This work enables
- Top level subquery joins
- Joins between subqueries and relations
- Joins involving more than 2 range table entries
A new regression test file is added to reflect enabled test cases
With this commit, we change the input to the logical planner for
subquery pushdown. Before this commit, the planner was relying
on the query tree that is transformed by the postgresql planner.
After this commit, the planner uses the original query. The main
motivation behind this change is the simplify deparsing of
subqueries.
This commit applies the logic that exists in INSERT .. SELECT
planning to the subquery pushdown changes.
The main algorithm is followed as :
- pick an anchor relation (i.e., target relation)
- per each target shard interval
- add the target shard interval's shard range
as a restriction to the relations (if all relations
joined on the partition keys)
- Check whether the query is router plannable per
target shard interval.
- If router plannable, create a task
It semms that GEQO optimizations, when it is set to on, create their own memory context
and free it after when it is no longer necessary. In join multi_join_restriction_hook
we allocate our variables in the CurrentMemoryContext, which is GEQO's memory context
if it is active. To prevent deallocation of our variables when GEQO's memory context is
freed, we started to allocate memory fo these variables in separate MemoryContext.
So far citus used postgres' predicate proofing logic for shard
pruning, except for INSERT and COPY which were already optimized for
speed. That turns out to be too slow:
* Shard pruning for SELECTs is currently O(#shards), because
PruneShardList calls predicate_refuted_by() for every
shard. Obviously using an O(N) type algorithm for general pruning
isn't good.
* predicate_refuted_by() is quite expensive on its own right. That's
primarily because it's optimized for doing a single refutation
proof, rather than performing the same proof over and over.
* predicate_refuted_by() does not keep persistent state (see 2.) for
function calls, which means that a lot of syscache lookups will be
performed. That's particularly bad if the partitioning key is a
composite key, because without a persistent FunctionCallInfo
record_cmp() has to repeatedly look-up the type definition of the
composite key. That's quite expensive.
Thus replace this with custom-code that works in two phases:
1) Search restrictions for constraints that can be pruned upon
2) Use those restrictions to search for matching shards in the most
efficient manner available:
a) Binary search / Hash Lookup in case of hash partitioned tables
b) Binary search for equal clauses in case of range or append
tables without overlapping shards.
c) Binary search for inequality clauses, searching for both lower
and upper boundaries, again in case of range or append
tables without overlapping shards.
d) exhaustive search testing each ShardInterval
My measurements suggest that we are considerably, often orders of
magnitude, faster than the previous solution, even if we have to fall
back to exhaustive pruning.
This determines whether it's possible to perform binary search on
sortedShardIntervalArray or not. If e.g. two shards have overlapping
ranges, that'd be prohibitive.
That'll be useful in later commit introducing faster shard pruning.
That's useful when comparing values a hash-partitioned table is
filtered by. The existing shardIntervalCompareFunction is about
comparing hashed values, not unhashed ones.
The added btree opclass function is so we can get a comparator
back. This should be changed much more widely, but is not necessary so
far.
Previously we, unnecessarily, used a the first shard's type
information to to look up the comparison function. But that
information is already available, so use it. That's helpful because
we sometimes want to access the comparator function even if there's no
shards.
With this commit, we started to send explain queries within a savepoint. After
running explain query, we rollback to savepoint. This saves us from side effects
of EXPLAIN ANALYZE on DML queries.
All callers fetch a cache entry and extract/compute arguments for the
eventual FindShardInterval call, so it makes more sense to refactor
into that function itself; this solves the use-after-free bug, too.
With this change we add an option to add a node without replicating all reference
tables to that node. If a node is added with this option, we mark the node as
inactive and no queries will sent to that node.
We also added two new UDFs;
- master_activate_node(host, port):
- marks node as active and replicates all reference tables to that node
- master_add_inactive_node(host, port):
- only adds node to pg_dist_node
In this PR, we aim to deduce whether each of the RTE_RELATION
is joined with at least on another RTE_RELATION on their partition keys. If each
RTE_RELATION follows the above rule, we can conclude that all RTE_RELATIONs are
joined on their partition keys.
In order to do that, we invented a new equivalence class namely:
AttributeEquivalenceClass. In very simple words, a AttributeEquivalenceClass is
identified by an unique id and consists of a list of AttributeEquivalenceMembers.
Each AttributeEquivalenceMember is designed to identify attributes uniquely within the
whole query. The necessity of this arise since varno attributes are defined within
a single level of a query. Instead, here we want to identify each RTE_RELATION uniquely
and try to find equality among each RTE_RELATION's partition key.
Whenever we find an equality clause A = B, where both A and B originates from
relation attributes (i.e., not random expressions), we create an
AttributeEquivalenceClass to record this knowledge. If we later find another
equivalence B = C, we create another AttributeEquivalenceClass. Finally, we can
apply transitity rules and generate a new AttributeEquivalenceClass which includes
A, B and C.
