It's possible to build INSERT SELECT queries which include implicit
casts, currently we attempt to support these by adding explicit casts to
the SELECT query, but this sometimes crashes because we don't update all
nodes with the new types. (SortClauses, for instance)
This commit removes those explicit casts and passes an unmodified SELECT
query to the COPY executor (how we implement INSERT SELECT under the
scenes). In lieu of those cases, COPY has been given some extra logic to
inspect queries, notice that the types don't line up with the table it's
supposed to be inserting into, and "manually" casting every tuple before
sending them to workers.
Basically we just care whether the running version is before or after
PostgreSQL 10, so testing the major version against 9 and printing a
boolean is sufficient.
This is necessary for multi-row INSERTs for the same reasons we use it
in e.g. UPSERTs: if the range table list has more than one entry, then
PostgreSQL's deparse logic requires that vars be prefixed by the name
of their corresponding range table entry. This of course doesn't affect
single-row INSERTs, but since multi-row INSERTs have a VALUE RTE, they
were affected.
The piece of ruleutils which builds range table names wasn't modified
to handle shard extension; instead UPSERT/INSERT INTO ... SELECT added
an alias to the RTE. When present, this alias is favored. Doing the
same in the multi-row INSERT case fixes RETURNING for such commands.
Adds support for PostgreSQL 10 by copying in the requisite ruleutils
and updating all API usages to conform with changes in PostgreSQL 10.
Most changes are fairly minor but they are numerous. One particular
obstacle was the change in \d behavior in PostgreSQL 10's psql; I had
to add SQL implementations (views, mostly) to mimic the pre-10 output.
Add a second implementation of INSERT INTO distributed_table SELECT ... that is used if
the query cannot be pushed down. The basic idea is to execute the SELECT query separately
and pass the results into the distributed table using a CopyDestReceiver, which is also
used for COPY and create_distributed_table. When planning the SELECT, we go through
planner hooks again, which means the SELECT can also be a distributed query.
EXPLAIN is supported, but EXPLAIN ANALYZE is not because preventing double execution was
a lot more complicated in this case.
- Use native postgres function for composite key btree functions
- Move explain tests to multi_explain.sql (get rid of .out _0.out files)
- Get rid of input/output files for multi_subquery.sql by moving table creations
- Update some comments
With this commit, we started to send explain queries within a savepoint. After
running explain query, we rollback to savepoint. This saves us from side effects
of EXPLAIN ANALYZE on DML queries.
Custom Scan is a node in the planned statement which helps external providers
to abstract data scan not just for foreign data wrappers but also for regular
relations so you can benefit your version of caching or hardware optimizations.
This sounds like only an abstraction on the data scan layer, but we can use it
as an abstraction for our distributed queries. The only thing we need to do is
to find distributable parts of the query, plan for them and replace them with
a Citus Custom Scan. Then, whenever PostgreSQL hits this custom scan node in
its Vulcano style execution, it will call our callback functions which run
distributed plan and provides tuples to the upper node as it scans a regular
relation. This means fewer code changes, fewer bugs and more supported features
for us!
First, in the distributed query planner phase, we create a Custom Scan which
wraps the distributed plan. For real-time and task-tracker executors, we add
this custom plan under the master query plan. For router executor, we directly
pass the custom plan because there is not any master query. Then, we simply let
the PostgreSQL executor run this plan. When it hits the custom scan node, we
call the related executor parts for distributed plan, fill the tuple store in
the custom scan and return results to PostgreSQL executor in Vulcano style,
a tuple per XXX_ExecScan() call.
* Modify planner to utilize Custom Scan node.
* Create different scan methods for different executors.
* Use native PostgreSQL Explain for master part of queries.
All router, real-time, task-tracker plannable queries should now have
full prepared statement support (and even use router when possible),
unless they don't go through the custom plan interface (which
basically just affects LANGUAGE SQL (not plpgsql) functions).
This is achieved by forcing postgres' planner to always choose a
custom plan, by assigning very low costs to plans with bound
parameters (i.e. ones were the postgres planner replanned the query
upon EXECUTE with all parameter values provided), instead of the
generic one.
