* Add PG12 test outputs
* Add jobs to run tests with pg 12
* use POSIX collate for compatibility between pg10/pg11/pg12
* do not override the new default value when running vanilla tests
* fix 2 problems with pg12 tests
* update pg12 images with pg12 rc1
* remove pg10 jobs
* Revert "Add PG12 test outputs"
This reverts commit f3545b92ef.
* change images to use latest instead of dev
* add missing coverage flags
DESCRIPTION: Disallow distributed functions for functions depending on an extension
Functions depending on an extension cannot (yet) be distributed by citus. If we would allow this it would cause issues with our dependency following mechanism as we stop following objects depending on an extension.
By not allowing functions to be distributed when they depend on an extension as well as not allowing to make distributed functions depend on an extension we won't break the ability to add new nodes. Allowing functions depending on extensions to be distributed at the moment could cause problems in that area.
DESCRIPTION: Propagate CREATE OR REPLACE FUNCTION
Distributed functions could be replaced, which should be propagated to the workers to keep the function in sync between all nodes.
Due to the complexity of deparsing the `CreateFunctionStmt` we actually produce the plan during the processing phase of our utilityhook. Since the changes have already been made in the catalog tables we can reuse `pg_get_functiondef` to get us the generated `CREATE OR REPLACE` sql.
DESCRIPTION: Propagate ALTER FUNCTION statements for distributed functions
Using the implemented deparser for function statements to propagate changes to both functions and procedures that are previously distributed.
This PR aims to add all the necessary logic to qualify and deparse all possible `{ALTER|DROP} .. {FUNCTION|PROCEDURE}` queries.
As Procedures are introduced in PG11, the code contains many PG version checks. I tried my best to make it easy to clean up once we drop PG10 support.
Here are some caveats:
- I assumed that the parse tree is a valid one. There are some queries that are not allowed, but still are parsed successfully by postgres planner. Such queries will result in errors in execution time. (e.g. `ALTER PROCEDURE p STRICT` -> `STRICT` action is valid for functions but not procedures. Postgres decides to parse them nevertheless.)
When a function is marked as colocated with a distributed table,
we try delegating queries of kind "SELECT func(...)" to workers.
We currently only support this simple form, and don't delegate
forms like "SELECT f1(...), f2(...)", "SELECT f1(...) FROM ...",
or function calls inside transactions.
As a side effect, we also fix the transactional semantics of DO blocks.
Previously we didn't consider a DO block a multi-statement transaction.
Now we do.
Co-authored-by: Marco Slot <marco@citusdata.com>
Co-authored-by: serprex <serprex@users.noreply.github.com>
Co-authored-by: pykello <hadi.moshayedi@microsoft.com>
Since the distributed functions are useful when the workers have
metadata, we automatically sync it.
Also, after master_add_node(). We do it lazily and let the deamon
sync it. That's mainly because the metadata syncing cannot be done
in transaction blocks, and we don't want to add lots of transactional
limitations to master_add_node() and create_distributed_function().
* Enhance pg upgrade tests
* Add a specific upgrade test for pg_dist_partition
We store the index of distribution column, and when a column with an
index that is smaller than distribution column index is dropped before
an upgrade, the index should still match the distribution column after
an upgrade
With this commit, we're changing the API for create_distributed_function()
such that users can provide the distribution argument and the colocation
information.
We've recently merged two commits, db5d03931d
and eccba1d4c3, which actually operates
on the very similar places.
It turns out that we've an integration issue, where master_add_node()
fails to replicate the functions to newly added node.
DESCRIPTION: Provide a GUC to turn of the new dependency propagation functionality
In the case the dependency propagation functionality introduced in 9.0 causes issues to a cluster of a user they can turn it off almost completely. The only dependency that will still be propagated and kept track of is the schema to emulate the old behaviour.
