro: simplifies the code and opens up possibilities
to simplify futher by reducing the scope of
bg worker to only sync node metadata
(b) pro: explicitly asks users to sync the metadata such that
any unforseen impact can be easily detected
(c) con: For distributed functions without distribution
argument, we do not necessarily require the metadata
sycned. However, for completeness and simplicity, we
do so.
With Citus 11, the default behavior is to sync the metadata.
However, partitioned tables created pre-Citus 11 might have
index names that are not compatiable with metadata syncing.
See https://github.com/citusdata/citus/issues/4962 for the
details.
With this commit, we record the existence of partitioned tables
such that we can fix it later if any exists.
With this commit, fix_partition_shard_index_names()
works significantly faster.
For example,
32 shards, 365 partitions, 5 indexes drop from ~120 seconds to ~44 seconds
32 shards, 1095 partitions, 5 indexes drop from ~600 seconds to ~265 seconds
`queryStringList` can be really long, because it may contain #partitions * #indexes entries.
Before this change, we were actually going through the executor where each command
in the query string triggers 1 round trip per entry in queryStringList.
The aim of this commit is to avoid the round-trips by creating a single query string.
I first simply tried sending `q1;q2;..;qn` . However, the executor is designed to
handle `q1;q2;..;qn` type of query executions via the infrastructure mentioned
above (e.g., by tracking the query indexes in the list and doing 1 statement
per round trip).
One another option could have been to change the executor such that only track
the query index when `queryStringList` is provided not with queryString
including multiple `;`s . That is (a) more work (b) could cause weird edge
cases with failure handling (c) felt like coding a special case in to the executor
(cherry picked from commit 90928cfd74)
Fix function signature generation
Fix comment typo
Add test for worker_create_or_replace_object
Add test for recreating distributed functions with OUT/TABLE params
Add test for recreating distributed function that returns setof int
Fix test output
Fix comment
Simply applies
```SQL
SELECT textlike(command, citus.grep_remote_commands)
```
And, if returns true, the command is logged. Else, the log is ignored.
When citus.grep_remote_commands is empty string, all commands are
logged.
This UDF coordinates connectivity checks accross the whole cluster.
This UDF gets the list of active readable nodes in the cluster, and
coordinates all connectivity checks in sequential order.
The algorithm is:
for sourceNode in activeReadableWorkerList:
c = connectToNode(sourceNode)
for targetNode in activeReadableWorkerList:
result = c.execute(
"SELECT citus_check_connection_to_node(targetNode.name,
targetNode.port")
emit sourceNode.name,
sourceNode.port,
targetNode.name,
targetNode.port,
result
- result -> true -> connection attempt from source to target succeeded
- result -> false -> connection attempt from source to target failed
- result -> NULL -> connection attempt from the current node to source node failed
I suggest you use the following query to get an overview on the connectivity:
SELECT bool_and(COALESCE(result, false))
FROM citus_check_cluster_node_health();
Whenever this query returns false, there is a connectivity issue, check in detail.
We had 2 class definitions for CitusCacheManyConnectionsConfig, where
one of them was a copy of CitusSmallCopyBuffersConfig.
This commit leaves the intended class definition that configures caching
many connections, and removes the one that is a copy of another class
Before that PR we were updating citus.pg_dist_object metadata, which keeps
the metadata related to objects on Citus, only on the coordinator node. In
order to allow using those object from worker nodes (or erroring out with
proper error message) we've started to propagate that metedata to worker
nodes as well.
citus_check_connection_to_node runs a simple query on a remote node and
reports whether this attempt was successful.
This UDF will be used to make sure each worker node can connect to all
the worker nodes in the cluster.
parameters:
nodename: required
nodeport: optional (default: 5432)
return value:
boolean success
* Update broken link for upgrade tests
* Update src/test/regress/README.md
Co-authored-by: Nils Dijk <nils@citusdata.com>
Co-authored-by: Nils Dijk <nils@citusdata.com>
As of master branch, Citus does all the modifications to replicated tables
(e.g., reference tables and distributed tables with replication factor > 1),
via 2PC and avoids any shardstate=3. As a side-effect of those changes,
handling node failures for replicated tables change.
With this PR, when one (or multiple) node failures happen, the users would
see query errors on modifications. If the problem is intermitant, that's OK,
once the node failure(s) recover by themselves, the modification queries would
succeed. If the node failure(s) are permenant, the users should call
`SELECT citus_disable_node(...)` to disable the node. As soon as the node is
disabled, modification would start to succeed. However, now the old node gets
behind. It means that, when the node is up again, the placements should be
re-created on the node. First, use `SELECT citus_activate_node()`. Then, use
`SELECT replicate_table_shards(...)` to replicate the missing placements on
the re-activated node.
The checks for preventing to remove a node are very much reference
table centric. We are soon going to add the same checks for replicated
tables. So, make the checks generic such that:
(a) replicated tables fit naturally
(b) we can the same checks in `citus_disable_node`.
