When we use PROCESS_UTILITY_TOPLEVEL it causes some problems when
combined with other extensions such as pg_audit. With this commit we use
PROCESS_UTILITY_QUERY in the codebase to fix those problems.
When executing alter_table / undistribute_table udf's, we should not try
to change sequence dependencies on MX workers if new table wouldn't
require syncing metadata.
Previously, we were checking that for input table. But in some cases, the
fact that input table requires syncing metadata doesn't imply the same
for resulting table (e.g when undistributing a Citus table).
Even more, doing that was giving an unexpected error when undistributing
a Citus table so this commit actually fixes that.
/*
* Colocated intermediate results are just files and not required to use
* the same connections with their co-located shards. So, we are free to
* use any connection we can get.
*
* Also, the current connection re-use logic does not know how to handle
* intermediate results as the intermediate results always truncates the
* existing files. That's why, we use one connection per intermediate
* result.
*/
When COPY is used for copying into co-located files, it was
not allowed to use local execution. The primary reason was
Citus treating co-located intermediate results as co-located
shards, and COPY into the distributed table was done via
"format result". And, local execution of such COPY commands
was not implemented.
With this change, we implement support for local execution with
"format result". To do that, we use the buffer for every file
on shardState->copyOutState, similar to how local copy on
shards are implemented. In fact, the logic is similar to
local copy on shards, but instead of writing to the shards,
Citus writes the results to a file.
The logic relies on LOCAL_COPY_FLUSH_THRESHOLD, and flushes
only when the size exceeds the threshold. But, unlike local
copy on shards, in this case we write the headers and footers
just once.
With #4338, the executor is smart enough to failover to
local node if there is not enough space in max_connections
for remote connections.
For COPY, the logic is different. With #4034, we made COPY
work with the adaptive connection management slightly
differently. The cause of the difference is that COPY doesn't
know which placements are going to be accessed hence requires
to get connections up-front.
Similarly, COPY decides to use local execution up-front.
With this commit, we change the logic for COPY on local nodes:
Try to reserve a connection to local host. This logic follows
the same logic (e.g., citus.local_shared_pool_size) as the
executor because COPY also relies on TryToIncrementSharedConnectionCounter().
If reservation to local node fails, switch to local execution
Apart from this, if local execution is disabled, we follow the
exact same logic for multi-node Citus. It means that if we are
out of the connection, we'd give an error.
pg_get_tableschemadef_string doesn't know how to deparse identity
columns so we cannot reflect those columns when creating table
from scratch. For this reason, we don't allow using alter_table udfs
with tables having any identity cols.
pg_get_tableschemadef_string doesn't know how to deparse identity
columns so we cannot reflect those columns when creating shell
relation.
For this reason, we don't allow adding local tables -having identity cols-
to metadata.
Postgres doesn't allow inserting into columns having GENERATED ALWAYS
AS (...) STORED expressions.
For this reason, when executing undistribute_table or an alter_* udf,
we should skip copying such columns.
This is not bad since Postgres would already generate such columns.
When finding columns owning sequences, we shouldn't rely on atthasdef
since it might be true when column has GENERATED ALWAYS AS (...)
STORED expression.
Since create_citus_local_table doesn't specify cascadeViaForeignKeys
option, we can't directly call citus_add_local_table_to_metadata
from create_citus_local_table.
Instead, implement an internal method and call it from deprecated udf
too.
* Make undistribute_table() and citus_create_local_table() work with columnar
* Rename and use LocallyExecuteUtilityTask for UDF check
* Remove 'local' references in ExecuteUtilityCommand
/*
* Creating Citus local tables relies on functions that accesses
* shards locally (e.g., ExecuteAndLogDDLCommand()). As long as
* we don't teach those functions to access shards remotely, we
* cannot relax this check.
*/
The reason behind skipping postgres tables is that we support
foreign keys between postgres tables and reference tables
(without converting postgres tables to citus local tables)
when enable_local_reference_table_foreign_keys is false or
when coordinator is not added to metadata.
For certaion purposes, we drop and recreate the foreign
keys. As we acquire exclusive locks on the tables in between
drop and re-create, we can safely skip validation phase of
the foreign keys. The reason is purely being performance as
foreign key validation could take a long value.
When enabled any foreign keys between local tables and reference
tables supported by converting the local table to a citus local
table.
When the coordinator is not in the metadata, the logic is disabled
as foreign keys are not allowed in this configuration.
Because master_add_node(or others) might acquire ExclusiveLock
and their initiated sessions may call CoordinatorAddedAsWorkerNode().
With this we prevent potential deadlocks.
If relation is not involved in any foreign key relationships,
foreign key graph would not return any relations for given
relationId as expected.
But even if it's the case, we should still undistribute the table
itself.
* Replace master_add_node with citus_add_node
* Replace master_activate_node with citus_activate_node
* Replace master_add_inactive_node with citus_add_inactive_node
* Use master udfs in old scripts
* Replace master_add_secondary_node with citus_add_secondary_node
* Replace master_disable_node with citus_disable_node
* Replace master_drain_node with citus_drain_node
* Replace master_remove_node with citus_remove_node
* Replace master_set_node_property with citus_set_node_property
* Replace master_unmark_object_distributed with citus_unmark_object_distributed
* Replace master_update_node with citus_update_node
* Replace master_update_shard_statistics with citus_update_shard_statistics
* Replace master_update_table_statistics with citus_update_table_statistics
* Rename master_conninfo_cache_invalidate to citus_conninfo_cache_invalidate
Rename master_dist_local_group_cache_invalidate to citus_dist_local_group_cache_invalidate
* Replace master_copy_shard_placement with citus_copy_shard_placement
* Replace master_move_shard_placement with citus_move_shard_placement
* Rename master_dist_node_cache_invalidate to citus_dist_node_cache_invalidate
* Rename master_dist_object_cache_invalidate to citus_dist_object_cache_invalidate
* Rename master_dist_partition_cache_invalidate to citus_dist_partition_cache_invalidate
* Rename master_dist_placement_cache_invalidate to citus_dist_placement_cache_invalidate
* Rename master_dist_shard_cache_invalidate to citus_dist_shard_cache_invalidate
* Drop master_modify_multiple_shards
* Rename master_drop_all_shards to citus_drop_all_shards
* Drop master_create_distributed_table
* Drop master_create_worker_shards
* Revert old function definitions
* Add missing revoke statement for citus_disable_node
* Rethrow original concurrent index creation failure message
* Alter test outputs for concurrent index creation
* Detect duplicate table failure in concurrent index creation
* Add test for conc. index creation w/out duplicates
* Prevent deadlock for long named partitioned index creation on single node
* Create IsSingleNodeCluster function
* Use both local and sequential execution
A utility function is added so that each caller can implement a handler
for each index on a given table. This means that the caller doesn't need
to worry about how to access each index, the only thing that it needs to
do each to implement a function to which each index on the table is
passed iteratively.