GUC to change is `citus.enable_object_propagation`. When set to `false` the functionality will be mostly turned off. Be aware that objects marked as distributed in `pg_dist_object` will still be kept in the catalog as a distributed object. Alter statements to these objects will not be propagated to workers and may cause desynchronisation.
DESCRIPTION: Rename remote types during type propagation
To prevent data to be destructed when a remote type differs from the type on the coordinator during type propagation we wanted to rename the type instead of `DROP CASCADE`.
This patch removes the `DROP` logic and adds the creation of a rename statement to a free name.
DESCRIPTION: Add feature flag to turn off create type propagation
When `citus.enable_create_type_propagation` is set to `false` citus will not propagate `CREATE TYPE` statements to the workers. Types are still distributed when tables that depend on these types are distributed.
This PR aims to add the minimal set of changes required to start
distributing functions. You can use create_distributed_function(regproc)
UDF to distribute a function.
SELECT create_distributed_function('add(int,int)');
The function definition should include the param types to properly
identify the correct function that we wish to distribute
@thanodnl told me it was a bit of a problem that it's impossible to see
the history of a UDF in git. The only way to do so is by reading all the
sql migration files from new to old. Another problem is that it's also
hard to review the changed UDF during code review, because to find out
what changed you have to do the same. I thought of a IMHO better (but
not perfect) way to handle this.
We keep the definition of a UDF in sql/udfs/{name_of_udf}/latest.sql.
That file we change whenever we need to make a change to the the UDF. On
top of that you also make a snapshot of the file in
sql/udfs/{name_of_udf}/{migration-version}.sql (e.g. 9.0-1.sql) by
copying the contents. This way you can easily view what the actual
changes were by looking at the latest.sql file.
There's still the question on how to use these files then. Sadly
postgres doesn't allow inclusion of other sql files in the migration sql
file (it does in psql using \i). So instead I used the C preprocessor+
make to compile a sql/xxx.sql to a build/sql/xxx.sql file. This final
build/sql/xxx.sql file has every occurence of #include "somefile.sql" in
sql/xxx.sql replaced by the contents of somefile.sql.
DESCRIPTION: Distribute Types to worker nodes
When to propagate
==============
There are two logical moments that types could be distributed to the worker nodes
- When they get used ( just in time distribution )
- When they get created ( proactive distribution )
The just in time distribution follows the model used by how schema's get created right before we are going to create a table in that schema, for types this would be when the table uses a type as its column.
The proactive distribution is suitable for situations where it is benificial to have the type on the worker nodes directly. They can later on be used in queries where an intermediate result gets created with a cast to this type.
Just in time creation is always the last resort, you cannot create a distributed table before the type gets created. A good example use case is; you have an existing postgres server that needs to scale out. By adding the citus extension, add some nodes to the cluster, and distribute the table. The type got created before citus existed. There was no moment where citus could have propagated the creation of a type.
Proactive is almost always a good option. Types are not resource intensive objects, there is no performance overhead of having 100's of types. If you want to use them in a query to represent an intermediate result (which happens in our test suite) they just work.
There is however a moment when proactive type distribution is not beneficial; in transactions where the type is used in a distributed table.
Lets assume the following transaction:
```sql
BEGIN;
CREATE TYPE tt1 AS (a int, b int);
CREATE TABLE t1 AS (a int PRIMARY KEY, b tt1);
SELECT create_distributed_table('t1', 'a');
\copy t1 FROM bigdata.csv
```
Types are node scoped objects; meaning the type exists once per worker. Shards however have best performance when they are created over their own connection. For the type to be visible on all connections it needs to be created and committed before we try to create the shards. Here the just in time situation is most beneficial and follows how we create schema's on the workers. Outside of a transaction block we will just use 1 connection to propagate the creation.
How propagation works
=================
Just in time
-----------
Just in time propagation hooks into the infrastructure introduced in #2882. It adds types as a supported object in `SupportedDependencyByCitus`. This will make sure that any object being distributed by citus that depends on types will now cascade into types. When types are depending them self on other objects they will get created first.
