This commit adds distributed transaction id infrastructure in
the scope of distributed deadlock detection.
In general, the distributed transaction id consists of a tuple
in the form of: `(databaseId, initiatorNodeIdentifier, transactionId,
timestamp)`.
Briefly, we add a shared memory block on each node, which holds some
information per backend (i.e., an array `BackendData backends[MaxBackends]`).
Later, on each coordinated transaction, Citus sends
`SELECT assign_distributed_transaction_id()` right after `BEGIN`.
For that backend on the worker, the distributed transaction id is set to
the values assigned via the function call.
The aim of the above is to correlate the transactions on the coordinator
to the transactions on the worker nodes.
Comes with a few changes:
- Change the signature of some functions to accept groupid
- InsertShardPlacementRow
- DeleteShardPlacementRow
- UpdateShardPlacementState
- NodeHasActiveShardPlacements returns true if the group the node is a
part of has any active shard placements
- TupleToShardPlacement now returns ShardPlacements which have NULL
nodeName and nodePort.
- Populate (nodeName, nodePort) when creating ShardPlacements
- Disallow removing a node if it contains any shard placements
- DeleteAllReferenceTablePlacementsFromNode matches based on group. This
doesn't change behavior for now (while there is only one node per
group), but means in the future callers should be careful about
calling it on a secondary node, it'll delete placements on the primary.
- Create concept of a GroupShardPlacement, which represents an actual
tuple in pg_dist_placement and is distinct from a ShardPlacement,
which has been resolved to a specific node. In the future
ShardPlacement should be renamed to NodeShardPlacement.
- Create some triggers which allow existing code to continue to insert
into and update pg_dist_shard_placement as if it still existed.
These functions are holdovers from pg_shard and were created for unit
testing c-level functions (like InsertShardPlacementRow) which our
regression tests already test quite effectively. Removing because it
makes refactoring the signatures of those c-level functions
unnecessarily difficult.
- create_healthy_local_shard_placement_row
- update_shard_placement_row_state
- delete_shard_placement_row
This commit is intended to be a base for supporting declarative partitioning
on distributed tables. Here we add the following utility functions and their
unit tests:
* Very basic functions including differnentiating partitioned tables and
partitions, listing the partitions
* Generating the PARTITION BY (expr) and adding this to the DDL events
of partitioned tables
* Ability to generate text representations of the ranges for partitions
* Ability to generate the `ALTER TABLE parent_table ATTACH PARTITION
partition_table FOR VALUES value_range`
* Ability to apply add shard ids to the above command using
`worker_apply_inter_shard_ddl_command()`
* Ability to generate `ALTER TABLE parent_table DETACH PARTITION`
Adds support for PostgreSQL 10 by copying in the requisite ruleutils
and updating all API usages to conform with changes in PostgreSQL 10.
Most changes are fairly minor but they are numerous. One particular
obstacle was the change in \d behavior in PostgreSQL 10's psql; I had
to add SQL implementations (views, mostly) to mimic the pre-10 output.
Add a second implementation of INSERT INTO distributed_table SELECT ... that is used if
the query cannot be pushed down. The basic idea is to execute the SELECT query separately
and pass the results into the distributed table using a CopyDestReceiver, which is also
used for COPY and create_distributed_table. When planning the SELECT, we go through
planner hooks again, which means the SELECT can also be a distributed query.
EXPLAIN is supported, but EXPLAIN ANALYZE is not because preventing double execution was
a lot more complicated in this case.
During version update, we indirectly calld CheckInstalledVersion via
ChackCitusVersions. This obviously fails because during version update it is
expected to have version mismatch between installed version and binary version.
Thus, we remove that ChackCitusVersions. We now only call ChackAvailableVersion.
Before this commit, we were erroring out at almost all queries if there is a
version mismatch. With this commit, we started to error out only requested
operation touches distributed tables.
Normally we would need to use distributed cache to understand whether a table
is distributed or not. However, it is not safe to read our metadata tables when
there is a version mismatch, thus it is not safe to create distributed cache.
Therefore for this specific occasion, we directly read from pg_dist_partition
table. However; reading from catalog is costly and we should not use this
method in other places as much as possible.
