Commit Graph

263 Commits (bc1a800f7095c8fe29f0c95e21c97dc008eca225)

Author SHA1 Message Date
Philip Dubé 4f60e3a149 Feedback 2019-09-24 17:31:09 +00:00
Marco Slot ca478defeb Deparse CALL statement instead of using original query string 2019-09-24 17:31:09 +00:00
Philip Dubé 90e1f1442a Annotated tests for multi_mx_call.
Co-authored-by: pykello <hadi.moshayedi@microsoft.com>
2019-09-24 17:31:09 +00:00
Marco Slot e269d990c9 Cast the distribution argument value when possible 2019-09-24 17:31:09 +00:00
Philip Dubé 432a8ef85b Hadi's feedback
Co-authored-by: pykello <hadi.moshayedi@microsoft.com>
Co-authored-by: serprex <serprex@users.noreply.github.com>
2019-09-24 17:31:09 +00:00
Philip Dubé bc1ad67eb5 Distribute CALL on distributed procedures to metadata workers
Lots taken from https://github.com/citusdata/citus/pull/2829
2019-09-24 17:31:09 +00:00
Onder Kalaci 18de78f386 Relax the colocation checks for distributed functions
As long as the types can be coerced, it is safe to pushdown
functions.
2019-09-24 16:31:08 +02:00
Philip Dubé 06faba91c0 Include ifdefs for pg12 API changes, update local_shard_executiuon test to avoid CTE inlining 2019-09-23 20:22:35 +00:00
Onder Kalaci d37745bfc7 Sync metadata to worker nodes after create_distributed_function
Since the distributed functions are useful when the workers have
metadata, we automatically sync it.

Also, after master_add_node(). We do it lazily and let the deamon
sync it. That's mainly because the metadata syncing cannot be done
in transaction blocks, and we don't want to add lots of transactional
limitations to master_add_node() and create_distributed_function().
2019-09-23 18:30:53 +02:00
Onder Kalaci d7e2968120 Add parameters to create_distributed_function()
With this commit, we're changing the API for create_distributed_function()
such that users can provide the distribution argument and the colocation
information.
2019-09-22 21:53:33 +02:00
Hanefi Onaldi ed11b9590c
Add distributed func creation queries in dependency replication logic 2019-09-18 20:07:45 +03:00
Nils Dijk db5d03931d
Feature disable object propagation (#2986)
DESCRIPTION: Provide a GUC to turn of the new dependency propagation functionality

In the case the dependency propagation functionality introduced in 9.0 causes issues to a cluster of a user they can turn it off almost completely. The only dependency that will still be propagated and kept track of is the schema to emulate the old behaviour.

GUC to change is `citus.enable_object_propagation`. When set to `false` the functionality will be mostly turned off. Be aware that objects marked as distributed in `pg_dist_object` will still be kept in the catalog as a distributed object. Alter statements to these objects will not be propagated to workers and may cause desynchronisation.
2019-09-18 17:16:22 +02:00
Nils Dijk 2b7f5552c8
Fix: rename remote type on conflict (#2983)
DESCRIPTION: Rename remote types during type propagation

To prevent data to be destructed when a remote type differs from the type on the coordinator during type propagation we wanted to rename the type instead of `DROP CASCADE`.

This patch removes the `DROP` logic and adds the creation of a rename statement to a free name.
2019-09-17 18:54:10 +02:00
Nils Dijk 0a3152d09c
Add feature flag to turn off create type propagation (#2982)
DESCRIPTION: Add feature flag to turn off create type propagation

When `citus.enable_create_type_propagation` is set to `false` citus will not propagate `CREATE TYPE` statements to the workers. Types are still distributed when tables that depend on these types are distributed.
2019-09-17 15:50:06 +02:00
Hanefi Onaldi 8f2a3a0604
Introduce create_distributed_function(regproc) UDF (#2961)
This PR aims to add the minimal set of changes required to start
distributing functions. You can use create_distributed_function(regproc)
UDF to distribute a function.

    SELECT create_distributed_function('add(int,int)');

The function definition should include the param types to properly
identify the correct function that we wish to distribute
2019-09-13 23:27:46 +03:00
Philip Dubé 492d1b2cba ActivePrimaryNodeList: add lockMode parameter 2019-09-13 17:44:56 +00:00
Nils Dijk 2879689441
Distribute Types to worker nodes (#2893)
DESCRIPTION: Distribute Types to worker nodes

When to propagate
==============

There are two logical moments that types could be distributed to the worker nodes
 - When they get used ( just in time distribution )
 - When they get created ( proactive distribution )

The just in time distribution follows the model used by how schema's get created right before we are going to create a table in that schema, for types this would be when the table uses a type as its column.

The proactive distribution is suitable for situations where it is benificial to have the type on the worker nodes directly. They can later on be used in queries where an intermediate result gets created with a cast to this type.

Just in time creation is always the last resort, you cannot create a distributed table before the type gets created. A good example use case is; you have an existing postgres server that needs to scale out. By adding the citus extension, add some nodes to the cluster, and distribute the table. The type got created before citus existed. There was no moment where citus could have propagated the creation of a type.

Proactive is almost always a good option. Types are not resource intensive objects, there is no performance overhead of having 100's of types. If you want to use them in a query to represent an intermediate result (which happens in our test suite) they just work.

There is however a moment when proactive type distribution is not beneficial; in transactions where the type is used in a distributed table.

Lets assume the following transaction:

```sql
BEGIN;
CREATE TYPE tt1 AS (a int, b int);
CREATE TABLE t1 AS (a int PRIMARY KEY, b tt1);
SELECT create_distributed_table('t1', 'a');
\copy t1 FROM bigdata.csv
```

Types are node scoped objects; meaning the type exists once per worker. Shards however have best performance when they are created over their own connection. For the type to be visible on all connections it needs to be created and committed before we try to create the shards. Here the just in time situation is most beneficial and follows how we create schema's on the workers. Outside of a transaction block we will just use 1 connection to propagate the creation.

How propagation works
=================

Just in time
-----------

Just in time propagation hooks into the infrastructure introduced in #2882. It adds types as a supported object in `SupportedDependencyByCitus`. This will make sure that any object being distributed by citus that depends on types will now cascade into types. When types are depending them self on other objects they will get created first.

