This commit by default enables hiding shard names on MX workers
by simple replacing `pg_table_is_visible()` calls with
`citus_table_is_visible()` calls on the MX worker nodes. The latter
function filters out tables that are known to be shards.
The main motivation of this change is a better UX. The functionality
can be opted out via a GUC.
We also added two views, namely citus_shards_on_worker and
citus_shard_indexes_on_worker such that users can query
them to see the shards and their corresponding indexes.
We also added debug messages such that the filtered tables can
be interactively seen by setting the level to DEBUG1.
When a hash distributed table have a foreign key to a reference
table, there are few restrictions we have to apply in order to
prevent distributed deadlocks or reading wrong results.
The necessity to apply the restrictions arise from cascading
nature of foreign keys. When a foreign key on a reference table
cascades to a distributed table, a single operation over a single
connection can acquire locks on multiple shards of the distributed
table. Thus, any parallel operation on that distributed table, in the
same transaction should not open parallel connections to the shards.
Otherwise, we'd either end-up with a self-distributed deadlock or
read wrong results.
As briefly described above, the restrictions that we apply is done
by tracking the distributed/reference relation accesses inside
transaction blocks, and act accordingly when necessary.
The two main rules are as follows:
- Whenever a parallel distributed relation access conflicts
with a consecutive reference relation access, Citus errors
out
- Whenever a reference relation access is followed by a
conflicting parallel relation access, the execution mode
is switched to sequential mode.
There are also some other notes to mention:
- If the user does SET LOCAL citus.multi_shard_modify_mode
TO 'sequential';, all the queries should simply work with
using one connection per worker and sequentially executing
the commands. That's obviously a slower approach than Citus'
usual parallel execution. However, we've at least have a way
to run all commands successfully.
- If an unrelated parallel query executed on any distributed
table, we cannot switch to sequential mode. Because, the essense
of sequential mode is using one connection per worker. However,
in the presence of a parallel connection, the connection manager
picks those connections to execute the commands. That contradicts
with our purpose, thus we error out.
- COPY to a distributed table cannot be executed in sequential mode.
Thus, if we switch to sequential mode and COPY is executed, the
operation fails and there is currently no way of implementing that.
Note that, when the local table is not empty and create_distributed_table
is used, citus uses COPY internally. Thus, in those cases,
create_distributed_table() will also fail.
- There is a GUC called citus.enforce_foreign_key_restrictions
to disable all the checks. We added that GUC since the restrictions
we apply is sometimes a bit more restrictive than its necessary.
The user might want to relax those. Similarly, if you don't have
CASCADEing reference tables, you might consider disabling all the
checks.
This table will be used by Citus Enterprise to populate authentication-
related fields in outbound connections; Citus Community lacks support
for this functionality.
To support more flexible (i.e. not at compile-time) specification of
libpq connection parameters, this change adds a new GUC, node_conninfo,
which must be a space-separated string of key-value pairs suitable for
parsing by libpq's connection establishment methods.
To avoid rebuilding and parsing these values at connection time, this
change also adds a cache in front of the configuration params to permit
immediate use of any previously-calculated parameters.
After this commit DDL commands honour `citus.multi_shard_modify_mode`.
We preferred using the code-path that executes single task router
queries (e.g., ExecuteSingleModifyTask()) in order not to invent
a new executor that is only applicable for DDL commands that require
sequential execution.
Previously we checked if an operator is in pg_catalog, and if it wasn't we prefixed it with namespace in worker queries. This can have a huge impact on performance of physical planner when using custom data types.
This happened regardless of current search_path config, because Citus overrides the search path in get_query_def_extended(). When we do so, the check for existence of the operator in current search path in generate_operator_name() fails for any operators outside pg_catalog. This means that nothing gets cached, and in the following calls we will again recheck the system tables for existence of the operators, which took an additional 40-50ms for some of the usecases we were seeing.
In this change we skip the pg_catalog check, and always prefix the operator with its namespace.
* Change worker_hash_partition_table() such that the
divergence between Citus planner's hashing and
worker_hash_partition_table() becomes the same.
* Rename single partitioning to single range partitioning.
* Add single hash repartitioning. Basically, logical planner
treats single hash and range partitioning almost equally.
Physical planner, on the other hand, treats single hash and
dual hash repartitioning almost equally (except for JoinPruning).
* Add a new GUC to enable this feature
- changes in ruleutils_11.c is reflected
- vacuum statement api change is handled. We now allow
multi-table vacuum commands.
- some other function header changes are reflected
- api conflicts between PG11 and earlier versions
are handled by adding shims in version_compat.h
- various regression tests are fixed due output and
functionality in PG1
- no change is made to support new features in PG11
they need to be handled by new commit
Previously, we prevented creation of partitioned tables on Citus MX.