Distributed query planning for subquery pushdown is done on the original
query. This prevents the usage of external parameters on the execution.
To overcome this, we manually replace the parameters on the original
query.
* Enabling physical planner for subquery pushdown changes
This commit applies the logic that exists in INSERT .. SELECT
planning to the subquery pushdown changes.
The main algorithm is followed as :
- pick an anchor relation (i.e., target relation)
- per each target shard interval
- add the target shard interval's shard range
as a restriction to the relations (if all relations
joined on the partition keys)
- Check whether the query is router plannable per
target shard interval.
- If router plannable, create a task
* Add union support within the JOINS
This commit adds support for UNION/UNION ALL subqueries that are
in the following form:
.... (Q1 UNION Q2 UNION ...) as union_query JOIN (QN) ...
In other words, we currently do NOT support the queries that are
in the following form where union query is not JOINed with
other relations/subqueries :
.... (Q1 UNION Q2 UNION ...) as union_query ....
* Subquery pushdown planner uses original query
With this commit, we change the input to the logical planner for
subquery pushdown. Before this commit, the planner was relying
on the query tree that is transformed by the postgresql planner.
After this commit, the planner uses the original query. The main
motivation behind this change is the simplify deparsing of
subqueries.
* Enable top level subquery join queries
This work enables
- Top level subquery joins
- Joins between subqueries and relations
- Joins involving more than 2 range table entries
A new regression test file is added to reflect enabled test cases
* Add top level union support
This commit adds support for UNION/UNION ALL subqueries that are
in the following form:
.... (Q1 UNION Q2 UNION ...) as union_query ....
In other words, Citus supports allow top level
unions being wrapped into aggregations queries
and/or simple projection queries that only selects
some fields from the lower level queries.
* Disallow subqueries without a relation in the range table list for subquery pushdown
This commit disallows subqueries without relation in the range table
list. This commit is only applied for subquery pushdown. In other words,
we do not add this limitation for single table re-partition subqueries.
The reasoning behind this limitation is that if we allow pushing down
such queries, the result would include (shardCount * expectedResults)
where in a non distributed world the result would be (expectedResult)
only.
* Disallow subqueries without a relation in the range table list for INSERT .. SELECT
This commit disallows subqueries without relation in the range table
list. This commit is only applied for INSERT.. SELECT queries.
The reasoning behind this limitation is that if we allow pushing down
such queries, the result would include (shardCount * expectedResults)
where in a non distributed world the result would be (expectedResult)
only.
* Change behaviour of subquery pushdown flag (#1315)
This commit changes the behaviour of the citus.subquery_pushdown flag.
Before this commit, the flag is used to enable subquery pushdown logic. But,
with this commit, that behaviour is enabled by default. In other words, the
flag is now useless. We prefer to keep the flag since we don't want to break
the backward compatibility. Also, we may consider using that flag for other
purposes in the next commits.
* Require subquery_pushdown when limit is used in subquery
Using limit in subqueries may cause returning incorrect
results. Therefore we allow limits in subqueries only
if user explicitly set subquery_pushdown flag.
* Evaluate expressions on the LIMIT clause (#1333)
Subquery pushdown uses orignal query, the LIMIT and OFFSET clauses
are not evaluated. However, logical optimizer expects these expressions
are already evaluated by the standard planner. This commit manually
evaluates the functions on the logical planner for subquery pushdown.
* Better format subquery regression tests (#1340)
* Style fix for subquery pushdown regression tests
With this commit we intented a more consistent style for the
regression tests we've added in the
- multi_subquery_union.sql
- multi_subquery_complex_queries.sql
- multi_subquery_behavioral_analytics.sql
* Enable the tests that are temporarily commented
This commit enables some of the regression tests that were commented
out until all the development is done.
* Fix merge conflicts (#1347)
- Update regression tests to meet the changes in the regression
test output.
- Replace Ifs with Asserts given that the check is already done
- Update shard pruning outputs
* Add view regression tests for increased subquery coverage (#1348)
- joins between views and tables
- joins between views
- union/union all queries involving views
- views with limit
- explain queries with view
* Improve btree operators for the subquery tests
This commit adds the missing comprasion for subquery composite key
btree comparator.