Creation later works by getting the ddl commands to create the object by its `ObjectAddress` in `GetDependencyCreateDDLCommands` which will dispatch types to `CreateTypeDDLCommandsIdempotent`.
For the correct walking of the graph we follow array types, when later asked for the ddl commands for array types we return `NIL` (empty list) which makes that the object will not be recorded as distributed, (its an internal type, dependant on the user type).
Proactive distribution
---------------------
When the user creates a type (composite or enum) we will have a hook running in `multi_ProcessUtility` after the command has been applied locally. Running after running locally makes that we already have an `ObjectAddress` for the type. This is required to mark the type as being distributed.
Keeping the type up to date
====================
For types that are recorded in `pg_dist_object` (eg. `IsObjectDistributed` returns true for the `ObjectAddress`) we will intercept the utility commands that alter the type.
- `AlterTableStmt` with `relkind` set to `OBJECT_TYPE` encapsulate changes to the fields of a composite type.
- `DropStmt` with removeType set to `OBJECT_TYPE` encapsulate `DROP TYPE`.
- `AlterEnumStmt` encapsulates changes to enum values.
Enum types can not be changed transactionally. When the execution on a worker fails a warning will be shown to the user the propagation was incomplete due to worker communication failure. An idempotent command is shown for the user to re-execute when the worker communication is fixed.
Keeping types up to date is done via the executor. Before the statement is executed locally we create a plan on how to apply it on the workers. This plan is executed after we have applied the statement locally.
All changes to types need to be done in the same transaction for types that have already been distributed and will fail with an error if parallel queries have already been executed in the same transaction. Much like foreign keys to reference tables.
DESCRIPTION: Fix schema leak on CREATE INDEX statement
When a CREATE INDEX is cached between execution we might leak the schema name onto the cached statement of an earlier execution preventing the right index to be created.
Even though the cache is cleared when the search_path changes we can trigger this behaviour by having the schema already on the search path before a colliding table is created in a schema earlier on the `search_path`. When calling an unqualified create index via a function (used to trigger the caching behaviour) we see that the index is created on the wrong table after the schema leaked onto the statement.
By copying the complete `PlannedStmt` and `utilityStmt` during our planning phase for distributed ddls we make sure we are not leaking the schema name onto a cached data structure.
Caveat; COPY statements already have a lot of parsestree copying ongoing without directly putting it back on the `pstmt`. We should verify that copies modify the statement and potentially copy the complete `pstmt` there already.
/*
* local_executor.c
*
* The scope of the local execution is locally executing the queries on the
* shards. In other words, local execution does not deal with any local tables
* that are not shards on the node that the query is being executed. In that sense,
* the local executor is only triggered if the node has both the metadata and the
* shards (e.g., only Citus MX worker nodes).
*
* The goal of the local execution is to skip the unnecessary network round-trip
* happening on the node itself. Instead, identify the locally executable tasks and
* simply call PostgreSQL's planner and executor.
*
* The local executor is an extension of the adaptive executor. So, the executor uses
* adaptive executor's custom scan nodes.
*
* One thing to note that Citus MX is only supported with replication factor = 1, so
* keep that in mind while continuing the comments below.
*
* On the high level, there are 3 slightly different ways of utilizing local execution:
*
* (1) Execution of local single shard queries of a distributed table
*
* This is the simplest case. The executor kicks at the start of the adaptive
* executor, and since the query is only a single task the execution finishes
* without going to the network at all.
*
* Even if there is a transaction block (or recursively planned CTEs), as long
* as the queries hit the shards on the same, the local execution will kick in.
*
* (2) Execution of local single queries and remote multi-shard queries
*
* The rule is simple. If a transaction block starts with a local query execution,
* all the other queries in the same transaction block that touch any local shard
* have to use the local execution. Although this sounds restrictive, we prefer to
* implement in this way, otherwise we'd end-up with as complex scenarious as we
* have in the connection managements due to foreign keys.