We decided to not focus on this feature until there is a need. Since
now there are requests for this feature, we are implementing support
for partitioned tables on Citus MX.
After this change all the logic related to shard data fetch logic
will be removed. Planner won't plan any ShardFetchTask anymore.
Shard fetch related steps in real time executor and task-tracker
executor have been removed.
VLAs aren't supported by Visual Studio.
- Remove all existing instances of VLAs.
- Add a flag, -Werror=vla, which makes gcc refuse to compile if we add
VLAs in the future.
* Don't use expressions inside compound statements
* Don't depend on __builtin_constant_p
* Remove reliance on S_ISLNK
* Replace use of __func__: older mcvs doesn't support this builtin
By sharing the implementation of the function AppendOptionListToString on
three call sites, we would expand an extra OPTIONS keyword in a create index
statement, and omit other bits of the specific syntax here.
This patch introduces an AppendStorageParametersToString() function that is
very similar to AppendOptionListToString() but handles WITH(a="foo",...)
syntax that is used in reloptions (aka Storage Parameters).
Fixes#1747.
PostgreSQL implements support for several relation kinds in a single
statement, such as in the AlterTableStmt case, which supports both tables
and indexes and more (see ATExecSetRelOptions in PostgreSQL source code file
src/backend/commands/tablecmds.c for an example of that).
As a consequence, this patch implements support for setting and resetting
storage parameters on both relation kinds.
The macro we were using to detect strtoull isn't set on Windows, and
just in case there are differences use a portable function from PG
instead of calling strtoull directly.
This commit introduces a new GUC to limit the intermediate
result size which we handle when we use read_intermediate_result
function for CTEs and complex subqueries.
Postgres provides OS agnosting formatting macros for
formatting 64 bit numbers. Replaced %ld %lu with
INT64_FORMAT and UINT64_FORMAT respectively.
Also found some incorrect usages of formatting
flags and fixed them.
Store pointers to shared hashes in process-local variables. Previously
pointers to shared hashes were put into shared memory. This causes
problems on EXEC_BACKEND because everybody calls execve and receives a
brand new address space; the shared hash will be in a different place
for every backend. (normally we call fork, which gives you a copy of the
address space, so these pointers remain constant)
In DistributedTablesSize() we didn't close the relations that had
replication factor > 2. This caused relcache reference leaks, and
warning messages like following in logs:
WARNING: relcache reference leak: relation "researchers" not closed
ShardPlacementList's implementation can return NIL. In previous implementation
we got a segmentation fault in this case. The relation can be dropped after
getting distributed table list but before calling SingleReplicatedTable().
If we don't propagate the errors we are catching in PG_CATCH(), database's
internal state might not be clean. So we do PG_TRY() inside a subtransaction
so we can rollback to it after catching errors.
This patch adds --with-reports-host configure option, which sets the
REPORTS_BASE_URL constant. The default is reports.citusdata.com.
It also enables stats collection in tests.
Curl writes the received response to stdout if we don't specify a response
callback or an output file. This can pollute the PostgreSQL log. In this change
we add a callback function so the response messages aren't added to the log file.
Sends a request to /v1/releases/latest?flavor=$CITUS_EDITION once a day,
which returns a response similar to {"version": "7.1.0", "major": 7,
"minor": 1, "patch": 0}. Then compares it with current Citus version,
and if the latest release is newer, logs a LOG message.
This includes:
(1) Wrap everything inside a StartTransactionCommand()/CommitTransactionCommand().
This is so we can access the database. This also switches to a new memory context
and releases it, so we don't have to do our own memory management.
(2) LockCitusExtension() so the extension cannot be dropped or created concurrently.
(3) Check CitusHasBeenLoaded() && CheckCitusVersion() before doing any work.
(4) Do not PG_TRY() inside a loop.
By this commit, citus minds the replica identity of the table when
we distribute the table. So the shards of the distributed table
have the same replica identity with the local table.
This change introduces the `pg_dist_node_metadata` which has a single jsonb value. When creating
the extension, a random server id is generated and stored in there. Everything in the metadata table
is added as a nested objected to the json payload that is sent to the reports server.
The following scenario can cause an Assert() crash if we don't do this:
- Install Citus v7.0-15
- Restart server & run a query to start maintenanced.
- Install Citus v7.1
- Restart server & run a query. This will tell user to upgrade.
- Type "UPDATE EXTENSION c" & press tab. maintenanced will start and crash
with Assert(CitusHasBeenLoaded() && CheckCitusVersion(WARNING));
This change checks Citus version before calling metadata functions so the
crash doesn't happen.
This will provide the full project name (i.e. Citus/Citus Enterprise),
and the host system, compiler, and architecture word size.
