Adds support for PostgreSQL 10 by copying in the requisite ruleutils
and updating all API usages to conform with changes in PostgreSQL 10.
Most changes are fairly minor but they are numerous. One particular
obstacle was the change in \d behavior in PostgreSQL 10's psql; I had
to add SQL implementations (views, mostly) to mimic the pre-10 output.
So far citus used postgres' predicate proofing logic for shard
pruning, except for INSERT and COPY which were already optimized for
speed. That turns out to be too slow:
* Shard pruning for SELECTs is currently O(#shards), because
PruneShardList calls predicate_refuted_by() for every
shard. Obviously using an O(N) type algorithm for general pruning
isn't good.
* predicate_refuted_by() is quite expensive on its own right. That's
primarily because it's optimized for doing a single refutation
proof, rather than performing the same proof over and over.
* predicate_refuted_by() does not keep persistent state (see 2.) for
function calls, which means that a lot of syscache lookups will be
performed. That's particularly bad if the partitioning key is a
composite key, because without a persistent FunctionCallInfo
record_cmp() has to repeatedly look-up the type definition of the
composite key. That's quite expensive.
Thus replace this with custom-code that works in two phases:
1) Search restrictions for constraints that can be pruned upon
2) Use those restrictions to search for matching shards in the most
efficient manner available:
a) Binary search / Hash Lookup in case of hash partitioned tables
b) Binary search for equal clauses in case of range or append
tables without overlapping shards.
c) Binary search for inequality clauses, searching for both lower
and upper boundaries, again in case of range or append
tables without overlapping shards.
d) exhaustive search testing each ShardInterval
My measurements suggest that we are considerably, often orders of
magnitude, faster than the previous solution, even if we have to fall
back to exhaustive pruning.
With this change we add an option to add a node without replicating all reference
tables to that node. If a node is added with this option, we mark the node as
inactive and no queries will sent to that node.
We also added two new UDFs;
- master_activate_node(host, port):
- marks node as active and replicates all reference tables to that node
- master_add_inactive_node(host, port):
- only adds node to pg_dist_node
Delete operation is blocked for any table distributed by hash using master_apply_delete_command. Suggested master_modify_multiple_shards command as a hint.
This change ignores `citus.replication_model` setting and uses the
statement based replication in
- Tables distributed via the old `master_create_distributed_table` function
- Append and range partitioned tables, even if created via
`create_distributed_table` function
This seems like the easiest solution to #1191, without changing the existing
behavior and harming existing users with custom scripts.
This change also prevents RF>1 on streaming replicated tables on `master_create_worker_shards`
Prior to this change, `master_create_worker_shards` command was not checking
the replication model of the target table, thus allowing RF>1 with streaming
replicated tables. With this change, `master_create_worker_shards` errors
out on the case.
Add a call to RemoteTransactionBeginIfNecessary so that BEGIN is
actually sent to the remote connections. This means that ROLLBACK and
Ctrl-C are respected and don't leave the table in a partial state.
This change allows users to drop sequences on MX workers. Previously, Citus didn't allow dropping
sequences on MX workers because it could cause shards to be dropped if `DROP SEQUENCE ... CASCADE`
is used. We now allow that since allowing sequence creation but not dropping hurts user experience
and also may cause problems with custom Citus solutions.
- Break CheckShardPlacements into multiple functions (The most important
is MarkFailedShardPlacements), so that we can get rid of the global
CoordinatedTransactionUses2PC.
- Call MarkFailedShardPlacements in the router executor, so we mark
shards as invalid and stop using them while inside transaction blocks.
With this change DropShards function started to use new connection API. DropShards
function is used by DROP TABLE, master_drop_all_shards and master_apply_delete_command,
therefore all of these functions now support transactional operations. In DropShards
function, if we cannot reach a node, we mark shard state of related placements as
FILE_TO_DELETE and continue to drop remaining shards; however if any error occurs after
establishing the connection, we ROLLBACK whole operation.
So far router planner had encapsulated different functionality in
MultiRouterPlanCreate. Modifications always go through router, selects
sometimes. Modifications always error out if the query is unsupported,
selects return NULL. Especially the error handling is a problem for
the upcoming extension of prepared statement support.
Split MultiRouterPlanCreate into CreateRouterPlan and
CreateModifyPlan, and change them to not throw errors.
Instead errors are now reported by setting the new
MultiPlan->plannigError.
Callers of router planner functionality now have to throw errors
themselves if desired, but also can skip doing so.
This is a pre-requisite for expanding prepared statement support.
While touching all those lines, improve a number of error messages by
getting them closer to the postgres error message guidelines.
This adds a replication_model GUC which is used as the replication
model for any new distributed table that is not a reference table.
With this change, tables with replication factor 1 are no longer
implicitly MX tables.