*
* See the following example:
* BEGIN;
* -- assume that the query is executed locally
* SELECT count(*) FROM test WHERE key = 1;
*
* -- at this point, all the shards that reside on the
* -- node is executed locally one-by-one. After those finishes
* -- the remaining tasks are handled by adaptive executor
* SELECT count(*) FROM test;
*
*
* (3) Modifications of reference tables
*
* Modifications to reference tables have to be executed on all nodes. So, after the
* local execution, the adaptive executor keeps continuing the execution on the other
* nodes.
*
* Note that for read-only queries, after the local execution, there is no need to
* kick in adaptive executor.
*
* There are also few limitations/trade-offs that is worth mentioning. First, the
* local execution on multiple shards might be slow because the execution has to
* happen one task at a time (e.g., no parallelism). Second, if a transaction
* block/CTE starts with a multi-shard command, we do not use local query execution
* since local execution is sequential. Basically, we do not want to lose parallelism
* across local tasks by switching to local execution. Third, the local execution
* currently only supports queries. In other words, any utility commands like TRUNCATE,
* fails if the command is executed after a local execution inside a transaction block.
* Forth, the local execution cannot be mixed with the executors other than adaptive,
* namely task-tracker, real-time and router executors. Finally, related with the
* previous item, COPY command cannot be mixed with local execution in a transaction.
* The implication of that any part of INSERT..SELECT via coordinator cannot happen
* via the local execution.
*/
* Add creating a citus cluster script
Creating a citus cluster is automated.
Before running this script:
- Citus should be installed and its control file should be added to postgres. (make install)
- Postgres should be installed.
* Initialize upgrade test table and fill
* Finalize the layout of upgrade tests
Postgres upgrade function is added.
The newly added UDFs(citus_prepare_pg_upgrade, citus_finish_pg_upgrade) are used to
perform upgrade.
* Refactor upgrade test and add config file
* Add schedules for upgrade testing
* Use pg_regress for upgrade tests
pg_regress is used for creating a simple distributed table in
upgrade tests. After upgrading another schedule is used to verify
that the distributed table exists. Router and realtime queries are
used for verifying.
* Run upgrade tests as a postgres user in a temp dir
postgres user is used for psql to be consistent at running tests.
A temp dir is created and the temp dir's permissions are changed so
that postgres user can access it. All psql commands are now run with
postgres user.
"Select * from t" query is changed as "Select * from t order by a"
so that the result is always in the same order.
* Add docopt and arguments for the upgrade script
Docopt dependency is added to parse flags in script.
Some refactoring in variable names is done.
* Add readme for upgrade tests
* Refactor upgrade tests
Use relative data path instead of absolute assuming that this script will
always be run from 'src/test/regress'
Remove 'citus-path' flag
Use specific version for docopt instead of *
Use named args in string formatting
* Resolve a security problem
Instead of using string formatting in subprocess.call, arguments
list is used. Otherwise users could do shell injection.
Shell = True is removed from subprocess call as it is not recommended
to use this.
* Add how the test works to readme
* Refactor some variables to be consistent
* Update upgrade script based on the reviews
It was possible that postgres server would stay running even when the script
crashes, atexit library is used to ensure that we always do a teardown where we stop
the databases.
Some formatting is done in the code for better readability.
Config class is used instead of a dictonary.
A target for upgrade test is added to makefile.
Unused flags/functions/variables are removed.
* Format commands and remove unnecessary flag from readme
This is a bug that got in when we inlined the body of a function into this loop. Earlier revisions had two loops, hence a function that would be reused.
With a return instead of a continue the list of dependencies being walked is dependent on the order in which we find them in pg_depend. This became apparent during pg12 compatibility. The order of entries in pg12 was luckily different causing a random test to fail due to this return.