Creation later works by getting the ddl commands to create the object by its `ObjectAddress` in `GetDependencyCreateDDLCommands` which will dispatch types to `CreateTypeDDLCommandsIdempotent`.

For the correct walking of the graph we follow array types, when later asked for the ddl commands for array types we return `NIL` (empty list) which makes that the object will not be recorded as distributed, (its an internal type, dependant on the user type).

Proactive distribution
---------------------

When the user creates a type (composite or enum) we will have a hook running in `multi_ProcessUtility` after the command has been applied locally. Running after running locally makes that we already have an `ObjectAddress` for the type. This is required to mark the type as being distributed.

Keeping the type up to date
====================

For types that are recorded in `pg_dist_object` (eg. `IsObjectDistributed` returns true for the `ObjectAddress`) we will intercept the utility commands that alter the type.
 - `AlterTableStmt` with `relkind` set to `OBJECT_TYPE` encapsulate changes to the fields of a composite type.
 - `DropStmt` with removeType set to `OBJECT_TYPE` encapsulate `DROP TYPE`.
 - `AlterEnumStmt` encapsulates changes to enum values.
    Enum types can not be changed transactionally. When the execution on a worker fails a warning will be shown to the user the propagation was incomplete due to worker communication failure. An idempotent command is shown for the user to re-execute when the worker communication is fixed.

Keeping types up to date is done via the executor. Before the statement is executed locally we create a plan on how to apply it on the workers. This plan is executed after we have applied the statement locally.

All changes to types need to be done in the same transaction for types that have already been distributed and will fail with an error if parallel queries have already been executed in the same transaction. Much like foreign keys to reference tables.
2019-09-13 17:46:07 +02:00
Nils Dijk 05f0668cdc
Fix: schema leak onto create index statement cache (#2964)
DESCRIPTION: Fix schema leak on CREATE INDEX statement

When a CREATE INDEX is cached between execution we might leak the schema name onto the cached statement of an earlier execution preventing the right index to be created.

Even though the cache is cleared when the search_path changes we can trigger this behaviour by having the schema already on the search path before a colliding table is created in a schema earlier on the `search_path`. When calling an unqualified create index via a function (used to trigger the caching behaviour) we see that the index is created on the wrong table after the schema leaked onto the statement.

By copying the complete `PlannedStmt` and `utilityStmt` during our planning phase for distributed ddls we make sure we are not leaking the schema name onto a cached data structure.

Caveat; COPY statements already have a lot of parsestree copying ongoing without directly putting it back on the `pstmt`. We should verify that copies modify the statement and potentially copy the complete `pstmt` there already.
2019-09-13 14:04:23 +02:00
Onder Kalaci 0b0c779c77 Introduce the concept of Local Execution
/*
 * local_executor.c
 *
 * The scope of the local execution is locally executing the queries on the
 * shards. In other words, local execution does not deal with any local tables
 * that are not shards on the node that the query is being executed. In that sense,
 * the local executor is only triggered if the node has both the metadata and the
 * shards (e.g., only Citus MX worker nodes).
 *
 * The goal of the local execution is to skip the unnecessary network round-trip
 * happening on the node itself. Instead, identify the locally executable tasks and
 * simply call PostgreSQL's planner and executor.
 *
 * The local executor is an extension of the adaptive executor. So, the executor uses
 * adaptive executor's custom scan nodes.
 *
 * One thing to note that Citus MX is only supported with replication factor = 1, so
 * keep that in mind while continuing the comments below.
 *
 * On the high level, there are 3 slightly different ways of utilizing local execution:
 *
 * (1) Execution of local single shard queries of a distributed table
 *
 *      This is the simplest case. The executor kicks at the start of the adaptive
 *      executor, and since the query is only a single task the execution finishes
 *      without going to the network at all.
 *
 *      Even if there is a transaction block (or recursively planned CTEs), as long
 *      as the queries hit the shards on the same, the local execution will kick in.
 *
 * (2) Execution of local single queries and remote multi-shard queries
 *
 *      The rule is simple. If a transaction block starts with a local query execution,
 *      all the other queries in the same transaction block that touch any local shard
 *      have to use the local execution. Although this sounds restrictive, we prefer to
 *      implement in this way, otherwise we'd end-up with as complex scenarious as we
 *      have in the connection managements due to foreign keys.
 *
 *      See the following example:
 *      BEGIN;
 *          -- assume that the query is executed locally
 *          SELECT count(*) FROM test WHERE key = 1;
 *
 *          -- at this point, all the shards that reside on the
 *          -- node is executed locally one-by-one. After those finishes
 *          -- the remaining tasks are handled by adaptive executor
 *          SELECT count(*) FROM test;
 *
 *
 * (3) Modifications of reference tables
 *
 *		Modifications to reference tables have to be executed on all nodes. So, after the
 *		local execution, the adaptive executor keeps continuing the execution on the other
 *		nodes.
 *
 *		Note that for read-only queries, after the local execution, there is no need to
 *		kick in adaptive executor.
 *
 *  There are also few limitations/trade-offs that is worth mentioning. First, the
 *  local execution on multiple shards might be slow because the execution has to
 *  happen one task at a time (e.g., no parallelism). Second, if a transaction
 *  block/CTE starts with a multi-shard command, we do not use local query execution
 *  since local execution is sequential. Basically, we do not want to lose parallelism
 *  across local tasks by switching to local execution. Third, the local execution
 *  currently only supports queries. In other words, any utility commands like TRUNCATE,
 *  fails if the command is executed after a local execution inside a transaction block.
 *  Forth, the local execution cannot be mixed with the executors other than adaptive,
 *  namely task-tracker, real-time and router executors. Finally, related with the
 *  previous item, COPY command cannot be mixed with local execution in a transaction.
 *  The implication of that any part of INSERT..SELECT via coordinator cannot happen
 *  via the local execution.
 */
2019-09-12 11:51:25 +02:00
Philip Dubé bdd30bb181 Don't allow distributing by a generated column 2019-09-04 14:50:17 +00:00
Philip Dubé 41dca121e2 Support GENERATE ALWAYS AS STORED 2019-09-04 14:50:17 +00:00
Nils Dijk 936d546a3c
Refactor Ensure Schema Exists to Ensure Dependecies Exists (#2882)
DESCRIPTION: Refactor ensure schema exists to dependency exists

Historically we only supported schema's as table dependencies to be created on the workers before a table gets distributed. This PR puts infrastructure in place to walk pg_depend to figure out which dependencies to create on the workers. Currently only schema's are supported as objects to create before creating a table.