It semms that GEQO optimizations, when it is set to on, create their own memory context
and free it after when it is no longer necessary. In join multi_join_restriction_hook
we allocate our variables in the CurrentMemoryContext, which is GEQO's memory context
if it is active. To prevent deallocation of our variables when GEQO's memory context is
freed, we started to allocate memory fo these variables in separate MemoryContext.
So far citus used postgres' predicate proofing logic for shard
pruning, except for INSERT and COPY which were already optimized for
speed. That turns out to be too slow:
* Shard pruning for SELECTs is currently O(#shards), because
PruneShardList calls predicate_refuted_by() for every
shard. Obviously using an O(N) type algorithm for general pruning
isn't good.
* predicate_refuted_by() is quite expensive on its own right. That's
primarily because it's optimized for doing a single refutation
proof, rather than performing the same proof over and over.
* predicate_refuted_by() does not keep persistent state (see 2.) for
function calls, which means that a lot of syscache lookups will be
performed. That's particularly bad if the partitioning key is a
composite key, because without a persistent FunctionCallInfo
record_cmp() has to repeatedly look-up the type definition of the
composite key. That's quite expensive.
Thus replace this with custom-code that works in two phases:
1) Search restrictions for constraints that can be pruned upon
2) Use those restrictions to search for matching shards in the most
efficient manner available:
a) Binary search / Hash Lookup in case of hash partitioned tables
b) Binary search for equal clauses in case of range or append
tables without overlapping shards.
c) Binary search for inequality clauses, searching for both lower
and upper boundaries, again in case of range or append
tables without overlapping shards.
d) exhaustive search testing each ShardInterval
My measurements suggest that we are considerably, often orders of
magnitude, faster than the previous solution, even if we have to fall
back to exhaustive pruning.
This determines whether it's possible to perform binary search on
sortedShardIntervalArray or not. If e.g. two shards have overlapping
ranges, that'd be prohibitive.
That'll be useful in later commit introducing faster shard pruning.
That's useful when comparing values a hash-partitioned table is
filtered by. The existing shardIntervalCompareFunction is about
comparing hashed values, not unhashed ones.
The added btree opclass function is so we can get a comparator
back. This should be changed much more widely, but is not necessary so
far.
Previously we, unnecessarily, used a the first shard's type
information to to look up the comparison function. But that
information is already available, so use it. That's helpful because
we sometimes want to access the comparator function even if there's no
shards.
With this commit, we started to send explain queries within a savepoint. After
running explain query, we rollback to savepoint. This saves us from side effects
of EXPLAIN ANALYZE on DML queries.
All callers fetch a cache entry and extract/compute arguments for the
eventual FindShardInterval call, so it makes more sense to refactor
into that function itself; this solves the use-after-free bug, too.
With this change we add an option to add a node without replicating all reference
tables to that node. If a node is added with this option, we mark the node as
inactive and no queries will sent to that node.
We also added two new UDFs;
- master_activate_node(host, port):
- marks node as active and replicates all reference tables to that node
- master_add_inactive_node(host, port):
- only adds node to pg_dist_node
In this PR, we aim to deduce whether each of the RTE_RELATION
is joined with at least on another RTE_RELATION on their partition keys. If each
RTE_RELATION follows the above rule, we can conclude that all RTE_RELATIONs are
joined on their partition keys.
In order to do that, we invented a new equivalence class namely:
AttributeEquivalenceClass. In very simple words, a AttributeEquivalenceClass is
identified by an unique id and consists of a list of AttributeEquivalenceMembers.
Each AttributeEquivalenceMember is designed to identify attributes uniquely within the
whole query. The necessity of this arise since varno attributes are defined within
a single level of a query. Instead, here we want to identify each RTE_RELATION uniquely
and try to find equality among each RTE_RELATION's partition key.
Whenever we find an equality clause A = B, where both A and B originates from
relation attributes (i.e., not random expressions), we create an
AttributeEquivalenceClass to record this knowledge. If we later find another
equivalence B = C, we create another AttributeEquivalenceClass. Finally, we can
apply transitity rules and generate a new AttributeEquivalenceClass which includes
A, B and C.
Note that equality among the members are identified by the varattno and rteIdentity.