I wanted to limit the number of copied files in 'config', so I added
only config.guess and call it manually, rather than using the macro
AC_CANONICAL_HOST, which requires several other files.
Eclipse apparently doesn't scan build output looking for -D flags, so
having the value actually appear in a header is nicer for those of us
using IDEs.
Previously <curl/curl.h> was included even if compiled --without-libcurl.
This can fail when libcurl headers are not there. This commit guards this
include by checks for HAVE_LIBCURL.
Adds ```citus.enable_statistics_collection``` GUC variable, which ```true``` by default, unless built without libcurl. If statistics collection is enabled, sends basic usage data to Citus servers every 24 hours.
The data that is collected consists of:
- Citus version
- OS name & release
- Hardware Id
- Number of tables, rounded to next power of 2
- Size of data, rounded to next power of 2
- Number of workers
When a table and it's shards are dropped, and afterwards the same
shard identifiers are reused, e.g. due to a DROP & CREATE EXTENSION,
the old entry in the shard cache and the required entry in the shard
cache might be for different tables.
Force invalidation for both old and new table to fix.
We should prevent running the deadlock detection if
there is a major version change. Otherwise, the daemon
may access to obsolete metadata catalog tables.
This change fixes a use-after-free bug while renaming obsolete
`pg_worker_list.conf` file, which causes Citus to crash during upgrade
(or even extension creation) if `pg_worker_list.conf` exists.
With this commit, the maintenance deamon starts to check for
distributed deadlocks.
We also introduced a GUC variable (distributed_deadlock_detection_factor)
whose value is multiplied with Postgres' deadlock_timeout. Setting
it to -1 disables the distributed deadlock detection.
This GUC has two settings, 'always' and 'never'. When it's set to
'never' all behavior stays exactly as it was prior to this commit. When
it's set to 'always' only SELECT queries are allowed to run, and only
secondary nodes are used when processing those queries.
Add some helper functions:
- WorkerNodeIsSecondary(), checks the noderole of the worker node
- WorkerNodeIsReadable(), returns whether we're currently allowed to
read from this node
- ActiveReadableNodeList(), some functions (namely, the ones on the
SELECT path) don't require working with Primary Nodes. They should call
this function instead of ActivePrimaryNodeList(), because the latter
will error out in contexts where we're not allowed to write to nodes.
- ActiveReadableNodeCount(), like the above, replaces
ActivePrimaryNodeCount().
- EnsureModificationsCanRun(), error out if we're not currently allowed
to run queries which modify data. (Either we're in read-only mode or
use_secondary_nodes is set)
Some parts of the code were switched over to use readable nodes instead
of primary nodes:
- Deadlock detection
- DistributedTableSize,
- the router, real-time, and task tracker executors
- ShardPlacement resolution
This change declares two new functions:
`master_update_table_statistics` updates the statistics of shards belong
to the given table as well as its colocated tables.
`get_colocated_shard_array` returns the ids of colocated shards of a
given shard.
This is a pretty substantial refactoring of the existing modify path
within the router executor and planner. In particular, we now hunt for
all VALUES range table entries in INSERT statements and group the rows
contained therein by shard identifier. These rows are stashed away for
later in "ModifyRoute" elements. During deparse, the appropriate RTE
is extracted from the Query and its values list is replaced by these
rows before any SQL is generated.
In this way, we can create multiple Tasks, but only one per shard, to
piecemeal execute a multi-row INSERT. The execution of jobs containing
such tasks now exclusively go through the "multi-router executor" which
was previously used for e.g. INSERT INTO ... SELECT.
By piggybacking onto that executor, we participate in ongoing trans-
actions, get rollback-ability, etc. In short order, the only remaining
use of the "single modify" router executor will be for bare single-
row INSERT statements (i.e. those not in a transaction).
This change appropriately handles deferred pruning as well as master-
evaluated functions.
With this PR, Citus starts to support all possible ways to create
distributed partitioned tables. These are;
- Distributing already created partitioning hierarchy
- CREATE TABLE ... PARTITION OF a distributed_table
- ALTER TABLE distributed_table ATTACH PARTITION non_distributed_table
- ALTER TABLE distributed_table ATTACH PARTITION distributed_table
We also support DETACHing partitions from partitioned tables and propogating
TRUNCATE and DDL commands to distributed partitioned tables.
This PR also refactors some parts of distributed table creation logic.
- master_activate_node and master_disable_node correctly toggle
isActive, without crashing
- master_add_node rejects duplicate nodes, even if they're in different
clusters
- master_remove_node allows removing nodes in different clusters
This commit is preperation for introducing distributed partitioned
table support. We want to clean and refactor some code in distributed
table creation logic so that we can handle partitioned tables in more
robust way.