We also keep track of dependencies that have been created in the cluster. When we add a new node to the cluster we use this catalog to know which objects need to be created on the worker.

Side effect of knowing which objects are already distributed is that we don't have debug messages anymore when creating schema's that are already created on the workers.
2019-09-04 14:10:20 +02:00
Philip Dubé 693d4695d7 Create a test 'pg12' for pg12 features & error on unsupported new features
Unsupported new features: COPY FROM WHERE, GENERATED ALWAYS AS, non-heap table access methods
2019-08-22 19:30:56 +00:00
Philip Dubé fe10ca453d Implement FileCompat to abstract pg12 requiring API consumer to track file offsets 2019-08-22 18:57:47 +00:00
Philip Dubé 018ad1c58e pg12: version_compat.h, tuples, oids, misc 2019-08-22 18:57:23 +00:00
Philip Dubé 9643ff580e Update commands/vacuum.c with pg12 changes
Adds support for SKIP_LOCKED, INDEX_CLEANUP, TRUNCATE
Removes broken assert
2019-08-22 18:56:54 +00:00
Philip Dubé 68c4b71f93 Fix up includes with pg12 changes 2019-08-22 18:56:21 +00:00
Hadi Moshayedi 6be1bacddd Fix distributed deadlock for TRUNCATE 2019-08-22 11:03:53 -07:00
Hadi Moshayedi a5b087c89b Support FKs between reference tables 2019-08-21 16:11:27 -07:00
Philip Dubé 7bf7e41594 commands/index.c: Fix assertion typo 2019-08-21 18:54:05 +00:00
Philip Dubé f4b90419ae Raise an error when REINDEX TABLE or INDEX is invoked on a distributed relation 2019-08-21 17:03:14 +00:00
Hadi Moshayedi c582eb89c8 Add some missing locks. 2019-08-15 12:34:31 -07:00
Philip Dubé 705d1bf0e0 Use PG_JOB_CACHE_DIR 2019-08-09 15:25:59 +00:00
Onder Kalaci 060ac11476 Do not record relation accessess unnecessarily
Before this commit, we've recorded the relation accesses in 3 different
places
    - FindPlacementListConnection         -- applies all executor in tx block
    - StartPlacementExecutionOnSession()  -- adaptive executor only
    - StartPlacementListConnection()      -- router/real-time only

This is different than Citus 8.2, and could lead to query execution times
increase considerably on multi-shard commands in transaction block
that are on partitioned tables.

Benchmarks:

```
1+8 c5.4xlarge cluster

Empty distributed partitioned table with 365 partitions: https://gist.github.com/onderkalaci/1edace4ed6bd6f061c8a15594865bb51#file-partitions_365-sql

./pgbench -f /tmp/multi_shard.sql -c10 -j10 -P 1 -T 120 postgres://citus:w3r6KLJpv3mxe9E-NIUeJw@c.fy5fkjcv45vcepaogqcaskmmkee.db.citusdata.com:5432/citus?sslmode=require

cat  /tmp/multi_shard.sql
BEGIN;
	DELETE FROM collections_list;
	DELETE FROM collections_list;
	DELETE FROM collections_list;
COMMIT;
cat  /tmp/single_shard.sql
BEGIN;
	DELETE FROM collections_list WHERE key = :aid;
	DELETE FROM collections_list WHERE key = :aid;
	DELETE FROM collections_list WHERE key = :aid;
COMMIT;

cat  /tmp/mix.sql
BEGIN;
	DELETE FROM collections_list WHERE key = :aid;
	DELETE FROM collections_list WHERE key = :aid;
	DELETE FROM collections_list WHERE key = :aid;

	DELETE FROM collections_list;
	DELETE FROM collections_list;
	DELETE FROM collections_list;
COMMIT;
```

The table shows `latency average` of pgbench runs explained above, so we have a pretty solid improvement even over 8.2.2.

| Test  | Citus 8.2.2  |  Citus 8.3.1   | Citus 8.3.2 (this branch)  | Citus 8.3.1 (FKEYs disabled via GUC)  |
| ------------- | ------------- | ------------- |------------- | ------------- |
|multi_shard |  2370.083 ms  |3605.040 ms |1324.094 ms |1247.255 ms  |
| single_shard  | 85.338 ms  |120.934 ms  |73.216 ms  | 78.765 ms |
| mix  | 2434.459 ms | 3727.080 ms  |1306.456 ms  | 1280.326 ms |
2019-08-08 18:42:08 +02:00
Onder Kalaci 35ee896f3d Get rid of an unnecessary parameter
targetPoolSize parameter for ExecuteUtilityTaskListWithoutResults
becomes obsolete, just remove it.
2019-08-07 19:35:56 +02:00
Onder Kalaci b2e01d0745 Refactor switching to sequential mode
We don't need to wait until the execution. As soon as we realize
that we need sequential execution, we should do it.
2019-08-07 19:35:56 +02:00
Hadi Moshayedi 032167c553 Fix Assert() in ProcessVariableSetStmt() 2019-07-05 14:11:22 -07:00
Marco Slot 07d2266e11 Fix RESET and other types of SET 2019-07-05 19:30:48 +02:00
Önder Kalacı 40da78c6fd
Introduce the adaptive executor (#2798)
With this commit, we're introducing the Adaptive Executor. 


The commit message consists of two distinct sections. The first part explains
how the executor works. The second part consists of the commit messages of
the individual smaller commits that resulted in this commit. The readers
can search for the each of the smaller commit messages on 
https://github.com/citusdata/citus and can learn more about the history
of the change.