By changing it to a continue we only skip the entries that we don’t want to follow instead of skipping all entries that happen to be found later.
sidefix for more stable isolation tests around ensure dependency
DESCRIPTION: Refactor ensure schema exists to dependency exists
Historically we only supported schema's as table dependencies to be created on the workers before a table gets distributed. This PR puts infrastructure in place to walk pg_depend to figure out which dependencies to create on the workers. Currently only schema's are supported as objects to create before creating a table.
We also keep track of dependencies that have been created in the cluster. When we add a new node to the cluster we use this catalog to know which objects need to be created on the worker.
Side effect of knowing which objects are already distributed is that we don't have debug messages anymore when creating schema's that are already created on the workers.
master_deactivate_node is updated to decrement the replication factor
Otherwise deactivation could have create_reference_table produce a second record
UpdateColocationGroupReplicationFactor is renamed UpdateColocationGroupReplicationFactorForReferenceTables
& the implementation looks up the record based on distributioncolumntype == InvalidOid, rather than by id
Otherwise the record's replication factor fails to be maintained when there are no reference tables
DESCRIPTION: Add functions to help with postgres upgrades
Currently there is [a list of manual steps](https://docs.citusdata.com/en/v8.2/admin_guide/upgrading_citus.html?highlight=upgrade#upgrading-postgresql-version-from-10-to-11) to perform during a postgres upgrade. These steps guarantee our catalog tables are kept and counter values are maintained across upgrades.
Having more than 1 command in our docs for users to manually execute during upgrades is error prone for both the user, and our docs. There are already 2 catalog tables that have been introduced to citus that have not been added to our docs for backing up during upgrades (`pg_authinfo` and `pg_dist_poolinfo`).
As we add more functionality to citus we run into situations where there are more steps required either before or after the upgrade. At the same time, when we move catalog tables to a place where the contents will be maintained automatically during upgrades we could have less steps in our docs. This will come to a hard to maintain matrix of citus versions and steps to be performed.
Instead we could take ownership of these steps within the extension itself. This PR introduces two new functions for the user to use instead of long lists of error prone instructions to follow.
- `citus_prepare_pg_upgrade`
This function should be called by the user right before shutting down the cluster. This will ensure all citus catalog tables are backed up in a location where the information will be retained during an upgrade.
- `citus_finish_pg_upgrade`
This function should be called right after a pg_upgrade of the cluster. This will restore the catalog tables to the state before the upgrade happend.
Both functions need to be executed both on the coordinator and on all the workers, in the same fashion our current documentation instructs to do.
There are two known problems with this function in its current form, which is also a problem with our docs. We should schedule time in the future to improve on this, but having it automated now is better as we are about to add extra steps to take after upgrades.
- When you install citus in a clean cluster we do enable ssl for communication between the coordinator and the workers. If an upgrade to a clean cluster is performed we do not setup ssl on the new cluster causing the communication to fail.
- There are no automated tests added in this PR to execute an upgrade test durning every build.
Our current test infrastructure does not allow for 2 versions of postgres to exist in the same environment. We will need to invest time to create a new testing harness that could run the following scenario:
1. Create cluster
2. Run extensible scripts to execute arbitrary statements on this cluster
3. Perform an upgrade by preparing, upgrading and finishing
4. Run extensible scripts to verify all objects created by earlier scripts exists in correct form in the upgraded cluster
Given the non trivial amount of work involved for such a suite I'd like to land this before we have
automated testing.
On a side note; As the reviewer noticed, the tables created in the public namespace are not visible in `psql` with `\d`. The backup catalog tables have the same name as the tables in `pg_catalog`. Due to postgres internals `pg_catalog` is first in the search path and therefore the non-qualified name would alwasy resolve to `pg_catalog.pg_dist_*`. Internally this is called a non-visible table as it would resolve to a different table without a qualified name. Only visible tables are shown with `\d`.