We do not use comments starting with # in spec files because it creates
errors from C preprocessor that expects directives after this character.
Instead use C style comments, i.e:
// single line comment
You can also use multiline comments as well
/*
* multi line comment
*/
Before this commit, we acquire the metadata locks on the reference
tables while removing/disabling a node on all the MX nodes.
Although it has some marginal benefits, such as a concurrent
modification during remove/disable node blocks, instead of erroring
out, the drawbacks seems worse. Both citus_remove_node and citus_disable_node
are not tolerant to multiple node failures.
With this commit, we relax the locks. The implication is that while
a node is removed/disabled, users might see query errors. On the
other hand, this change becomes removing/disabling nodes more
tolerant to multiple node failures.
When refactoring storage layer in #4907, we deleted the code that allows
overwriting a disk page previously written but not known by metadata.
Readers can see the change that introduced the code allows doing so in
commit a8da9acc63.
The reasoning was that; as of 10.2, we started aligning page
reservations (`AlignReservation`) for subsequent writes right after
allocating pages from disk. That means, even if writer transaction
fails, subsequent writes are guaranteed to allocate a new page and write
to there. For this reason, attempting to write to a page allocated
before is not possible for a columnar table that user created when using
v10.2.x.
However, since the older versions of columnar doesn't do that, following
example scenario can still result in writing to such disk page, even if
user now upgraded to v10.2.x. This is because, when upgrading storage to
2.0 (`ColumnarStorageUpdateIfNeeded`), we calculate `reservedOffset` of
the metapage based on the highest used address known by stripe
metadata (`GetHighestUsedAddressAndId`). However, stripe metadata
doesn't have entries for aborted writes. As a result, highest used
address would be computed by ignoring pages that are allocated but not
used.
- User attempts writing to columnar table on Citus v10.0x/v10.1x.
- Write operation fails for some reason.
- User upgrades Citus to v10.2.x.
- When attempting to write to same columnar table, they hit to "attempt
to write columnar data .." error since write operation done in the
older version of columnar already allocated that page, and now we are
overwriting it.
For this reason, with this commit, we re-do the change done in
a8da9acc63.
And for the reasons given above, it wasn't possible to add a test for
this commit via usual code-paths. For this reason, added a UDF only for
testing purposes so that we can reproduce the exact scenario in our
regression test suite.
During pg upgrades, we have seen that it is not guaranteed that a
columnar table will be created after metadata objects got created.
Prior to changes done in this commit, we had such a dependency
relationship in `pg_depend`:
```
columnar_table ----> columnarAM ----> citus extension
^ ^
| |
columnar.storage_id_seq -------------------- |
|
columnar.stripe -------------------------------
```
Since `pg_upgrade` just knows to follow topological sort of the objects
when creating database dump, above dependency graph doesn't imply that
`columnar_table` should be created before metadata objects such as
`columnar.storage_id_seq` and `columnar.stripe` are created.
For this reason, with this commit we add new records to `pg_depend` to
make columnarAM depending on all rel objects living in `columnar`
schema. That way, `pg_upgrade` will know it needs to create those before
creating `columnarAM`, and similarly, before creating any tables using
`columnarAM`.
Note that in addition to inserting those records via installation script,
we also do the same in `citus_finish_pg_upgrade()`. This is because,
`pg_upgrade` rebuilds catalog tables in the new cluster and that means,
we must insert them in the new cluster too.
- [x] Add some more regression test coverage
- [x] Make sure returning works fine in case of
local execution + remote execution
(task->partiallyLocalOrRemote works as expected, already added tests)
- [x] Implement locking properly (and add isolation tests)
- [x] We do #shardcount round-trips on `SerializeNonCommutativeWrites`.
We made it a single round-trip.
- [x] Acquire locks for subselects on the workers & add isolation tests
- [x] Add a GUC to prevent modification from the workers, hence increase the
coordinator-only throughput
- The performance slightly drops (~%15), unless
`citus.allow_modifications_from_workers_to_replicated_tables`
is set to false
Drop extension might cascade to columnar.options before dropping a
columnar table. In that case, we were getting below error when opening
columnar.options to delete records for the columnar table that we are
about to drop.: "ERROR: could not open relation with OID 0".
I somehow reproduced this bug easily when upgrading pg, that is why
adding added the test to after_pg_upgrade_schedule.
We recently introduced a set of patches to 10.2, and introduced 10.2-4
migration version. This migration version only resides on `release-10.2`
branch, and is missing on our default branch. This creates a problem
because we do not have a valid migration path from 10.2 to latest 11.0.
To remedy this issue, I copied the relevant migration files from
`release-10.2` branch, and renamed some of our migration files on
default branch to make sure we have a linear upgrade path.
Before this commit, we required the user to be owner of the shard/table
in order to call lock_shard_resources.
However, that is too restrictive. We can have users with GRANTS
to the table who are not owners of the tables/shards.
With this commit, we allow such patterns.