/*-------------------------------------------------------------------------
 *
 * adaptive_executor.c
 *
 * The adaptive executor executes a list of tasks (queries on shards) over
 * a connection pool per worker node. The results of the queries, if any,
 * are written to a tuple store.
 *
 * The concepts in the executor are modelled in a set of structs:
 *
 * - DistributedExecution:
 *     Execution of a Task list over a set of WorkerPools.
 * - WorkerPool
 *     Pool of WorkerSessions for the same worker which opportunistically
 *     executes "unassigned" tasks from a queue.
 * - WorkerSession:
 *     Connection to a worker that is used to execute "assigned" tasks
 *     from a queue and may execute unasssigned tasks from the WorkerPool.
 * - ShardCommandExecution:
 *     Execution of a Task across a list of placements.
 * - TaskPlacementExecution:
 *     Execution of a Task on a specific placement.
 *     Used in the WorkerPool and WorkerSession queues.
 *
 * Every connection pool (WorkerPool) and every connection (WorkerSession)
 * have a queue of tasks that are ready to execute (readyTaskQueue) and a
 * queue/set of pending tasks that may become ready later in the execution
 * (pendingTaskQueue). The tasks are wrapped in a ShardCommandExecution,
 * which keeps track of the state of execution and is referenced from a
 * TaskPlacementExecution, which is the data structure that is actually
 * added to the queues and describes the state of the execution of a task
 * on a particular worker node.
 *
 * When the task list is part of a bigger distributed transaction, the
 * shards that are accessed or modified by the task may have already been
 * accessed earlier in the transaction. We need to make sure we use the
 * same connection since it may hold relevant locks or have uncommitted
 * writes. In that case we "assign" the task to a connection by adding
 * it to the task queue of specific connection (in
 * AssignTasksToConnections). Otherwise we consider the task unassigned
 * and add it to the task queue of a worker pool, which means that it
 * can be executed over any connection in the pool.
 *
 * A task may be executed on multiple placements in case of a reference
 * table or a replicated distributed table. Depending on the type of
 * task, it may not be ready to be executed on a worker node immediately.
 * For instance, INSERTs on a reference table are executed serially across
 * placements to avoid deadlocks when concurrent INSERTs take conflicting
 * locks. At the beginning, only the "first" placement is ready to execute
 * and therefore added to the readyTaskQueue in the pool or connection.
 * The remaining placements are added to the pendingTaskQueue. Once
 * execution on the first placement is done the second placement moves
 * from pendingTaskQueue to readyTaskQueue. The same approach is used to
 * fail over read-only tasks to another placement.
 *
 * Once all the tasks are added to a queue, the main loop in
 * RunDistributedExecution repeatedly does the following:
 *
 * For each pool:
 * - ManageWorkPool evaluates whether to open additional connections
 *   based on the number unassigned tasks that are ready to execute
 *   and the targetPoolSize of the execution.
 *
 * Poll all connections:
 * - We use a WaitEventSet that contains all (non-failed) connections
 *   and is rebuilt whenever the set of active connections or any of
 *   their wait flags change.
 *
 *   We almost always check for WL_SOCKET_READABLE because a session
 *   can emit notices at any time during execution, but it will only
 *   wake up WaitEventSetWait when there are actual bytes to read.
 *
 *   We check for WL_SOCKET_WRITEABLE just after sending bytes in case
 *   there is not enough space in the TCP buffer. Since a socket is
 *   almost always writable we also use WL_SOCKET_WRITEABLE as a
 *   mechanism to wake up WaitEventSetWait for non-I/O events, e.g.
 *   when a task moves from pending to ready.
 *
 * For each connection that is ready:
 * - ConnectionStateMachine handles connection establishment and failure
 *   as well as command execution via TransactionStateMachine.
 *
 * When a connection is ready to execute a new task, it first checks its
 * own readyTaskQueue and otherwise takes a task from the worker pool's
 * readyTaskQueue (on a first-come-first-serve basis).
 *
 * In cases where the tasks finish quickly (e.g. <1ms), a single
 * connection will often be sufficient to finish all tasks. It is
 * therefore not necessary that all connections are established
 * successfully or open a transaction (which may be blocked by an
 * intermediate pgbouncer in transaction pooling mode). It is therefore
 * essential that we take a task from the queue only after opening a
 * transaction block.
 *
 * When a command on a worker finishes or the connection is lost, we call
 * PlacementExecutionDone, which then updates the state of the task
 * based on whether we need to run it on other placements. When a
 * connection fails or all connections to a worker fail, we also call
 * PlacementExecutionDone for all queued tasks to try the next placement
 * and, if necessary, mark shard placements as inactive. If a task fails
 * to execute on all placements, the execution fails and the distributed
 * transaction rolls back.
 *
 * For multi-row INSERTs, tasks are executed sequentially by
 * SequentialRunDistributedExecution instead of in parallel, which allows
 * a high degree of concurrency without high risk of deadlocks.
 * Conversely, multi-row UPDATE/DELETE/DDL commands take aggressive locks
 * which forbids concurrency, but allows parallelism without high risk
 * of deadlocks. Note that this is unrelated to SEQUENTIAL_CONNECTION,
 * which indicates that we should use at most one connection per node, but
 * can run tasks in parallel across nodes. This is used when there are
 * writes to a reference table that has foreign keys from a distributed
 * table.
 *
 * Execution finishes when all tasks are done, the query errors out, or
 * the user cancels the query.
 *
 *-------------------------------------------------------------------------
 */



All the commits involved here:
* Initial unified executor prototype

* Latest changes

* Fix rebase conflicts to master branch

* Add missing variable for assertion

* Ensure that master_modify_multiple_shards() returns the affectedTupleCount

* Adjust intermediate result sizes

The real-time executor uses COPY command to get the results
from the worker nodes. Unified executor avoids that which
results in less data transfer. Simply adjust the tests to lower
sizes.

* Force one connection per placement (or co-located placements) when requested

The existing executors (real-time and router) always open 1 connection per
placement when parallel execution is requested.

That might be useful under certain circumstances:

(a) User wants to utilize as much as CPUs on the workers per
distributed query
(b) User has a transaction block which involves COPY command

Also, lots of regression tests rely on this execution semantics.
So, we'd enable few of the tests with this change as well.

* For parameters to be resolved before using them

For the details, see PostgreSQL's copyParamList()

* Unified executor sorts the returning output

* Ensure that unified executor doesn't ignore sequential execution of DDLJob's

Certain DDL commands, mainly creating foreign keys to reference tables,
should be executed sequentially. Otherwise, we'd end up with a self
distributed deadlock.

To overcome this situaiton, we set a flag `DDLJob->executeSequentially`
and execute it sequentially. Note that we have to do this because
the command might not be called within a transaction block, and
we cannot call `SetLocalMultiShardModifyModeToSequential()`.

This fixes at least two test: multi_insert_select_on_conflit.sql and
multi_foreign_key.sql

Also, I wouldn't mind scattering local `targetPoolSize` variables within
the code. The reason is that we'll soon have a GUC (or a global
variable based on a GUC) that'd set the pool size. In that case, we'd
simply replace `targetPoolSize` with the global variables.