Each equality among RTE_RELATION is saved using an AttributeEquivalenceClass where
each member attribute is identified by a AttributeEquivalenceMember. In the final
step, we try generate a common attribute equivalence class that holds as much as
AttributeEquivalenceMembers whose attributes are a partition keys.
With this change, we start to error out if loaded citus binaries does not match
the available major version or installed citus extension version. In this case
we force user to restart the server or run ALTER EXTENSION depending on the
situation
Thought this looked slightly nicer than the default behavior.
Changed preventTransaction to concurrent to be clearer that this code
path presently affects CONCURRENTLY code only.
Custom Scan is a node in the planned statement which helps external providers
to abstract data scan not just for foreign data wrappers but also for regular
relations so you can benefit your version of caching or hardware optimizations.
This sounds like only an abstraction on the data scan layer, but we can use it
as an abstraction for our distributed queries. The only thing we need to do is
to find distributable parts of the query, plan for them and replace them with
a Citus Custom Scan. Then, whenever PostgreSQL hits this custom scan node in
its Vulcano style execution, it will call our callback functions which run
distributed plan and provides tuples to the upper node as it scans a regular
relation. This means fewer code changes, fewer bugs and more supported features
for us!
First, in the distributed query planner phase, we create a Custom Scan which
wraps the distributed plan. For real-time and task-tracker executors, we add
this custom plan under the master query plan. For router executor, we directly
pass the custom plan because there is not any master query. Then, we simply let
the PostgreSQL executor run this plan. When it hits the custom scan node, we
call the related executor parts for distributed plan, fill the tuple store in
the custom scan and return results to PostgreSQL executor in Vulcano style,
a tuple per XXX_ExecScan() call.
* Modify planner to utilize Custom Scan node.
* Create different scan methods for different executors.
* Use native PostgreSQL Explain for master part of queries.
This change ignores `citus.replication_model` setting and uses the
statement based replication in
- Tables distributed via the old `master_create_distributed_table` function
- Append and range partitioned tables, even if created via
`create_distributed_table` function
This seems like the easiest solution to #1191, without changing the existing
behavior and harming existing users with custom scripts.
This change also prevents RF>1 on streaming replicated tables on `master_create_worker_shards`
Prior to this change, `master_create_worker_shards` command was not checking
the replication model of the target table, thus allowing RF>1 with streaming
replicated tables. With this change, `master_create_worker_shards` errors
out on the case.
- Break CheckShardPlacements into multiple functions (The most important
is MarkFailedShardPlacements), so that we can get rid of the global
CoordinatedTransactionUses2PC.
- Call MarkFailedShardPlacements in the router executor, so we mark
shards as invalid and stop using them while inside transaction blocks.
This UDF returns a shard placement from cache given shard id and placement id. At the
moment it iterates over all shard placements of given shard by ShardPlacementList and
searches given placement id in that list, which is not a good solution performance-wise.
However, currently, this function will be used only when there is a failed transaction.
If a need arises we can optimize this function in the future.
All router, real-time, task-tracker plannable queries should now have
full prepared statement support (and even use router when possible),
unless they don't go through the custom plan interface (which
basically just affects LANGUAGE SQL (not plpgsql) functions).
This is achieved by forcing postgres' planner to always choose a
custom plan, by assigning very low costs to plans with bound
parameters (i.e. ones were the postgres planner replanned the query
upon EXECUTE with all parameter values provided), instead of the
generic one.
This requires some trickery, because for custom plans to work the
costs for a non-custom plan have to be known, which means we can't
error out when planning the generic plan. Instead we have to return a
"faux" plan, that'd trigger an error message if executed. But due to
the custom plan logic that plan will likely (unless called by an SQL
function, or because we can't support that query for some reason) not
be executed; instead the custom plan will be chosen.
So far router planner had encapsulated different functionality in
MultiRouterPlanCreate. Modifications always go through router, selects
sometimes. Modifications always error out if the query is unsupported,
selects return NULL. Especially the error handling is a problem for
the upcoming extension of prepared statement support.
Split MultiRouterPlanCreate into CreateRouterPlan and
CreateModifyPlan, and change them to not throw errors.
Instead errors are now reported by setting the new
MultiPlan->plannigError.