This requires some trickery, because for custom plans to work the
costs for a non-custom plan have to be known, which means we can't
error out when planning the generic plan. Instead we have to return a
"faux" plan, that'd trigger an error message if executed. But due to
the custom plan logic that plan will likely (unless called by an SQL
function, or because we can't support that query for some reason) not
be executed; instead the custom plan will be chosen.
With this commit, we implemented some basic features of reference tables.
To start with, a reference table is
* a distributed table whithout a distribution column defined on it
* the distributed table is single sharded
* and the shard is replicated to all nodes
Reference tables follows the same code-path with a single sharded
tables. Thus, broadcast JOINs are applicable to reference tables.
But, since the table is replicated to all nodes, table fetching is
not required any more.
Reference tables support the uniqueness constraints for any column.
Reference tables can be used in INSERT INTO .. SELECT queries with
the following rules:
* If a reference table is in the SELECT part of the query, it is
safe join with another reference table and/or hash partitioned
tables.
* If a reference table is in the INSERT part of the query, all
other participating tables should be reference tables.
Reference tables follow the regular co-location structure. Since
all reference tables are single sharded and replicated to all nodes,
they are always co-located with each other.
Queries involving only reference tables always follows router planner
and executor.
Reference tables can have composite typed columns and there is no need
to create/define the necessary support functions.
All modification queries, master_* UDFs, EXPLAIN, DDLs, TRUNCATE,
sequences, transactions, COPY, schema support works on reference
tables as expected. Plus, all the pre-requisites associated with
distribution columns are dismissed.
Fixcitusdata/citus#886
The way postgres' explain hook is designed means that our hook is never
called during EXPLAIN EXECUTE. So, we special-case EXPLAIN EXECUTE by
catching it in the utility hook. We then replace the EXECUTE with the
original query and pass it back to Citus.
Adds support for PostgreSQL 9.6 by copying in the requisite ruleutils
file and refactoring the out/readfuncs code to flexibly support the
old-style copy/pasted out/readfuncs (prior to 9.6) or use extensible
node APIs (in 9.6 and higher).
Most version-specific code within this change is only needed to set new
fields in the AggRef nodes we build for aggregations. Version-specific
test output files were added in certain cases, though in most they were
not necessary. Each such file begins by e.g. printing the major version
in order to clarify its purpose.
The comment atop citus_nodes.h details how to add support for new nodes
for when that becomes necessary.
This commit completes having support in Citus by adding having support for
real-time and task-tracker executors. Multiple tests are added to regression
tests to cover new supported queries with having support.
So far placements were assigned an Oid, but that was just used to track
insertion order. It also did so incompletely, as it was not preserved
across changes of the shard state. The behaviour around oid wraparound
was also not entirely as intended.
The newly introduced, explicitly assigned, IDs are preserved across
shard-state changes.
The prime goal of this change is not to improve ordering of task
assignment policies, but to make it easier to reference shards. The
newly introduced UpdateShardPlacementState() makes use of that, and so
will the in-progress connection and transaction management changes.
Before this change, count on a distributed returned NULL if all shards
were pruned away, because on the master we replace with count(..) call
with a sum(..) call to sum the counts from the shards. However, sum
returns NULL when there are no rows, whereas count is expected to return
0.
Fixes#547
This change removes all references to \stage in the regression tests
and puts \COPY instead. Doing so changed shard counts, min/max
values on some test tables (lineitem, orders, etc.).
This checkin removes variant files we needed
due to differences in outputs of pg94 and pg95 runs.
However, variant file for test multi_upsert stays
since this file tests for a feature that does not
exist in pg94, and outputs are drastically different.
Fixes#271
This change sets ShardIds and JobIds for each test case. Before this change,
when a new test that somehow increments Job or Shard IDs is added, then
the tests after the new test should be updated.
ShardID and JobID sequences are set at the beginning of each file with the
following commands:
```
ALTER SEQUENCE pg_catalog.pg_dist_shardid_seq RESTART 290000;
ALTER SEQUENCE pg_catalog.pg_dist_jobid_seq RESTART 290000;
```
ShardIds and JobIds are multiples of 10000. Exceptions are:
- multi_large_shardid: shardid and jobid sequences are set to much larger values
- multi_fdw_large_shardid: same as above
- multi_join_pruning: Causes a race condition with multi_hash_pruning since
they are run in parallel.
This commit fixes failures happen during check-full. The change does make
clean seperation of executor types in certain places to keep the outputs
stable.