* Fix 2PC conditions for DDL tasks

* Improve closing connections that are not fully established in unified execution

* Support foreign keys to reference tables in unified executor

The idea for supporting foreign keys to reference tables is simple:
Keep track of the relation accesses within a transaction block.
    - If a parallel access happens on a distributed table which
      has a foreign key to a reference table, one cannot modify
      the reference table in the same transaction. Otherwise,
      we're very likely to end-up with a self-distributed deadlock.
    - If an access to a reference table happens, and then a parallel
      access to a distributed table (which has a fkey to the reference
      table) happens, we switch to sequential mode.

Unified executor misses the function calls that marks the relation
accesses during the execution. Thus, simply add the necessary calls
and let the logic kick in.

* Make sure to close the failed connections after the execution

* Improve comments

* Fix savepoints in unified executor.

* Rebuild the WaitEventSet only when necessary

* Unclaim connections on all errors.

* Improve failure handling for unified executor

   - Implement the notion of errorOnAnyFailure. This is similar to
     Critical Connections that the connection managament APIs provide
   - If the nodes inside a modifying transaction expand, activate 2PC
   - Fix few bugs related to wait event sets
   - Mark placement INACTIVE during the execution as much as possible
     as opposed to we do in the COMMIT handler
   - Fix few bugs related to scheduling next placement executions
   - Improve decision on when to use 2PC

Improve the logic to start a transaction block for distributed transactions

- Make sure that only reference table modifications are always
  executed with distributed transactions
- Make sure that stored procedures and functions are executed
  with distributed transactions

* Move waitEventSet to DistributedExecution

This could also be local to RunDistributedExecution(), but in that case
we had to mark it as "volatile" to avoid PG_TRY()/PG_CATCH() issues, and
cast it to non-volatile when doing WaitEventSetFree(). We thought that
would make code a bit harder to read than making this non-local, so we
move it here. See comments for PG_TRY() in postgres/src/include/elog.h
and "man 3 siglongjmp" for more context.

* Fix multi_insert_select test outputs

Two things:
   1) One complex transaction block is now supported. Simply update
      the test output
   2) Due to dynamic nature of the unified executor, the orders of
      the errors coming from the shards might change (e.g., all of
      the queries on the shards would fail, but which one appears
      on the error message?). To fix that, we simply added it to
      our shardId normalization tool which happens just before diff.

* Fix subeury_and_cte test

The error message is updated from:
	failed to execute task
To:
        more than one row returned by a subquery or an expression

which is a lot clearer to the user.

* Fix intermediate_results test outputs

Simply update the error message from:
	could not receive query results
to
	result "squares" does not exist

which makes a lot more sense.

* Fix multi_function_in_join test

The error messages update from:
     Failed to execute task XXX
To:
     function f(..) does not exist

* Fix multi_query_directory_cleanup test

The unified executor does not create any intermediate files.

* Fix with_transactions test

A test case that just started to work fine

* Fix multi_router_planner test outputs

The error message is update from:
	Could not receive query results
To:
	Relation does not exists

which is a lot more clearer for the users

* Fix multi_router_planner_fast_path test

The error message is update from:
	Could not receive query results
To:
	Relation does not exists

which is a lot more clearer for the users

* Fix isolation_copy_placement_vs_modification by disabling select_opens_transaction_block

* Fix ordering in isolation_multi_shard_modify_vs_all

* Add executor locks to unified executor

* Make sure to allocate enought WaitEvents

The previous code was missing the waitEvents for the latch and
postmaster death.

* Fix rebase conflicts for master rebase

* Make sure that TRUNCATE relies on unified executor

* Implement true sequential execution for multi-row INSERTS

Execute the individual tasks executed one by one. Note that this is different than
MultiShardConnectionType == SEQUENTIAL_CONNECTION case (e.g., sequential execution
mode). In that case, running the tasks across the nodes in parallel is acceptable
and implemented in that way.

However, the executions that are qualified here would perform poorly if the
tasks across the workers are executed in parallel. We currently qualify only
one class of distributed queries here, multi-row INSERTs. If we do not enforce
true sequential execution, concurrent multi-row upserts could easily form
a distributed deadlock when the upserts touch the same rows.

* Remove SESSION_LIFESPAN flag in unified_executor

* Apply failure test updates

We've changed the failure behaviour a bit, and also the error messages
that show up to the user. This PR covers majority of the updates.

* Unified executor honors citus.node_connection_timeout

With this commit, unified executor errors out if even
a single connection cannot be established within
citus.node_connection_timeout.

And, as a side effect this fixes failure_connection_establishment
test.

* Properly increment/decrement pool size variables

Before this commit, the idle and active connection
counts were not properly calculated.

* insert_select_executor goes through unified executor.

* Add missing file for task tracker

* Modify ExecuteTaskListExtended()'s signature

* Sort output of INSERT ... SELECT ... RETURNING

* Take partition locks correctly in unified executor

* Alternative implementation for force_max_query_parallelization

* Fix compile warnings in unified executor

* Fix style issues

* Decrement idleConnectionCount when idle connection is lost

* Always rebuild the wait event sets

In the previous implementation, on waitFlag changes, we were only
modifying the wait events. However, we've realized that it might
be an over optimization since (a) we couldn't see any performance
benefits (b) we see some errors on failures and because of (a)
we prefer to disable it now.

* Make sure to allocate enough sized waitEventSet

With multi-row INSERTs, we might have more sessions than
task*workerCount after few calls of RunDistributedExecution()
because the previous sessions would also be alive.

Instead, re-allocate events when the connectino set changes.

* Implement SELECT FOR UPDATE on reference tables

On master branch, we do two extra things on SELECT FOR UPDATE
queries on reference tables:
   - Acquire executor locks
   - Execute the query on all replicas

With this commit, we're implementing the same logic on the
new executor.

* SELECT FOR UPDATE opens transaction block even if SelectOpensTransactionBlock disabled

Otherwise, users would be very confused and their logic is very likely
to break.

* Fix build error

* Fix the newConnectionCount calculation in ManageWorkerPool

* Fix rebase conflicts

* Fix minor test output differences

* Fix citus indent

* Remove duplicate sorts that is added with rebase

* Create distributed table via executor

* Fix wait flags in CheckConnectionReady

* failure_savepoints output for unified executor.