Note that equality among the members are identified by the varattno and rteIdentity.
Each equality among RTE_RELATION is saved using an AttributeEquivalenceClass where
each member attribute is identified by a AttributeEquivalenceMember. In the final
step, we try generate a common attribute equivalence class that holds as much as
AttributeEquivalenceMembers whose attributes are a partition keys.
The use of a bare src/ rather than $srcdir caused configure to fail
during VPATH builds. With our additional dependency upon AWK, we need
to call AC_PROG_AWK, otherwise environments may not have $AWK set.
Finally, citus_version.h should be in .gitignore.
With this change, we start to error out if loaded citus binaries does not match
the available major version or installed citus extension version. In this case
we force user to restart the server or run ALTER EXTENSION depending on the
situation
Thought this looked slightly nicer than the default behavior.
Changed preventTransaction to concurrent to be clearer that this code
path presently affects CONCURRENTLY code only.
Custom Scan is a node in the planned statement which helps external providers
to abstract data scan not just for foreign data wrappers but also for regular
relations so you can benefit your version of caching or hardware optimizations.
This sounds like only an abstraction on the data scan layer, but we can use it
as an abstraction for our distributed queries. The only thing we need to do is
to find distributable parts of the query, plan for them and replace them with
a Citus Custom Scan. Then, whenever PostgreSQL hits this custom scan node in
its Vulcano style execution, it will call our callback functions which run
distributed plan and provides tuples to the upper node as it scans a regular
relation. This means fewer code changes, fewer bugs and more supported features
for us!
First, in the distributed query planner phase, we create a Custom Scan which
wraps the distributed plan. For real-time and task-tracker executors, we add
this custom plan under the master query plan. For router executor, we directly
pass the custom plan because there is not any master query. Then, we simply let
the PostgreSQL executor run this plan. When it hits the custom scan node, we
call the related executor parts for distributed plan, fill the tuple store in
the custom scan and return results to PostgreSQL executor in Vulcano style,
a tuple per XXX_ExecScan() call.
* Modify planner to utilize Custom Scan node.
* Create different scan methods for different executors.
* Use native PostgreSQL Explain for master part of queries.
This change ignores `citus.replication_model` setting and uses the
statement based replication in
- Tables distributed via the old `master_create_distributed_table` function
- Append and range partitioned tables, even if created via
`create_distributed_table` function
This seems like the easiest solution to #1191, without changing the existing
behavior and harming existing users with custom scripts.
This change also prevents RF>1 on streaming replicated tables on `master_create_worker_shards`
Prior to this change, `master_create_worker_shards` command was not checking
the replication model of the target table, thus allowing RF>1 with streaming
replicated tables. With this change, `master_create_worker_shards` errors
out on the case.
- Break CheckShardPlacements into multiple functions (The most important
is MarkFailedShardPlacements), so that we can get rid of the global
CoordinatedTransactionUses2PC.
- Call MarkFailedShardPlacements in the router executor, so we mark
shards as invalid and stop using them while inside transaction blocks.
This UDF returns a shard placement from cache given shard id and placement id. At the
moment it iterates over all shard placements of given shard by ShardPlacementList and
searches given placement id in that list, which is not a good solution performance-wise.
However, currently, this function will be used only when there is a failed transaction.
If a need arises we can optimize this function in the future.
All router, real-time, task-tracker plannable queries should now have
full prepared statement support (and even use router when possible),
unless they don't go through the custom plan interface (which
basically just affects LANGUAGE SQL (not plpgsql) functions).
This is achieved by forcing postgres' planner to always choose a
custom plan, by assigning very low costs to plans with bound
parameters (i.e. ones were the postgres planner replanned the query
upon EXECUTE with all parameter values provided), instead of the
generic one.
This requires some trickery, because for custom plans to work the
costs for a non-custom plan have to be known, which means we can't
error out when planning the generic plan. Instead we have to return a
"faux" plan, that'd trigger an error message if executed. But due to
the custom plan logic that plan will likely (unless called by an SQL
function, or because we can't support that query for some reason) not
be executed; instead the custom plan will be chosen.
So far router planner had encapsulated different functionality in
MultiRouterPlanCreate. Modifications always go through router, selects
sometimes. Modifications always error out if the query is unsupported,
selects return NULL. Especially the error handling is a problem for
the upcoming extension of prepared statement support.
Split MultiRouterPlanCreate into CreateRouterPlan and
CreateModifyPlan, and change them to not throw errors.
Instead errors are now reported by setting the new
MultiPlan->plannigError.
Callers of router planner functionality now have to throw errors
themselves if desired, but also can skip doing so.
This is a pre-requisite for expanding prepared statement support.
While touching all those lines, improve a number of error messages by
getting them closer to the postgres error message guidelines.