Callers of router planner functionality now have to throw errors
themselves if desired, but also can skip doing so.
This is a pre-requisite for expanding prepared statement support.
While touching all those lines, improve a number of error messages by
getting them closer to the postgres error message guidelines.
It can be useful, e.g. in the upcoming prepared statement support, to
be able to return an error from a function that is not raised
immediately, but can later be thrown. That allows e.g. to attempt to
plan a statment using different methods and to create good error
messages in each planner, but to only error out after all planners
have been run.
To enable that create support for deferred error messages that can be
created (supporting errorcode, message, detail, hint) in one function,
and then thrown in different place.
This adds a replication_model GUC which is used as the replication
model for any new distributed table that is not a reference table.
With this change, tables with replication factor 1 are no longer
implicitly MX tables.
The GUC is similarly respected during empty shard creation for e.g.
existing append-partitioned tables. If the model is set to streaming
while replication factor is greater than one, table and shard creation
routines will error until this invalid combination is corrected.
Changing this parameter requires superuser permissions.
If any placements fail it doesn't update shard statistics on those placements.
A minor enabling refactor: Make CoordinatedTransactionUses2PC public (it used to be CoordinatedTransactionUse2PC but that symbol already existed, so renamed it as well)
This enables proper transactional behaviour for copy and relaxes some
restrictions like combining COPY with single-row modifications. It
also provides the basis for relaxing restrictions further, and for
optionally allowing connection caching.
They make fixing explain for prepared statement harder, and they don't
really fit into EXPLAIN in the first place. Additionally they're
currently not exercised in any tests.
This change adds support for serial columns to be used with MX tables.
Prior to this change, sequences of serial columns were created in all
workers (for being able to create shards) but never used. With MX, we
need to set the sequences so that sequences in each worker create
unique values. This is done by setting the MINVALUE, MAXVALUE and
START values of the sequence.
A small refactor which pulls some code out of `RecoverWorkerTransactions`
and into `remote_commands.c`. This code block currently only occurs in
`RecoverWorkerTransactions` but will be useful to other functions
shortly.
Unfortunately we couldn't call it `ExecuteRemoteCommand`, that name was
already taken.
With this change, we start to delete placement of reference tables at given worker node
after master_remove_node UDF call. We remove placement metadata at master node but we do
not drop actual shard from the worker node. There are two reasons for that decision,
first, it is not critical to DROP the shards in the workers because Citus will ignore them
as long as node is removed from cluster and if we add that node back to cluster we will
DROP and recreate all reference tables. Second, if node is unreachable, it becomes
complicated to cover failure cases and have a transaction support.
Enables use views within distributed queries.
User can create and use a view on distributed tables/queries
as he/she would use with regular queries.
After this change router queries will have full support for views,
insert into select queries will support reading from views, not
writing into. Outer joins would have a limited support, and would
error out at certain cases such as when a view is in the inner side
of the outer join.
Although PostgreSQL supports writing into views under certain circumstances.
We disallowed that for distributed views.
So far we've reloaded them frequently. Besides avoiding that cost -
noticeable for some workloads with large shard counts - it makes it
easier to add information to ShardPlacements that help us make
placement_connection.c colocation aware.
Remove the router specific transaction and shard management, and
replace it with the new placement connection API. This mostly leaves
behaviour alone, except that it is now, inside a transaction, legal to
select from a shard to which no pre-existing connection exists.
To simplify code the code handling task executions for select and
modify has been split into two - the previous coding was starting to
get confusing due to the amount of only conditionally applicable code.
Modification connections & transactions are now always established in
parallel, not just for reference tables.
Currently there are several places in citus that map placements to
connections and that manage placement health. Centralize this
knowledge. Because of the centralized knowledge about which
connection has previously been used for which shard/placement, this
also provides the basis for relaxing restrictions around combining
various forms of DDL/DML.
Connections for a placement can now be acquired using
GetPlacementConnection(). If the connection is used for DML or DDL the
FOR_DDL/DML flags should be used respectively. If an individual
remote transaction fails (but the transaction on the master succeeds)
and FOR_DDL/DML have been specified, the placement is marked as
invalid, unless that'd mark all placements for a shard as invalid.