The GUC is similarly respected during empty shard creation for e.g.
existing append-partitioned tables. If the model is set to streaming
while replication factor is greater than one, table and shard creation
routines will error until this invalid combination is corrected.
Changing this parameter requires superuser permissions.
If any placements fail it doesn't update shard statistics on those placements.
A minor enabling refactor: Make CoordinatedTransactionUses2PC public (it used to be CoordinatedTransactionUse2PC but that symbol already existed, so renamed it as well)
This change adds support for serial columns to be used with MX tables.
Prior to this change, sequences of serial columns were created in all
workers (for being able to create shards) but never used. With MX, we
need to set the sequences so that sequences in each worker create
unique values. This is done by setting the MINVALUE, MAXVALUE and
START values of the sequence.
So far we've reloaded them frequently. Besides avoiding that cost -
noticeable for some workloads with large shard counts - it makes it
easier to add information to ShardPlacements that help us make
placement_connection.c colocation aware.
With this change, we start to replicate all reference tables to the new node when new node
is added to the cluster with master_add_node command. We also update replication factor
of reference table's colocation group.
With this change we introduce new UDF, upgrade_to_reference_table, which can be used to
upgrade existing broadcast tables reference tables. For upgrading, we require that given
table contains only one shard.
Renamed FindShardIntervalIndex() to ShardIndex() and added binary search
capability. It used to assume that hash partition tables are always
uniformly distributed which is not true if upcoming tenant isolation
feature is applied. This commit also reduces code duplication.
With this commit, we implemented some basic features of reference tables.
To start with, a reference table is
* a distributed table whithout a distribution column defined on it
* the distributed table is single sharded
* and the shard is replicated to all nodes
Reference tables follows the same code-path with a single sharded
tables. Thus, broadcast JOINs are applicable to reference tables.
But, since the table is replicated to all nodes, table fetching is
not required any more.
Reference tables support the uniqueness constraints for any column.
Reference tables can be used in INSERT INTO .. SELECT queries with
the following rules:
* If a reference table is in the SELECT part of the query, it is
safe join with another reference table and/or hash partitioned
tables.
* If a reference table is in the INSERT part of the query, all
other participating tables should be reference tables.
Reference tables follow the regular co-location structure. Since
all reference tables are single sharded and replicated to all nodes,
they are always co-located with each other.
Queries involving only reference tables always follows router planner
and executor.
Reference tables can have composite typed columns and there is no need
to create/define the necessary support functions.
All modification queries, master_* UDFs, EXPLAIN, DDLs, TRUNCATE,
sequences, transactions, COPY, schema support works on reference
tables as expected. Plus, all the pre-requisites associated with
distribution columns are dismissed.
With this PR, we add foreign key support to ALTER TABLE commands. For now,
we only support foreign constraint creation via ALTER TABLE query, if it
is only subcommand in ALTER TABLE subcommand list.
We also only allow foreign key creation if replication factor is 1.
While creating a colocated table, we don't want the source table to be dropped.
However, using a ShareLock blocks DML statements on the source table, and
using AccessShareLock is enough to prevent DROP. Therefore, we just loosened
the lock to AccessShareLock.
Added a new UDF, mark_tables_colocated(), to colocate tables with the same
configuration (shard count, shard replication count and distribution column type).
Previously, when a repair is requested on a shard, we also repair all co-located shards
of given shard, which may cause repairing already healthy shards. With this change, we
only repair given shard.
This forces prepared statements to be re-planned after changes of the
placement metadata. There's some locking issues remaining, but that's a
a separate task.
Also add regression tests verifying that invalidations take effect on
prepared statements.
With this change, we now push down foreign key constraints created during CREATE TABLE
statements. We also start to send foreign constraints during shard move along with
other DDL statements
With this change, master_copy_shard_placement and master_move_shard_placement functions
start to copy/move given shard along with its co-located shards.
This change adds the required infrastructure about metadata snapshot from MX
codebase into Citus, mainly metadata_sync.c file and master_metadata_snapshot UDF.
So far placements were assigned an Oid, but that was just used to track
insertion order. It also did so incompletely, as it was not preserved
across changes of the shard state. The behaviour around oid wraparound
was also not entirely as intended.
The newly introduced, explicitly assigned, IDs are preserved across
shard-state changes.
The prime goal of this change is not to improve ordering of task
assignment policies, but to make it easier to reference shards. The
newly introduced UpdateShardPlacementState() makes use of that, and so
will the in-progress connection and transaction management changes.
Related to #786
This change adds the `pg_dist_node` table that contains the information
about the workers in the cluster, replacing the previously used
`pg_worker_list.conf` file (or the one specified with `citus.worker_list_file`).