* failure_vacuum output (pg 10) for unified executor.

* Fix WaitEventSetWait timeout in unified executor

* Stabilize failure_truncate test output

* Add an ORDER BY to multi_upsert

* Fix regression test outputs after rebase to master

* Add executor.c comment

* Rename executor.c to adaptive_executor.c

* Do not schedule tasks if the failed placement is not ready to execute

Before the commit, we were blindly scheduling the next placement executions
even if the failed placement is not on the ready queue. Now, we're ensuring
that if failed placement execution is on a failed pool or session where the
execution is on the pendingQueue, we do not schedule the next task. Because
the other placement execution should be already running.

* Implement a proper custom scan node for adaptive executor

- Switch between the executors, add GUC to set the pool size
- Add non-adaptive regression test suites
- Enable CIRCLE CI for non-adaptive tests
- Adjust test output files

* Add slow start interval to the executor

* Expose max_cached_connection_per_worker to user

* Do not start slow when there are cached connections

* Consider ExecutorSlowStartInterval in NextEventTimeout

* Fix memory issues with ReceiveResults().

* Disable executor via TaskExecutorType

* Make sure to execute the tests with the other executor

* Use task_executor_type to enable-disable adaptive executor

* Remove useless code

* Adjust the regression tests

* Add slow start regression test

* Rebase to master

* Fix test failures in adaptive executor.

* Rebase to master - 2

* Improve comments & debug messages

* Set force_max_query_parallelization in isolation_citus_dist_activity

* Force max parallelization for creating shards when asked to use exclusive connection.

* Adjust the default pool size

* Expand description of max_adaptive_executor_pool_size GUC

* Update warnings in FinishRemoteTransactionCommit()

* Improve session clean up at the end of execution

Explicitly list all the states that the execution might end,
otherwise warn.

* Remove MULTI_CONNECTION_WAIT_RETRY which is not used at all

* Add more ORDER BYs to multi_mx_partitioning
2019-06-28 14:04:40 +02:00
Hanefi Onaldi 7e8fd49b94 Create Schemas as superuser on all shard/table creation UDFs
- All the schema creations on the workers will now be  via superuser connections
- If a shard is being repaired or a shard is replicated, we will create the
  schema only in the relevant worker; and in all the other cases where a schema
  creation is needed, we will block operations until we ensure the schema exists
  in all the workers
2019-06-26 17:12:28 +02:00
Jason Petersen d4e1172247 Implement propagation of SET LOCAL commands
Adds support for propagation of SET LOCAL commands to all workers
involved in a query. For now, SET SESSION (i.e. plain SET) is not
supported whatsoever, though this code is intended as somewhat of a
base for implementing such support in the future.

As SET LOCAL modifications are scoped to the body of a BEGIN/END xact
block, queries wishing to use SET LOCAL propagation must be within such
a block. In addition, subsequent modifications after e.g. any SAVEPOINT
or ROLLBACK statements will correspondingly push or pop variable mod-
ifications onto an internal stack such that the behavior of changed
values across the cluster will be identical to such behavior on e.g.
single-node PostgreSQL (or equivalently, what values are visible to
the end user by running SHOW on such variables on the coordinator).

If nodes enter the set of participants at some point after SET LOCAL
modifications (or SAVEPOINT, ROLLBACK, etc.) have occurred, the SET
variable state is eagerly propagated to them upon their entrance (this
is identical to, and indeed just augments, the existing logic for the
propagation of the SAVEPOINT "stack").

A new GUC (citus.propagate_set_commands) has been added to control this
behavior. Though the code suggests the valid settings are 'none', 'local',
'session', and 'all', only 'none' (the default) and 'local' are presently
implemented: attempting to use other values will result in an error.
2019-06-20 16:15:43 -07:00
Hadi Moshayedi 4bbae02778 Make COPY compatible with unified executor. 2019-06-20 19:53:40 +02:00
Philip Dubé 4bfcf5b665 Enable Werror for all warnings
Changes to ruleutils match changes made upstream to silence gcc fallthrough warnings
2019-06-18 14:43:54 -07:00
Hadi Moshayedi dee5bc31b4 Refactor ShardIdForTuple() to a separate function. 2019-06-02 09:48:15 -07:00
Philip Dubé b8871d9ff4 Propagate more ALTER FOREIGN TABLE to workers 2019-05-24 12:54:05 -07:00
Philip Dubé 16886b3c63 Fix misc typos 2019-05-23 17:23:27 -07:00
Hadi Moshayedi 8ae47e1244 Fix comments for RemoteFileDestReceiverStartup and CitusCopyDestReceiverStartup 2019-05-21 09:03:22 -07:00
Hadi Moshayedi b5c0ca45f1 Remove stopOnFailure flag from EndRemoteCopy() 2019-05-11 06:18:34 -07:00
Hadi Moshayedi 32ecb6884c Test ROLLBACK TO SAVEPOINT with multi-shard CTE failures 2019-05-01 09:33:43 -07:00
Hadi Moshayedi aafd22dffa Fix savepoint rollback for INSERT INTO ... SELECT. 2019-05-01 09:33:43 -07:00
Jason Petersen 71d5d1c865 Enable variable shadowing warnings; fix all
Rather than wait for another place like the previous commit to bite us,
I think we should turn on this warning.
2019-04-30 13:24:25 -06:00
Jason Petersen 1125fc9da0 Fix self-strncmp in ConstrIsFKToReferenceTable
Make the function do what I assume was intended.
2019-04-30 13:24:25 -06:00
Marco Slot 0ea4e52df5 Add nodeId to shardPlacements and use it for shard placement comparisons
Before this commit, shardPlacements were identified with shardId, nodeName
and nodeport. Instead of using nodeName and nodePort, we now use nodeId
since it apparently has performance benefits in several places in the
code.
2019-03-20 12:14:46 +03:00
Marco Slot f2abf2b8e5 Functions are treated as transaction blocks 2019-03-15 16:34:08 -06:00
Hadi Moshayedi a9e6d06a98 Skip execution of ALTER TABLE constraint checks on the coordinator 2019-03-14 15:40:56 -07:00
Hadi Moshayedi cdd3b15ac8 Fix distributed deadlock for ALTER TABLE ... ATTACH PARTITION.
Following scenario resulted in distributed deadlock before this commit:

CREATE TABLE partitioning_test(id int, time date) PARTITION BY RANGE (time);
CREATE TABLE partitioning_test_2009 (LIKE partitioning_test);
CREATE TABLE partitioning_test_reference(id int PRIMARY KEY, subid int);

SELECT create_distributed_table('partitioning_test_2009', 'id'),
       create_distributed_table('partitioning_test', 'id'),
       create_reference_table('partitioning_test_reference');

ALTER TABLE partitioning_test ADD CONSTRAINT partitioning_reference_fkey FOREIGN KEY (id) REFERENCES partitioning_test_reference(id) ON DELETE CASCADE;
ALTER TABLE partitioning_test_2009 ADD CONSTRAINT partitioning_reference_fkey_2009 FOREIGN KEY (id) REFERENCES partitioning_test_reference(id) ON DELETE CASCADE;

ALTER TABLE partitioning_test ATTACH PARTITION partitioning_test_2009 FOR VALUES FROM ('2009-01-01') TO ('2010-01-01');
2019-03-14 15:28:37 -07:00
Hadi Moshayedi f19feb742c
Remove never assigned colocatedRelation from CreateDistributedTable (#2479) 2019-03-12 14:50:18 -07:00
Murat Tuncer cd5213abee Set sequential mode execution GUC for alter partitioned table
PG recently started propagating foreign key constraints
to partition tables. This came with a select query
to validate the the constaint.

We are already setting sequential mode execution for this
command. In order for validation select query to respect
this setting we need to explicitly set the GUC.

This commit also handles detach partition part.
2019-01-25 15:28:07 +03:00
Jason Petersen 339e6e661e
Remove 9.6 (#2554)
Removes support and code for PostgreSQL 9.6

cr: @velioglu
2019-01-16 13:11:24 -07:00
Marco Slot 1b1c6374f7
Execute CREATE INDEX CONCURRENTLY concurrently 2018-12-21 14:02:59 -07:00
Marco Slot 5b9376a7f8 Check ownership before taking locks in distributed table creation 2018-12-18 15:32:07 +01:00
Marco Slot 9cf91c438b Only allow transmit from pgsql_job_cache directory 2018-12-05 10:18:27 +01:00
Marco Slot 8893cc141d Support INSERT...SELECT with ON CONFLICT or RETURNING via coordinator
Before this commit, Citus supported INSERT...SELECT queries with
ON CONFLICT or RETURNING clauses only for pushdownable ones, since
queries supported via coordinator were utilizing COPY infrastructure
of PG to send selected tuples to the target worker nodes.

After this PR, INSERT...SELECT queries with ON CONFLICT or RETURNING
clauses will be performed in two phases via coordinator. In the first
phase selected tuples will be saved to the intermediate table which
is colocated with target table of the INSERT...SELECT query. Note that,
a utility function to save results to the colocated intermediate result
also implemented as a part of this commit. In the second phase, INSERT..
SELECT query is directly run on the worker node using the intermediate
table as the source table.
2018-11-30 15:29:12 +03:00
Hanefi Onaldi 7db6991dc0 propagate validate queries to workers 2018-11-26 14:04:51 +03:00
Marco Slot 6aa5592e52 Add user ID suffix to intermediate files in re-partition jobs 2018-11-23 08:36:11 +01:00
Marco Slot caf402d506 COPY to a task file no longer switches to superuser 2018-11-22 18:15:33 +01:00
Onder Kalaci 7f0a57a153 Make sure to prevent unauthorized users to drop tables in Citus MX 2018-11-15 18:07:03 +03:00
Marco Slot f383e4f307
Description: Refactor code that handles DDL commands from one file into a module
The file handling the utility functions (DDL) for citus organically grew over time and became unreasonably large. This refactor takes that file and refactored the functionality into separate files per command. Initially modeled after the directory and file layout that can be found in postgres.

Although the size of the change is quite big there are barely any code changes. Only one two functions have been added for readability purposes:

- PostProcessIndexStmt which is extracted from PostProcessUtility
- PostProcessAlterTableStmt which is extracted from multi_ProcessUtility

A README.md has been added to `src/backend/distributed/commands` describing the contents of the module and every file in the module.
We need more documentation around the overloading of the COPY command, for now the boilerplate has been added for people with better knowledge to fill out.
2018-11-14 13:36:27 +01:00
Onder Kalaci c1b5a04f6e Allow partitioned tables with replication factor > 1
With this commit, we all partitioned distributed tables with
replication factor > 1. However, we also have many restrictions.

In summary, we disallow all kinds of modifications (including DDLs)
on the partition tables. Instead, the user is allowed to run the
modifications over the parent table.

The necessity for such a restriction have two aspects:
   - We need to acquire shard resource locks appropriately
   - We need to handle marking partitions INVALID in case
     of any failures. Note that, in theory, the parent table
     should also become INVALID, which is too aggressive.
2018-09-21 14:40:41 +03:00
Onder Kalaci 5cf8fbe7b6 Add infrastructure to relation if exists 2018-09-07 14:49:36 +03:00
Onder Kalaci 1b3257816e Make sure that table is dropped before shards are dropped
This commit fixes a bug where a concurrent DROP TABLE deadlocks
with SELECT (or DML) when the SELECT is executed from the workers.

The problem was that Citus used to remove the metadata before
droping the table on the workers. That creates a time window
where the SELECT starts running on some of the nodes and DROP
table on some of the other nodes.
2018-09-04 08:57:20 +03:00
velioglu bd30e3e908 Add support for writing to reference tables from MX nodes 2018-08-27 18:15:04 +03:00
mehmet furkan şahin ef9f38b68d ApplyLogRedaction noop func is added 2018-08-17 14:48:54 -07:00
Onder Kalaci 7fb529aab9 Some stylistic improvements in the foreign keys to reference table
changes.
2018-07-05 23:23:34 +03:00
Nils Dijk c1c8c38dc9 create placeholder for policy ddl 2018-07-05 11:07:01 +02:00
Onder Kalaci d83be3a33f Enforce foreign key restrictions inside transaction blocks
When a hash distributed table have a foreign key to a reference
table, there are few restrictions we have to apply in order to
prevent distributed deadlocks or reading wrong results.