- Never release locks
- AddNodeMetadata takes ShareRowExclusiveLock so it'll conflict with the
trigger which prevents multiple primary nodes.
- ActivateNode and SetNodeState used to take AccessShareLock, but they
modify the table so they should take RowExclusiveLock.
- DeleteNodeRow and InsertNodeRow used to take AccessExclusiveLock but
only need RowExclusiveLock.
- master_add_node enforces that there is only one primary per group
- there's also a trigger on pg_dist_node to prevent multiple primaries
per group
- functions in metadata cache only return primary nodes
- Rename ActiveWorkerNodeList -> ActivePrimaryNodeList
- Rename WorkerGetLive{Node->Group}Count()
- Refactor WorkerGetRandomCandidateNode
- master_remove_node only complains about active shard placements if the
node being removed is a primary.
- master_remove_node only deletes all reference table placements in the
group if the node being removed is the primary.
- Rename {Node->NodeGroup}HasShardPlacements, this reflects the behavior it
already had.
- Rename DeleteAllReferenceTablePlacementsFrom{Node->NodeGroup}. This also
reflects the behavior it already had, but the new signature forces the
caller to pass in a groupId
- Rename {WorkerGetLiveGroup->ActivePrimaryNode}Count
GCC 7 added `-Wimplicit-fallthrough` to warn for not explicitly specified switch/case fall-throughs.
According to https://gcc.gnu.org/gcc-7/changes.html, to suppress that warning we could either use `__attribute__(fallthrough)`, which didn't seem to work for earlier GCC versions, or a `/* fallthrough */` comment just before the following `case`.
Previously Citus code had the fall-through comments inside the brackets, which didn't seem to suppress the warning. Putting a `/* fallthrough */` comment outside the brackets and right before the `case` fixes the problem.
Comes with a few changes:
- Change the signature of some functions to accept groupid
- InsertShardPlacementRow
- DeleteShardPlacementRow
- UpdateShardPlacementState
- NodeHasActiveShardPlacements returns true if the group the node is a
part of has any active shard placements
- TupleToShardPlacement now returns ShardPlacements which have NULL
nodeName and nodePort.
- Populate (nodeName, nodePort) when creating ShardPlacements
- Disallow removing a node if it contains any shard placements
- DeleteAllReferenceTablePlacementsFromNode matches based on group. This
doesn't change behavior for now (while there is only one node per
group), but means in the future callers should be careful about
calling it on a secondary node, it'll delete placements on the primary.
- Create concept of a GroupShardPlacement, which represents an actual
tuple in pg_dist_placement and is distinct from a ShardPlacement,
which has been resolved to a specific node. In the future
ShardPlacement should be renamed to NodeShardPlacement.
- Create some triggers which allow existing code to continue to insert
into and update pg_dist_shard_placement as if it still existed.
This commit is intended to be a base for supporting declarative partitioning
on distributed tables. Here we add the following utility functions and their
unit tests:
* Very basic functions including differnentiating partitioned tables and
partitions, listing the partitions
* Generating the PARTITION BY (expr) and adding this to the DDL events
of partitioned tables
* Ability to generate text representations of the ranges for partitions
* Ability to generate the `ALTER TABLE parent_table ATTACH PARTITION
partition_table FOR VALUES value_range`
* Ability to apply add shard ids to the above command using
`worker_apply_inter_shard_ddl_command()`
* Ability to generate `ALTER TABLE parent_table DETACH PARTITION`
Adds support for PostgreSQL 10 by copying in the requisite ruleutils
and updating all API usages to conform with changes in PostgreSQL 10.
Most changes are fairly minor but they are numerous. One particular
obstacle was the change in \d behavior in PostgreSQL 10's psql; I had
to add SQL implementations (views, mostly) to mimic the pre-10 output.
Add a second implementation of INSERT INTO distributed_table SELECT ... that is used if
the query cannot be pushed down. The basic idea is to execute the SELECT query separately
and pass the results into the distributed table using a CopyDestReceiver, which is also
used for COPY and create_distributed_table. When planning the SELECT, we go through
planner hooks again, which means the SELECT can also be a distributed query.
EXPLAIN is supported, but EXPLAIN ANALYZE is not because preventing double execution was
a lot more complicated in this case.
With this commit we start to register InvalidateDistRelationCacheCallback
function as cache invalidation callback function before version checks
because during version checks we use cache to look up relation ids of some
relations like pg_dist_relation or pg_dist_partition_logical_relid_index
and we want to know about cache invalidation before accessing them.
During version update, we indirectly calld CheckInstalledVersion via
ChackCitusVersions. This obviously fails because during version update it is
expected to have version mismatch between installed version and binary version.
Thus, we remove that ChackCitusVersions. We now only call ChackAvailableVersion.