DESCRIPTION: Adds control for background task executors involving a node
### Background and motivation
Nonblocking concurrent task execution via background workers was
introduced in [#6459](https://github.com/citusdata/citus/pull/6459), and
concurrent shard moves in the background rebalancer were introduced in
[#6756](https://github.com/citusdata/citus/pull/6756) - with a hard
dependency that limits to 1 shard move per node. As we know, a shard
move consists of a shard moving from a source node to a target node. The
hard dependency was used because the background task runner didn't have
an option to limit the parallel shard moves per node.
With the motivation of controlling the number of concurrent shard
moves that involve a particular node, either as source or target, this
PR introduces a general new GUC
citus.max_background_task_executors_per_node to be used in the
background task runner infrastructure. So, why do we even want to
control and limit the concurrency? Well, it's all about resource
availability: because the moves involve the same nodes, extra
parallelism won’t make the rebalance complete faster if some resource is
already maxed out (usually cpu or disk). Or, if the cluster is being
used in a production setting, the moves might compete for resources with
production queries much more than if they had been executed
sequentially.
### How does it work?
A new column named nodes_involved is added to the catalog table that
keeps track of the scheduled background tasks,
pg_dist_background_task. It is of type integer[] - to store a list
of node ids. It is NULL by default - the column will be filled by the
rebalancer, but we may not care about the nodes involved in other uses
of the background task runner.
Table "pg_catalog.pg_dist_background_task"
Column | Type
============================================
job_id | bigint
task_id | bigint
owner | regrole
pid | integer
status | citus_task_status
command | text
retry_count | integer
not_before | timestamp with time zone
message | text
+nodes_involved | integer[]
A hashtable named ParallelTasksPerNode keeps track of the number of
parallel running background tasks per node. An entry in the hashtable is
as follows:
ParallelTasksPerNodeEntry
{
node_id // The node is used as the hash table key
counter // Number of concurrent background tasks that involve node node_id
// The counter limit is citus.max_background_task_executors_per_node
}
When the background task runner assigns a runnable task to a new
executor, it increments the counter for each of the nodes involved with
that runnable task. The limit of each counter is
citus.max_background_task_executors_per_node. If the limit is reached
for any of the nodes involved, this runnable task is skipped. And then,
later, when the running task finishes, the background task runner
decrements the counter for each of the nodes involved with the done
task. The following functions take care of these increment-decrement
steps:
IncrementParallelTaskCountForNodesInvolved(task)
DecrementParallelTaskCountForNodesInvolved(task)
citus.max_background_task_executors_per_node can be changed in the
fly. In the background rebalancer, we simply give {source_node,
target_node} as the nodesInvolved input to the
ScheduleBackgroundTask function. The rest is taken care of by the
general background task runner infrastructure explained above. Check
background_task_queue_monitor.sql and
background_rebalance_parallel.sql tests for detailed examples.
#### Note
This PR also adds a hard node dependency if a node is first being used
as a source for a move, and then later as a target. The reason this
should be a hard dependency is that the first move might make space for
the second move. So, we could run out of disk space (or at least
overload the node) if we move the second shard to it before the first
one is moved away.
Fixes https://github.com/citusdata/citus/issues/6716
DESCRIPTION: Add infrastructure to run long running management operations in background
This infrastructure introduces the primitives of jobs and tasks.
A task consists of a sql statement and an owner. Tasks belong to a
Job and can depend on other tasks from the same job.
When there are either runnable or running tasks we would like to
make sure a bacgrkound task queue monitor process is running. A Task
could be in running state while there is actually no monitor present
due to a database restart or failover. Once the monitor starts it
will reset any running task to its runnable state.
To make sure only one background task queue monitor is ever running
at once it will acquire an advisory lock that self conflicts.
Once a task is done it will find all tasks depending on this task.
After checking that the task doesn't have unmet dependencies it will
transition the task from blocked to runnable state for the task to
be picked up on a subsequent task start.
Currently only one task can be running at a time. This can be
improved upon in later releases without changes to the higher level
API.
The initial goal for this background tasks is to allow a rebalance
to run in the background. This will be implemented in a subsequent PR.