The necessity to apply the restrictions arise from cascading
nature of foreign keys. When a foreign key on a reference table
cascades to a distributed table, a single operation over a single
connection can acquire locks on multiple shards of the distributed
table. Thus, any parallel operation on that distributed table, in the
same transaction should not open parallel connections to the shards.
Otherwise, we'd either end-up with a self-distributed deadlock or
read wrong results.

As briefly described above, the restrictions that we apply is done
by tracking the distributed/reference relation accesses inside
transaction blocks, and act accordingly when necessary.

The two main rules are as follows:
   - Whenever a parallel distributed relation access conflicts
     with a consecutive reference relation access, Citus errors
     out
   - Whenever a reference relation access is followed by a
     conflicting parallel relation access, the execution mode
     is switched to sequential mode.

There are also some other notes to mention:
   - If the user does SET LOCAL citus.multi_shard_modify_mode
     TO 'sequential';, all the queries should simply work with
     using one connection per worker and sequentially executing
     the commands. That's obviously a slower approach than Citus'
     usual parallel execution. However, we've at least have a way
     to run all commands successfully.

   - If an unrelated parallel query executed on any distributed
     table, we cannot switch to sequential mode. Because, the essense
     of sequential mode is using one connection per worker. However,
     in the presence of a parallel connection, the connection manager
     picks those connections to execute the commands. That contradicts
     with our purpose, thus we error out.

   - COPY to a distributed table cannot be executed in sequential mode.
     Thus, if we switch to sequential mode and COPY is executed, the
     operation fails and there is currently no way of implementing that.
     Note that, when the local table is not empty and create_distributed_table
     is used, citus uses COPY internally. Thus, in those cases,
     create_distributed_table() will also fail.

   - There is a GUC called citus.enforce_foreign_key_restrictions
     to disable all the checks. We added that GUC since the restrictions
     we apply is sometimes a bit more restrictive than its necessary.
     The user might want to relax those. Similarly, if you don't have
     CASCADEing reference tables, you might consider disabling all the
     checks.
2018-07-03 17:05:55 +03:00
velioglu 6be6911ed9 Create foreign key relation graph and functions to query on it 2018-07-03 17:05:55 +03:00
mehmet furkan şahin 2c5d59f3a8 create_distributed_table in transaction is fixed 2018-07-03 17:05:01 +03:00
Onder Kalaci 2f01894589 Track relation accesses using the connection management infrastructure 2018-06-25 18:40:30 +03:00
mehmet furkan şahin 2b2ce036eb create_distributed_table honors sequential mode 2018-06-19 17:33:45 +03:00
mehmet furkan şahin d1a3b20115 foreign_constraint_utils is created 2018-06-07 18:19:24 +03:00
Marco Slot 2559b84049 Drop shards as current user instead of super user 2018-05-01 09:57:20 +02:00
Marco Slot 3d3c19a717
Improve messages for essential connection failures 2018-04-26 12:58:47 -06:00
Murat Tuncer a6fe5ca183 PG11 compatibility update
- changes in ruleutils_11.c is reflected
- vacuum statement api change is handled. We now allow
  multi-table vacuum commands.
- some other function header changes are reflected
- api conflicts between PG11 and earlier versions
  are handled by adding shims in version_compat.h
- various regression tests are fixed due output and
  functionality in PG1
- no change is made to support new features in PG11
  they need to be handled by new commit
2018-04-26 11:29:43 +03:00
Brian Cloutier 42ddfa176d Fix crash on Windows where there is no detail 2018-04-13 12:54:22 -07:00
Burak Yucesoy 0c283fa8a3 Add partitioning support to MX tables
Previously, we prevented creation of partitioned tables on Citus MX.
We decided to not focus on this feature until there is a need. Since
now there are requests for this feature, we are implementing support
for partitioned tables on Citus MX.
2018-04-06 12:47:06 +03:00
Metin Doslu 3b7b64a8b6 Remove skip_jsonb_validation_in_copy GUC 2018-03-13 10:33:27 +02:00
Marco Slot 6f7c3bd73b Skip JSON validation on coordinator during COPY 2018-02-02 15:33:27 +01:00
Marco Slot 36ee21c323 Make CanUseBinaryCopyFormatForType public 2017-12-14 09:32:55 +01:00
Marco Slot 4cdadfcab6 Add intermediate results infrastructure 2017-12-04 14:50:11 +01:00
Marco Slot bfcc76df69 Make several COPY-related functions public 2017-12-04 13:12:03 +01:00
Murat Tuncer 2d66bf5f16
Fix hard coded formatting strings for 64 bit numbers (#1831)
Postgres provides OS agnosting formatting macros for
formatting 64 bit numbers. Replaced %ld %lu with
INT64_FORMAT and UINT64_FORMAT respectively.

Also found some incorrect usages of formatting
flags and fixed them.
2017-12-04 14:11:06 +03:00
Hadi Moshayedi ff706cf556 Test that COPY blocks UPDATE/DELETE/INSERT...SELECT when rep factor 2. 2017-11-30 14:52:29 -05:00
Marco Slot acbc0fe0de Use RowExclusiveLock shard resource lock in COPY 2017-11-30 09:15:45 -05:00
Marco Slot a9933deac6 Make real time executor work in transactions 2017-11-30 09:59:32 +03:00
Brian Cloutier 7be1545843 Support implicit casts during INSERT/SELECT
It's possible to build INSERT SELECT queries which include implicit
casts, currently we attempt to support these by adding explicit casts to
the SELECT query, but this sometimes crashes because we don't update all
nodes with the new types. (SortClauses, for instance)

This commit removes those explicit casts and passes an unmodified SELECT
query to the COPY executor (how we implement INSERT SELECT under the
scenes). In lieu of those cases, COPY has been given some extra logic to
inspect queries, notice that the types don't line up with the table it's
supposed to be inserting into, and "manually" casting every tuple before
sending them to workers.
2017-11-03 22:27:15 -07:00
Marco Slot 6883a09cdd Allow distributed partitioned table creation in Cloud 2017-11-03 10:09:18 +01:00
Brian Cloutier 91ff8cd2d5 {*,}create_distributed_table doesn't emit OID (#1710) 2017-10-16 18:08:51 -06:00
Jason Petersen b4d53423fa
Add adapter functions for OpenFile changes 2017-09-25 17:20:24 -07:00
Jason Petersen bbc15e0598
Handle HASHPROC changes
PostgreSQL 11 now has "standard" and "extended" (64-bit) versions of
hash functions.
2017-09-25 17:20:24 -07:00