Upon update, `pg_worker_list.conf` file is read and `pg_dist_node` table is
populated with the file's content. After that, `pg_worker_list.conf` file
is renamed to `pg_worker_list.conf.obsolete`
For adding and removing nodes, the change also includes two new UDFs:
`master_add_node` and `master_remove_node`, which require superuser
permissions.
'citus.worker_list_file' guc is kept for update purposes but not used after the
update is finished.
related to a table that might be distributed, allowing any name
that is within regular PostgreSQL length limits to be extended
with a shard ID for use in shards on workers. Handles multi-byte
character boundaries in identifiers when making prefixes for
shard-extended names. Includes tests.
Uses hash_any from PostgreSQL's access/hashfunc.c.
Removes AppendShardIdToStringInfo() as it's used only once
and arguably is best replaced there with a call to AppendShardIdToName().
Adds UDF shard_name(object_name, shard_id) to expose the shard-extended
name logic to other PL/PGSQL, UDFs and scripts.
Bumps version to 6.0-2 to allow for UDF to be created in migration script.
Fixescitusdata/citus#781 and citusdata/citus#179.
Fixescitusdata/citus#714
On `InsertShardRow`, we previously called `CommandCounterIncrement()` before
`CitusInvalidateRelcacheByRelid(relationId);`. This might prevent to skip
invalidation of the distributed table in the next access within the same session.
UNIQUE or PRIMARY KEY constraints. Also, properly propagate valid
EXCLUDE constraints to worker shard tables.
If an EXCLUDE constraint includes the distribution column,
the operator must be an equality operator.
Tests in regression suite for exclusion constraints that include
the partition column, omit it, and include it but with non-equality
operator. Regression tests also verify that valid exclusion constraints
are propagated to the shard tables. And the tests work in different
timezones now.
Fixescitusdata/citus#748 and citusdata/citus#778.
Three changes here to get to true multi-statement, multi-relation DDL
transactions (same functionality pre-5.2, with benefits of atomicity):
1. Changed the multi-shard utility hook to always run (consistency
with router executor hook, removes ad-hoc "installed" boolean)
2. Change the global connection list in multi_shard_transaction to
instead be a hash; update related functions to operate on global
hash instead of local hash/global list
3. Remove check within DDL code to prevent subsequent DDL commands;
place unset/reset guard around call to ConnectToNode to permit
connecting to additional nodes after DDL transaction has begun
In addition, code has been added to raise an error if a ROLLBACK TO
SAVEPOINT is attempted (similar to router executor), and comprehensive
tests execute all multi-DDL scenarios (full success, user ROLLBACK, any
actual errors (say, duplicate index), partial failure (duplicate index
on one node but not others), partial COMMIT (one node fails), and 2PC
partial PREPARE (one node fails)). Interleavings with other commands
(DML, \copy) are similarly all covered.
This adds support for SERIAL/BIGSERIAL column types. Because we now can
evaluate functions on the master (during execution), adding this is a
matter of ensuring the table creation step works properly.
To accomplish this, I've added some logic to detect sequences owned by
a table (i.e. those related to its columns). Simply creating a sequence
and using it in a default value is insufficient; users who do so must
ensure the sequence is owned by the column using it.
Fortunately, this is exactly what SERIAL and BIGSERIAL do, which is the
use case we're targeting with this feature. While testing this, I found
that worker_apply_shard_ddl_command actually adds shard identifiers to
sequence names, though I found no places that use or test this path. I
removed that code so that sequence names are not mutated and will match
those used by a SERIAL default value expression.
Our use of the new-to-9.5 CREATE SEQUENCE IF NOT EXISTS syntax means we
are dropping support for 9.4 (which is being done regardless, but makes
this change simpler). I've removed 9.4 from the Travis build matrix.
Some edge cases are possible in ALTER SEQUENCE, COPY FROM (on workers),
and CREATE SEQUENCE OWNED BY. I've added errors for each so that users
understand when and why certain operations are prohibited.
Fixes#676
We added old versions (i.e. without schema name) of worker_apply_shard_ddl_command,
worker_fetch_foreign_file and worker_fetch_regular_table back. During function call
of one of these functions, we set schema name as public schema and call the newer
version of the functions.
Fixes#565Fixes#626
To add schema support to citus, we need to schema-prefix all table names, object names etc.
in the queries sent to worker nodes. However; query deparsing is not available for most of
DDL commands, therefore it is not easy to generate worker query in the master node.
As a solution we are sending schema names along with shard id and query to run to worker
nodes with worker_apply_shard_ddl_command.
To not break \STAGE command we pass public schema as paramater while calling
worker_apply_shard_ddl_command from there. This will not cause problem if user uses \STAGE
in different schema because passes schema name is used only if there is no schema name is
given in the query.